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Abstract 

Covid-19 initially started in China, although cases of infection by this virus are currently being identified in 
Europe since January and February of this year camouflaged within a strong outbreak of influenza that had not 
been identified before. What is certain is that in about a hundred days it has spread around the world threatening 
humanity. There seems to be a great need to find a rapid response to the speed at which the virus is spreading. In 
this work, different mathematical models are studied to accurately determine the speed of propagation or 
infection of people infected by Covid-19 based on data collected from the evolution of the pandemic in Spain. 
Several mathematical models are proposed and analyzed, but the model proposed as the most suitable is a fourth 
degree polynomial regression adjustment that presents an R-square statistic of 99.72% which gives a great 
adjustment of the model for the calculation of the number of infected confirmed by this virus in Spain.  
Knowing these data is of vital importance to be able to take and undertake the most urgent health and social 
measures in an effective and orderly manner. This will have a great repercussion in being able to avoid a high 
number of possible infections. 
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1. Introduction 

In 1927, biochemist William Ogilvy Kermack and epidemiologist Anderson Gray McKendrick (Kermack & 
McKendrich, 1932; Kermack & McKendrich, 1923), both Scottish, published a paper that is still used to model 
epidemics of infectious diseases. The problem they studied was and still is one of the leading causes of death 
worldwide. 

Just think that the 1918 influenza pandemic, also known as the Spanish flu, killed between 50 and 100 million 
people, while the death toll from World War I in the previous four years was less than 20 million. 

Kermack and McKendrick developed the so-called SIR model, where the population is divided into "S" for 
susceptible, "I" for infected and "R" for recovered. In the 'S' of susceptible are all the people who are not 
vaccinated - which in the case of covid-19 is the entire population - and who may become ill. In the 'I' of infected, 
whose curve must try not to rise above the health capacity of the country, because they are those who may require 
hospital care, and finally in the 'R' of recovered, which are those who neither infect nor can be infected, where the 
dead are always counted (Dahari et al., 2005; Dee & Shuler, 1997; Diekmann & Heesterbeek, 2000; Ellner et 
al.,1998). The sum of "S" plus "I" plus "R" is the total number of the population. However, these models also have 
their limitations. The simplest CRS models make basic assumptions, for example, that everyone has the same 
chance of getting the virus from an infected person because the population is perfectly mixed and that people with 
the disease are equally infectious until they die or recover. More advanced models subdivide people into smaller 
groups (by age, sex, health status, employment, number of contacts, etc.) to establish who meets whom, when and 
where (Brand, 1957; Brauer et al., 2008; Cadarso & González, 2007; Canini & Perelson, 2014; Cañas, García & 
Andérica, 2003; Checkoway, Pearce, Crawford, 1989; Chen & Bokka, 2005; Clapham et al.,2016; Haerdle, 1993; 
Lofgren, 1993; Schafter & Kot, 1985). 

The latest data on people diagnosed with Covid-19 coronavirus by PCR in the world is 3,525,116 people, in 
Europe it is 1,554,703 people and in Spain it is 220,325. The number of people infected in Spain represents 6.25% 
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of those infected worldwide and 14.17% of those infected in Europe.The communities most affected in Spain by 
infected persons have been Madrid, Cataluña, Castilla La Mancha, Castilla and Leon and the País vasco. 

It may sound strange, but actually counting the dead as "recovered" is part of the mathematical model that is at the 
base of most simulators used to show how the disease caused by the new coronavirus spreads around the world. 
For example, it is the model on which the interactive map of the pandemic of the Johns Hopkins University in the 
United States is based, an institution that has positioned itself as one of the maximum statistical references in this 
health crisis (CNE, 2005; Sanglier, Robas & Jiménez, 2020a). 

In this paper we will analyze and present different mathematical models focused on adjusting to the total number 
of confirmed infections in Spain with data taken from the Center for Coordination of Health Alerts and 
Emergencies belonging to the Ministry of Health of Spain (MS, 2020).  

2. Methods 

A comparison of regression models will be made using the Statgraphics Centurion program. The objectives will 
be to calculate the covariance and Pearson's linear correlation coefficient between two variables, to perform a 
linear regression analysis on the data, to determine the existence of a simple model that best fits the data by 
checking the type of transformation performed, to determine the best statistically significant polynomial that best 
fits the data, and finally, to analyze the normality of the residues of the best fitting model (Armitage & Bery, 
1994; Drake, 1998; Martínez-González, 2004; Montesinos & Hernández, 2007; Velasco, 2007; Canini & 
Perelson, 2014; Clapham et al., 2016; Sanglier, Robas & Jiménez, 2020b). 

3. Results 

The numerical data available have been extracted from the Health Alert and Emergency Coordination Centre of 
the Spanish Ministry of Health. A table of data for the study is attached (Table 1). 

Table 1. Table of data on the number of confirmed infected, deceased and recovered in Spain 

Date Days Infected Deceased Recovered New 

12/02/20 0 2 0 0 0 

27/02/20 15 17 0 0 1 

16/03/20 34 9191 309 N/A N/A 

17/03/20 35 11178 491 N/A N/A 

23/03/20 40 33089 2182 3355 4517 

24/03/20 41 39673 2696 3794 6584 

26/03/20 43 56188 4089 7015 8578 

27/03/20 44 64059 4858 9357 7871 

01/04/20 50 102136 9053 22647 7719 

07/04/20 56 140510 13798 43208 5478 

08/04/20 57 146690 14555 48021 6180 

09/04/20 58 152446 15238 52165 5756 

10/04/20 59 157022 15843 55668 4576 

11/04/20 60 161852 16353 59109 4830 

14/04/20 63 172541 18056 67504 3045 

19/04/20 68 195944 20453 77357 4218 

20/04/20 69 200210 20852 80587 4266 

21/04/20 70 204178 21282 82514 3968 

22/04/20 71 208389 21717 85915 3401 

23/04/20 72 213024 22157 89250 3335 

24/04/20 73 202990 22524 92355 3105 

25/04/20 74 205905 22902 95708 2944 
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Initially, a multivariate analysis of the evolution of the number of people infected between the dates shown in the 
table will be carried out, from February 12 to April 25, 2020, the period in which there has been the greatest 
evolution in the number of people infected by Covid-19. The statistical summary obtained is set out below. 

Table 2. Statistical data summary. 

 Time (days) Number of Infected 

Recount  22 22 

Average 52,3636 121692 

Estandar deviation 19,4729 79423 

Coefficient of variation 37,19% 65,27% 

Minimum 0 2 

Maximo 74 213024 

Range 74 213022 

Standardized bias -2,21144 -0,762785 

Standardized Kurtosis 1,162 -1,45575 

Table 2 shows the statistical summary for each of the selected variables.  It includes measures of central 
tendency, of variability, and of shape.  Of interest are standardized bias and standardized kurtosis, which can be 
used to determine whether the sample is from a normal distribution.  Values of these statistics outside the range 
of -2 to +2 indicate significant deviations from normality, which would tend to invalidate many of the statistical 
procedures usually applied to these data.  In this case, the time variable shows values of standardized kurtosis 
outside the expected range.  

In the box and whisker graph, the relationship between the two variables analyzed is shown. 

 
Figure 1. Box chart and whisker of the variable 

The correlation matrix attached below tells us if there is any kind of linear relationship between the variables. 

Table 3. Variable correlation table 

 Time (Days) Number of infected 

Time (Days)  0,9342 

  (22) 

  0,0000 

Number of infected 0,9342  

 (22)  

 0,0000  

Table 3 shows the correlations between each pair of variables.  These correlation coefficients range from -1 to 
+1, and measure the strength of the linear relationship between the variables.  The number of data pairs used to 
calculate each coefficient is also shown in parentheses.  The third number in each block of the table is a P-value 
that proves the statistical significance of the estimated correlations.  P-values below 0.05 indicate correlations 
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significantly different from zero, with a 95.0% confidence level.  The following pairs of variables have 
P-values below 0.05 and therefore have a good correlation 

To determine the type of relationship between the two variables, we will start by analyzing the simple linear 

regression model (Figure 2). 

 

Figure 2. Simple linear regression graph 
It is observed that the calculated regression line does not completely fit the data obtained, although if we analyze 
the analysis of variance table we have a model that is statistically significant, since its P-value is less than 0.05 
and with coefficients of constant and slope of the line ( Y = a + b X ) also statistically significant since its 
P-values are less than 0.05 as shown in Table 4 below. 

The ANOVA table presents the values of variability between and within groups. The sum of squares between 
groups measures the variability between the means of the factor groups. The sum of intra-group squares 
measures the variability within each factor group. The sum of total squares measures the variability of all data 
with respect to the mean. The F-ratio is the value of the mean of the inter-group squares divided by the value of 
the mean of the intra-group squares. The P-value indicates the level of significance (it is the area to the right of 
F). For small values (less than 0.05) it indicates that the sample/variable measurements are significantly 
different. 
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Table 4. Statistical results for linear model fit 

Coefficients     

 Minimum 

Squares 

Standard Statistician  

Parameter Estimated Error T Value-P 

Intercept -77836.1 18120.9 -4.29537 0.0004 

Pending 3810.44 325.257 11.7152 0.0000 

 

Analysis of Variance      

Source Sum of 

Squares 

Gl Average 

Square 

Reason-F Value-P

Model 1.15620E+11 1 1.15620E+11 137.25 0.0000 

Residue 1.68486E+10 20 8.42430E+08   

Total (Corr.) 1.32468E+11 21    

 

Correlation Coefficient: 0.934243  

R-square (%): 87.281 

R-square (adjusted for g.l.) 

(%): 

86.6451 

Standard error of the estimate: 29024.6 

Average absolute error: 21202.7 

Durbin-Watson Statistic: 0.479173 

(P=0.0000) 

Autocorrelation of delayed 

residues 1: 

0.58502 

The output (Table 4) shows the results of fitting a linear model to describe the relationship between Number of 
Infected and Time (Days).  The equation for the adjusted model is as follows:  

        Number of Infected = -77836.1 + 3810.44*Time (Days)                               (1) 

Since the P-value in the ANOVA table is less than 0.05, there is a statistically significant relationship between 
Number of Infected and Time (Days) with a 95.0% confidence level. 

You can choose other models from the alternative model comparison table below (Table 5):  
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Table 5. Comparison of alternative models 

Model 

 

Correlation R-Square (%) 

Square of X 0.9798 96 

Double Square 0.9726 94.59 

X-square-root X-square-root 0.9585 91.88 

Logarithm-Y Square Root-X 0.9550 91.20 

Linear 0.9342 87.28 

Exponential 0.9012 81.22 

Y-square 0.8848 78.30 

Square root of X 0.8045 64.72 

Log-Y X-Square 0.7589 57.59 

Y-Square-Root X-Square 0.7303 53.33 

Reverse-Y SquareX -0.4507 20.31 

Y-square root unadjusted  

Reverse Y unadjusted  

Double Square Root unadjusted  

Reverse-Y Square Root-X unadjusted  

Logarithm of X unadjusted  

Y-Square Root Log-X unadjusted  

Multiplicative unadjusted  

Reverse-Y Log-X unadjusted  

Y-Square-Log-X unadjusted  

Reverse X unadjusted  

Reverse Y-square root of X unadjusted  

S-curve unadjusted  

Double reverse unadjusted  

X-Reverse Y-Square unadjusted  

Logistics unadjusted  

Log probit unadjusted  

These are the models that can have a square R higher than the linear model that has been studied (R-square = 
87.285). 

Table 5 shows the results of fitting several curvilinear models to the data.  Of the adjusted models, the X-square 
model is the one that gives the highest R-square value with 95.9984%.  This is 8.71737% higher than the 
selected linear model.   

Next, the X-square model that has the best R-square of all the models will be tested and the graph below is 
obtained. It is observed that the new model fits much better to the data than the linear model initially proposed. 
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Figure 3. Fitting curve for the X-Square model 

Table 6 of analysis of variance, it can be seen that in the table of the T statistician it is a statistically significant 
model, reaching a R-square of 95.9984% (Table 6).  

Table 6. Statistical results for X-Square model 

Coeffcients     

 Minimum 

Squares 

Standar

d 

Statistician  

Parameter Estimated Error T Value-P 

Intercept -200024 7342.05 -2.72738 0.0130 

Pending 45.6576 2.0844 21.9044 0.0000 

 

Analysis of Variance      

Source Sum of 

Squares 

Gl Average 

Square 

Reason-F Value-P

Model 1.27168E11 1 1.27168E11 479.80 0.0000 

Residue 5.30083E9 20 2.655042E8   

Total (Corr.) 1.32468E11 21    

 

Correlation Coefficient: 0.979788  

R-square (%): 95.9984 

R-square (adjusted for g.l.) 

(%): 

95.7983 

Standard error of the estimate: 16280.1 

Average absolute error: 13415.9 

Durbin-Watson Statistic: 0.372369 

(P=0.0000) 

Autocorrelation of delayed 

residues 1: 

0.721239 

The output (Table 6) shows the results of fitting an X-square model to describe the relationship between Number 
of Infected and Time (Days). The equation of the adjusted model is:  
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     Number of Infected = -20024.6 + 45.6576*Time (Days)^2                             (2) 

Since the P-value in the ANOVA table is less than 0.05, there is a statistically significant relationship between 
Number of Infected and Time (Days) with a 95.0% confidence level. 

The R-Square statistic indicates that the adjusted model explains 95.9984% of the variability in the Number of 
Infected.  The correlation coefficient is equal to 0.979788, indicating a relatively strong relationship between 
the variables.  The standard error of the estimate indicates that the standard deviation of the residues is 16280.1.  
This value can be used to construct predictive limits for further observations. 

The mean absolute error (MAE) of 13415.9 is the average value of the residues.  The Durbin-Watson (DW) 
statistician examines the residues to determine if there is any significant correlation based on the order in which 
they are presented in the data file.  Since the P-value is less than 0.05, there is an indication of a possible serial 
correlation at a 95.0% confidence level.  Plot the residuals versus the row number to see if there is any pattern 
that can be detected.  

You can try another grade 5 polynomial regression model. The data obtained from the analysis and the fitted 

model are as follows (Figure 4). 

 
Figure 4. Fitting curve for a grade five polynomial model 
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Table 7. Statistical results for a grade five polynomial model 

Coefficients     

 Minimum 

Squares 

Standard Statistician  

Parameter Estimated Error T Value-P 

Constant 57.8127 3279.61 0.0176279 0.0862 

Time (Days) 5370,97 1291.56 4.15851 0.0007 

Time (Days)^2 -636.583 123.811 -5.14158 0.0001 

Time (Days)^3 22.373 4.33493 5.16109 0.0001 

Time (Days)^4 -0.276762 0.0636149 -4.35058 0.0005 

Time (Days)^5 0.00114041 0.000332248 3.4324 0.0034 

 

Analysis of Variance      

Source Sum of 

Squares 

Gl Average 

Square 

Reason-F Value-P

Model 1.32296E11 5 2.64593E10 2459.01 0.0000 

Residue 1.72162E8 16 1.07601E7   

Total (Corr.) 1.32468E11 21    

 

R-square (%): 99.87  

R-square (adjusted for g.l.) 

(%): 

99.8294 

Standard error of the estimate: 3280.26 

Average absolute error: 2129.26 

Durbin-Watson Statistic: 1.34562 

(P=0.0046) 

Autocorrelation of delayed 

residues 1: 

0.29787 

It can be observed that in the table of the T statistic there are some coefficients such as the Time (Days)^5 
coefficient that has a P-value > 0.05, so it can be said that it is not a statistically significant coefficient and 
should be eliminated from the model. If this is done, we are left with the following data (Table 8). 
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Table 8. Statistical results for a grade four polynomial model 

Coefficients     

 Minimum 

Squares 

Standard Statistician  

Parameter Estimated Error T Value-P 

Constant 890,974 4181,02 0,2131 0,8338 

Time (Days) 1657,24 901,663 1,83799 0,0836 

Time (Days)^2 -232,98 49,5537 -4,70157 0,0002 

Time (Days)^3 7,71493 0,951989 8,10401 0,0000 

Time (Days)^4 -0,0590073 0,00601278 -9,81365 0,0000 

 

Analysis of Variance      

Source Sum of 

Squares 

Gl Average 

Square 

Reason-F Value-P

Model 1,32169E11 4 3,30424E10 1879,09 0,0000 

Residue 2,98931E8 17 1,75842E7   

Total (Corr.) 1,32468E11 21    

 

R-square (%): 99,7743  

R-square (adjusted for g.l.) 

(%): 

99,7212 

Standard error of the estimate: 4193,35 

Average absolute error: 3170,41 

Durbin-Watson Statistic: 1,0424 

(P=0,0006) 

Autocorrelation of delayed 

residues 1: 

0,474525 

By adjusting the polynomial to degree four, it can be seen that the model is statistically significant and all 
coefficients have a P-value below 0.05. 

The equation of the adjusted model is:  

Number of Infected = 890,974 + 1657,24*Time (Days)-232,98*Time (Days)^2 

+ 7,71493*Time (Days)^3-0,0590073*Time (Days)^4                          (3) 

The model sought is that presented by equation 3 because it presents the best R-square of all. 

Figure 5 following graph shows the grade four polynomial regression model that would best fit the studied data 
of the number of infected as a function of time. 
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 Figure 5. Fitting curve for a grade four polynomial model 

 
The R-Square statistic indicates that the model thus adjusted explains 99.7743% of the variability in Number of 
Infected.  The R-squared adjusted statistic, which is more appropriate for comparing models with different 
numbers of independent variables, is 99.7212%.  The standard error of the estimate shows that the standard 
deviation of the residues is 4193.35.  This value can be used to construct limits for new observations by 
selecting the Reports option from the text menu.  The mean absolute error (MAE) of 3170.41 is the average 
value of the residue.  The Durbin-Watson (DW) statistician examines the residues to determine if there is any 
significant correlation based on the order in which they are presented in the data file.  Since the P-value is less 
than 0.05, there is an indication of possible serial correlation at a 95% confidence level.  Plot the residuals 
versus the row number to see if there is any pattern that can be detected.  

To determine if the order of the polynomial is appropriate, look at the P-value in the higher order term as 
2.0384E-8.  Since the P-value is less than 0.05, the higher order term is statistically significant at a 95% 
confidence level.  Because of this, no lower order model is considered for testing. 

We will now analyze the errors in the model selected as the best fit. We will check whether the residuals follow 
a normal distribution. We are going to test the model for normality and goodness-of-fit. 

The following data are obtained from the normality tests (Table 9). 

Table 9.  Normality tests for residuals 

Testing Statistics Value-P 

Chi-Cuadrado 5,18182 0,878706 

Statistics W of Shapiro-WilK 0,975726 0,82297 

Z value for asimetry 0,0655302 0,947746 

Value Z for shorts -0,813545 0,415904 

It is observed from the results obtained to determine the residues that these can be adequately modelled with a 
normal distribution.  The chi-square test divides the range of residues into 13 equally likely classes and 
compares the number of observations in each class with the expected number of observations.  The 
Shapiro-Wilk test is based on the comparison of the quartiles of the normal distribution adjusted to the data.  
The standardized bias test looks for lack of symmetry in the data.  The standardized kurtosis test looks for 
whether the shape of the distribution is flatter or more pointed than the normal distribution.  

Because the smallest P-value of the tests performed is greater than or equal to 0.05, one cannot reject the idea 
that the residues come from a normal distribution with 95% confidence.  

If we now look at the goodness-of-fit tests, we get the following data (Table 10).  
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Table 10. Goodness-of-fit testing for residuals  

Chi-Square Test  

 Lower limit Upper limit Observed 

frequency

Expected 

frequency 

Chi-Square 

minor or equal  -3848,66 4 3,38 0,11 

 -3848,66 -1895,52 4 3,38 0,11 

 -1895,52 -364,312 3 3,38 0,04 

 -364,312 1106,91 1 3,38 1,68 

 1106,91 2778,06 4 3,38 0,11 

major 2778,06  6 5,08 0,17 

      

Chi-Square=2,22727 with 3 g.l.   Value-P=0,526593 

 

Kolmogorov-Smirnov Test  Kuiper V Test Cramer-Von Mises W^2 Test 

      

 Normal  Normal  Normal 

DMAS 0,11034     

DMENOS 0,102861 V 0,213201 W^2 0,0408941 

DN 0,11034 Modified form 1,04396 Modified form 0,0250407 

Value-P 0,951605 Value-P >=0,10 Value-P >=0,10 

 

Watson U^2 Test Anderson-Darling A^2 

Test 

  

 Normal  Normal   

U^2 0,0408936 D^2 0,246309   

Modified form 0,037884 Modified form 0,246309   

Value-P >=0,10 Value-P >=0,10   

 

The results of the various tests carried out to determine whether the residues can be adequately modelled with a 
normal distribution have been presented.   The chi-square test divides the range of residues into 
non-overlapping intervals and compares the number of observations in each class with the expected number 
based on the adjusted distribution.  The Kolmogorov-Smirnov test calculates the maximum distance between 
the cumulative residue distribution and the FDA of the adjusted normal distribution.  In this case, the maximum 
distance is 0.11034.  The other statisticians compare the empirical distribution function with the adjusted FDA, 
in different ways. It is noted that in some tests the P-value could not be determined accurately.  

Because the smallest P-value of the tests performed is greater than or equal to 0.05, the idea that the residues 
come from a normal distribution with 95% confidence cannot be rejected. 

4. Discussion  

Although the percentage of people infected by Covid-19 in the world is approximately 0.0447%, considering the 
world population at 7.88E9 people, the coronavirus pandemic has managed to generally alert humanity. The 
speed of its spread around the world is what has put us on alert ( Munayco, 2009; Al-Rousan, 2020; WHO, 
1994).To carry out this study, the Statgraphics Centurion program has been used to calculate the regression 
model that best fits two variables, in this case the number of people infected by Covid-19 in Spain over time.The 
results obtained by simple linear regression have been compared with linear models with transformation of 
variables and polynomial regression model. The normality of the model residues has been analyzed. 
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We started with a multivariate analysis of the two variables where it was found that one of the analysed variables 
presented standardised kurtosis values out of range. However, it is demonstrated that there is a good correlation 
between the variables.  

The first model proposed has been a simple linear regression model presenting an R-square of 87.281%. The 
model is statistically representative as the P values are less than 0.05. Equation 1 has been obtained for this 
model. 

This model has been compared with other 27 alternative models where it has been determined that the best 
model was the X-square that presents a R-square of 96%, this meant an improvement of 8.71% with respect to 
the initial model. Equation 2 has been obtained for this model. 

It was then tested with a polynomial regression model of order five, where after analyzing the statistical data it 
was determined that the grade five coefficient had a P value above 0.05. The order was lowered to four and a 
new grade four polynomial model was retested. In this case the model presented the best R-square, obtaining a 
value of 99.72%. It was determined as the best model and equation 3 was obtained as the final result. 

Finally, a study of the model residues was made to see if they could be modeled as a normal distribution. The 
results obtained confirmed this assumption. 

In this research article, different regression models have been highlighted in order to study the model that 
provides the best adjustment to the variables studied, such as the number of infected people in Spain during a 
period of maximum infection, depending on their evolution over time. 

After discussing and analyzing the models obtained, it has been found that the model that best fits the number of 
confirmed infected persons in Spain is a fourth-order polynomial regression model. The study of possible models 
that can calculate the number of deaths and recoveries, two very important parameters in studies on the evolution 
of the virus in the case of pandemics of this type, is left for another occasion.  

The development of this type of mathematical model is very necessary in order to help the different governments 
in the rapid adoption of prevention measures, both of a clinical and social nature, with the possible reduction of 
the number of infected people. This would lead to a greater decongestion of hospitals and health systems in 
general. 
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