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Abstract 

The consistent application of computer-aided alignment technology could surmount aimlessness and 
significantly shorten the align period of complex optical systems. Wherein, the appropriate system image 
evaluation function is the primary condition to solve the system misalignment successfully. This paper first 
establishes the relationship between the amount of misalignment and the system aberration through mathematical 
modelling and then analyzes the relationship between Zernike coefficient, geometric aberration and system 
image quality in detail, proposes to construct a system image evaluation system using the idea of Zernike 
coefficient weighting to solve the problem of numerical instability and imprecision of the solutions caused by the 
direct selection of Zernike coefficients. Subsequently, the experimental alignment of an infrared optical system 
was performed using the optical system image quality evaluation method established in this paper. The 
alignment results showed that the RMS value of the system image quality improved by 24.8% under the same 
solving algorithm compares to the direct selection of the Zernike coefficient and the weighted Zernike 
coefficient as the system image quality evaluation function. Therefore, the application of the weighted Zernike 
coefficient-based optical system image evaluation function proposed in this paper is reasonable, feasible, and 
effective in the computer-aided alignment process. 
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1. Introduction 

Optical instruments play an essential role in the exploration of micro and macro fields (Yang, 2005). With the 
development of modern optics, the requirements for optical systems are increasing, and the system structure is 
becoming more complex. Optical systems with large linear fields of view, image quality close to the diffraction 
limit, large relative apertures, and no central occlusion are required in some applications. Information technology 
has greatly facilitated the development of optical technology. With the help of computer technology, people can 
design and manufacture more complex optical systems than before, to obtain ideal imaging quality (Yao, Hu & 
Jiang, 2019). The reflective optical system does not produce chromatic aberration, and the aperture can be made 
larger, is suitable for lightweight, has a more significant advantage in thermal resistance, and can correct the 
aberration through the aspheric surface. Therefore, it has received long-term attention from researchers in the 
field of space remote sensing. In aerospace remote sensing, engineers have begun to use off-axis four-reflection 
optical systems with complex structures but excellent performance. The complexity of the optical system brings 
a great challenge to optical alignment. The level of alignment accuracy directly affects the final imaging quality, 
and the optical alignment has become the critical link to determine whether the abstract design can be converted 
into the equipment with excellent performance (Gu, 2016).  

With the rapid development of computer technology and its wide application in different fields, optical 
researchers explore to use it in the process of optical alignment. Use it to process a large number of optical 
imaging detection data to determine the amount of misalignment and guide the alignment process of an optical 
system. This method is called computer-aided alignment technology. The core part of this technology is to find 
out the misalignment state of each element of the optical system, that is, the deviation between the position of 
each element and the designed ideal position, including the direction of deviation and the amount of deviation, 
according to a certain model and algorithm based on the wave aberration results of the optical system measured 
in a certain state (Figoski, Shrode & Moore, 1989). Thus, after each cycle of alignment, each element in the 
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optical system is closer to the designed position state than before. The consistent application of this technology 
could surmount the aimlessness of the alignment process and greatly shorten the alignment period of complex 
optical systems.  

In the 1980s, Ira M. Egdall first proposed to use the detection results of the optical system to calculate the 
misalignment of the components, that is, the computer-aided alignment technology (Egdall, 1985). Currently, 
computer-aided alignment technology of optical system mainly includes sensitivity matrix model (Hvisc & 
Burge, 2008), inverse optimization method (Kim, S, Yang, Lee & Kim, S.W, 2007), differential wavefront 
sampling method (Lee, Dalton & Tosh, 2007), artificial neural network method (Oteo & Arasa, 2013), vector 
aberration model (Thompson & Rolland, 2014), etc. The most widely used computer-aided alignment method is 
the sensitivity matrix method, which is a method of correcting aberration by building a mathematical model of 
the amount of misalignment and the aberration coefficient based on the analysis of aberration characteristics. 

In the computer-aided alignment of the optical system based on the sensitivity matrix model, Zernike aberration 
coefficients are usually directly used as the evaluation function of the imaging quality of the system (Sun, Lv, 
Yao & Liu, 2014). But due to the uncertainty of the system's aberration solving and the inevitable problem of 
solving residuals, the direct use of Zernike coefficients will bring about numerical instability and inaccuracy. 
This article analyzes the contribution of each Zernike coefficient to the root mean square of the wavefront image 
quality of the optical system in detail, and proposes the idea of redistributing the solving residuals among the 
aberration coefficients in the evaluation function. Through appropriate optimization, with certain residual 
solution errors, the system image quality can be optimized evidently. Finally, establishes an imaging quality 
evaluation function method based on the weighted Zernike coefficient, and performs an experimental alignment 
of an infrared optical system based on this method. The alignment results show that the image quality evaluation 
function based on the weighted Zernike coefficient is reasonable, feasible, and effective, which can significantly 
improve the system align accuracy and obtain better imaging quality. 

2. Sensitivity Matrix Model for Computer-Aided Alignment 

The main purpose of an optical system is imaging (Luo, 2017), and how well the system is imaged is the primary 
measure of the quality of the optical system (Li, Fu, Wang & Duan, 2013). But the actual optical system cannot 
be without aberration. On the one hand, the optical processing will introduce mirror processing error; on the 
other hand, in the alignment process, the optical system image quality deteriorates because the mirrors are not in 
the relative position of the theoretical design. 

Especially for complex optical systems, optical assembly misalignment will lead to the deterioration of the 
optical system's performance, resulting in serious degradation of the system imaging quality, and usually, the 
determination and correction of the system misalignment with experience and conventional means of assembly is 
quite difficult. 

The purpose of computer-aided alignment is to determine the direction and magnitude of the optical system's 
misalignment amounts based on the actual measured system image quality and to guide the alignment process 
(Luo, 2017). Thus brings the optical system closer to the theoretical design of the optical system after each 
alignment cycle, and ultimately meets the design requirements. 

Mathematically, the aberration is a function of the structural parameters of each mirror's position (Zhang et al., 
2015). The aberration of the system is expressed in Fj (j=1,2,···,n), and the position structure parameters of each 
mirror are expressed in xi (i=1,2,···,m). There must be a functional relationship between the two expressed as:  
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In the above equation; Fi =fi (x1,···,xm) represents the functional relationship between aberration and mirror 
position, which is a very complex set of nonlinear equations. From the mathematical point of view, the 
computer-aided alignment of an optical system is to establish and solve this equation group. According to the 
imaging quality (F1 ~Fn) required by the system, by reverse solving the above equation group, we can find out 
that (x1 ~xm) is the structural parameter of the component position we require. But because of the complexity of 
the actual problem, it is often unable to find out the specific form of the function Fi =fi (x1,···,xm). 

According to Taylor's expansion, the function can be expressed as the power series of its independent variable, 
which can be decomposed to a certain power according to the required accuracy. Then, through the method of 
experimental or numerical calculation, the function values of some sampling points can be obtained, and enough 
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equations can be listed. The coefficients of the power series can be solved so that the power series form of the 
function can be determined. 

In the simplest case, only selects one term of power series, and a linear equation approximately replaces the 
functional relationship between the misalignment and the system aberration: 
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Where F0j is the optical system's residual designed errors, x0n is the each optical element's initially designed 
position parameter, Fj is the system wavefront aberration's current measured value, 
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obtains the approximate linear equations of the system aberration and the misalignment of optical element 
position parameter:  
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Writing in matrix form and meanwhile, considering measurement noise; Equation (3) can be rewritten as: 

 A X N FΔ + = Δ                                          (4) 

Equation (4) is the sensitivity matrix model for the reverse solving of misalignment in computer-aided alignment 
technology. Among them, A is the sensitivity matrix, and each element of the matrix represents the change of the 
corresponding aberration coefficients generated by the unit offset. It reflects the contribution of each dimensional 
adjustment of the frame to the aberration coefficients of the system, which is jointly influenced by the optical 
design data, the actual processing of the optical system, the motion accuracy of the optical adjustment frame and 
other factors. △X = X–X0 is the position change of each mirror in the system that needs to be adjusted, i.e. misalignment. 
Including x, y, and z panning of each mirror and rotation around the x and y axes. △F = F–F0 represents the difference between the actual measured value of each calibration object and the 
optically designed value, which is the change value of the image quality of the system with the amount of 
misalignment, and is determined by the current measured value of the image quality of the optical system and the 
data of the system design and optical processing results, which could usually be gained by interferometry. 

N represents the noise matrix, which includes the inaccuracy of the measurement instruments in system image 
interferometry and data acquisition errors introduced by the effects of the test environment. Since the noise 
cannot be quantified, usually, the noise matrix N is ignored in optical experiments, but to reduce the influence of 
noise by reducing airflow disturbances, vibration isolation of optical platforms and other measures. 

The higher accuracy of the mathematical model can fasten the convergence of the alignment process, and the 
decrease in model accuracy will directly affect the convergence speed of the alignment process. However, due to 
the complexity of the optical system, it is often unable to accurately obtain the functional relationship between 
the system aberration and the mirror position. By using the idea of linear approximation, Equation (3) simplifies 
the functional relationship between aberration and mirror position. To reduce the difficulty of solving Equation(1) 
brought about by the complicacy of the function Fi =fi (x1,···,xm), the higher-order terms are lost and sacrifices the 
accuracy of the model establishment. The purpose is to balance the mutual restriction between the difficulty of 
solving and the accuracy of the model brought about by the complicacy of Fi =fi (x1,···,xm). 

3. Analysis of Evaluation Functions 

The key to computer-aided alignment technology is the determination of system misalignment. By analyzing and 
processing the measured image quality data containing the system misalignment obtained from the measurement, 
to obtain the position misalignment of the relevant position adjustment parameters of the optical system by 
inverse solution, and to realize the quantitative and orderly alignment of the system. Determining the amount of 
system misalignment is a data processing process, as well as a numerical optimization process, a rational system 
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image quality evaluation function, is the first condition to solve the system misalignment successfully. 

3.1 Wave Aberrations Represented by Zernike Polynomials 

If the optical system is capable of an ideal image, all geometric aberrations are zero, and all light emitted from 
the same object passes through the system to the ideal image point. According to the correspondence between the 
light and the wavefront plane, the light is the normal of the wavefront plane, which is a curved surface 
perpendicular to the light. Therefore, in the ideal imaging case, the corresponding wavefront plane should be a 
spherical plane centered on the ideal image point. If there is an aberration, the corresponding actual wavefront is 
no longer a sphere centered on the ideal image point, but a curved surface with a certain shape (Luo, 2017). 
Usually, uses the optical path difference between the actual wavefront and the ideal wavefront as an indicator of 
the quality of the image point and is called wave aberration. 

Zernike polynomial is suitable for the wavefront fitting basis function system (Figoski, Shrode & Moore, 1989). 
By using Zernike polynomials for wavefront fitting, we can fit the digital wavefront data of discrete sampling 
into a continuous wavefront, and the position of sampling points does not limit the wavefront reconstruction. 
Besides, Zernike polynomials and commonly used Seidel aberration coefficients in the optical design are easy to 
correspond to. 

3.2 Geometric Aberrations and Zernike Aberration Coefficient 

While obtaining the wavefront error of the exit pupil plane of the optical system with interferometry, we can 
obtain the various aberration coefficients of the optical system according to the relationship between the two. In 
fact, in the process of precise alignment, the high-order aberrations of the whole optical system are constant. The 
high-frequency errors of the optical elements themselves cannot be removed by alignment, so the alignment 
process only controls the primary spherical aberration, coma, and astigmatism (Yang, 2005). 

For primary aberrations, according to the Seidel aberration theory: 
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According to the previous discussion, the wave aberration of the exit pupil of the system can be expressed by 
Zernike polynomials as: 
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To organize the above equations: 
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Thus, obtains the corresponding relationship between Zernike polynomial coefficients and Seidel aberrations by 
comparing the two expressions: 
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Table 1. The Correspondence between Zernike coefficients and Seidel aberrations 

Zernike coefficients Seidel aberrations 

ɑy Tilt = Z2 - 2Z7 y-tilt( Azimuth) 

ɑx Tilt = Z3 - 2Z8 x-tilt (Pitch) 

ɑDefocus= 2Z4 - 6Z9 Defocus 

ɑAstigmatism(0°/90°) = Z5 0º/90º Astigmatism 

ɑAstigmatism(45°) = Z6 45º Astigmatism 

ɑx Coma = 3Z7 X-Coma 

ɑy Coma = 3Z8 Y-Coma 

ɑSpherical = 6Z9 Primary Spherical 

Therefore, it obtains the primary aberrations of the optical system from the Zernike coefficients. 

3.3 Selection of Evaluation Function 

The Zernike polynomials expressed wavefront function could accurately represent the wavefront quality of the 
complex optical system with fewer data. Therefore, the wavefront function expressed by Zernike polynomials is 
often used to form the evaluation function in the computer-aided alignment mathematical model of a complex 
optical system. 

The RMS value of the wavefront is often selected as the evaluation index for the final inspection of the imaging 
quality of the optical system. Because the solution of the misalignment quantity is ill-posed, we can not avoid the 
solving residual's existence. There must be a deviation between the wave aberration of the system obtained by 
the practical alignment and the designed values. The contribution of each Zernike coefficient to the RMS value 
of wavefront is different (Luo, 2017), so when directly uses Zernike coefficients of the wavefront as the 
optimization objective function in the computer-aided alignment mathematical model of the complex optical 
system, the minimum RMS value of the wavefront is not equivalent to the minimum variance of Zernike 
coefficients deviation. Therefore, when selecting the Zernike coefficients as the evaluation function in the 
computer-aided alignment mathematical model of the complex optical system, we should carefully consider the 
weight of each Zernike coefficient. 

4. Aberration Coefficient Deviation Matrix △ F and Zernike Aberration Coefficient 

The goal of the optical system alignment is to obtain ideal imaging quality. Generally, uses the RMS wavefront 
error to describe the wavefront quality. The smaller the RMS value of the system wavefront error, the better the 
imaging quality of the optical system. 

RMS (root mean square) of wavefront error is the deviation of the detected wavefront from the reference 
wavefront, it is the main index to evaluate the wavefront as well as the peak valley value (P-V). Figure 1(a) 
shows the relationship between RMS and PV of a plane wavefront; Figure 1(b) shows the relationship between 
RMS and PV of a spherical wavefront. 

 

(a) Plane wavefront (b) Spherical wavefront 

Figure 1. Characterization of wavefront errors 

For a circular aperture, expresses the RMS of the wavefront as: 

 

22 1 1/2

0 0

2 2 1/2

1
( ( , ) )

( ( ) )

RMS W W d d

W W

π
ρ θ ρ ρ θ

π
 = Δ − Δ 

= Δ − Δ

 

                         (8) 

Where, 2WΔ , WΔ  are respectively the square average and average of the wavefront error. 
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Choosing an appropriate referential wavefront can make WΔ  zero, such a referential wavefront is the 
optimized referential plane. 

The appearance of the digital interferometer calculates RMS very conveniently and accurately, and now it has 
become an important index to evaluate the accuracy of surface shape. Each data point of the interferogram 
calculates the RMS value of wavefront error, it takes the contribution of each point to the profile error into 
account, so it can accurately reflect the profile accuracy of the inspected surface, and it is more meaningful to 
use it as the evaluation criterion. 

The alignment of optical systems can only correct the primary aberration, so usually, we only consider the 
primary aberration. When dealing with interferograms, the three non-aberration terms of vertex misalignment, 
tilt, and defocus in equation (7) are usually removed. For the Zernike aberration coefficients of Z5–Z9 we adopt, 
we only consider the contribution of each aberration to the wave surface RMS in the following five cases: there 
are only 0º/90º Astigmatism, 45º Astigmatism, X-Coma, Y-Coma, and primary spherical aberration. 

(1). Only consider the 0º/90º Astigmatism, and thus, θρθρ 2cos),( 2
5ZW =Δ , according to Equation (8): 
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(2). Only consider the 45º Astigmatism, and thus, θρθρ 2sin),( 2
6ZW =Δ  
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(3). Only consider the X-Coma, and thus, ( , )W ρ θΔ = 3
73 cosZ ρ θ  
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(4). Only consider the Y-Coma, and thus, ( , )W ρ θΔ = 3
83 sinZ ρ θ   
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(5). Only consider the Primary Spherical, and thus, 4
9( , ) 6W Zρ θ ρΔ =  
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The target of optical system alignment is to obtain the best image quality through the system image quality 
optimization process; which means the RMS value of system aberrations is the minimum. By the above Zernike 
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coefficients and Seidel aberrations relationship, calculates the weights of Zernike aberration coefficients of Z5–
Z9 in system image quality as follows: 

Table 2. Weight selection of Z5–Z9 in RMS of the system imaging quality 

Seidel Aberrations Contribution to RMS Zernike Coefficients Weight 

ɑ(0°/90°) = Z5 0.41 Z5 = ɑ(0°/90°) 0.41/1=0.41 

ɑ(45°) = Z6 0.41 Z6 = ɑ(45°) 0.41/1=0.41 

ɑx Coma = 3Z7 1.06 Z7 = ɑx Coma/3 1.06/3=0.353 

ɑy Coma = 3Z8 1.06 Z8 = ɑy Coma/3 1.06/3=0.353 

ɑSpherical = 6Z9 1.79 Z9 = ɑSpherical/6 1.79/6=0.298 

Therefore, forming the system aberration coefficient deviation matrix △F, it is more reasonable and reliable to 
multiply the deviation of Zernike aberration coefficients and designed values of each field Z5–Z9 by their weight. 
Thus, selects the mapping relationship between the system aberration coefficient deviation matrix and Zernike 
aberration coefficients of each field Z5–Z9 as follows: 

Table 3. The mapping relationship between △F and Z5–Z9 △F Zernike Coefficients △F1 0.41(Z5-Z50) △F2 0.41(Z6-Z60) △F3 0.353(Z7-Z70) △F4 0.353(Z8-Z80) △F5 0.298(Z9-Z90) 

5. Actual Alignment Test 

To verify the rationality of the system image quality evaluation method constructed by the idea of Zernike 
coefficient weighting proposed in this paper, a comparative alignment experiment was conducted for a large 
aperture off-axis three-reflection infrared optical system with a working wavelength of 2.7um. Because the 
operating band of the infrared optical system is far longer than that of visible light. The residual aberration 
coefficients of each system design are relatively large under the interference measurement of the visible light 
band (the operating wavelength is 0.6328um). Thus, it is easier to investigate the effectiveness of the evaluation 
function optimization. 

Under visible interferometry, the designed wavefront aberration coefficients Z5–Z9 of one field of view are: 

Table 4. The Zernike Coefficients' designed values of the infrared optical system 

Zernike Coefficients Designed Values 

Z5 -0.07 

Z6 0.023 

Z7 0.15 

Z8 0.003 

Z9 0.14 

Meanwhile, Figure 2(a) shows the designed system wavefront aberrations, and before the alignment, in a state, 
Figure 2(b) shows the system wavefront aberrations: 
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(a) rms: 0.323 wave (b) rms: 3.56 wave 

Figure 2. Designed wavefront aberrations and Wavefront aberrations in a state 

The directly used Zernike coefficients, as well as the weighted Zernike coefficients, are respectively used to be 
the system image quality evaluation indicators, and the same reverse solution algorithm is used to calculate the 
offset. Figure 3(a) and Figure 3(b) show the results of system alignment: 

 
(a) rms: 0.467 wave (b) rms: 0.387 wave 

Figure 3. Comparison of alignment results 

It can be seen from Figure 3 that when Zernike coefficients are directly used as the system image quality 
evaluation function to solve the misalignment, the deviation between the system image quality and the designed 
value after alignment is large due to the existence of the solution residual; when the weighted Zernike coefficient 
evaluation function is used, the deviation between the system image quality and the designed value after 
alignment is reduced due to the redistribution of the solution residual. There is a significant improvement in 
system image quality. The comparison of alignment results are as follows: 

Table 5. The comparison of alignment results between directly used Zernike and Weighted Zernike coefficients  

 Wavefront RMS(wave) Deviations 

Designed Value 0.323 0 

Direct Zernike 0.467 44.6% 

Weighted Zernike 0.387 19.8% (improved 24.8%) 

6. Conclusion 

During the computer-aided alignment process of optical systems, due to the ill-posed nature of the problem of 
solving the offset, the residual error cannot be avoided. The system wave aberration obtained by the actual 
alignment is generally worse than the designed result. The contribution of each Zernike coefficient to the RMS 
value of the wavefront is different. Hence, the aberration coefficients of the residuals in the evaluation function 
are redistributed. After optimization, minimizes the RMS of system image quality when the residual value is 
fixed. Therefore, the idea of Zernike coefficient weighting is proposed to construct the system image quality 
evaluation system. The alignment experiment results show that using the weighted Zernike coefficient as the 
system image quality evaluation function can solve the numerical instability and the imprecision of the solving 
algorithm induced by the direct selection of the Zernike coefficient, which can significantly improve the 
alignment accuracy and obtain better image quality. Therefore, the weighted Zernike coefficient-based optical 
system image quality evaluation function proposed in this paper is reasonable, feasible, and practical. However, 
the effectiveness of the weighted Zernike coefficients as system image quality evaluation function under other 
types of inverse solving algorithms needs further research and comparative testing. 
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