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Abstract 
Background: 

Machine learning relies on a hybrid of analytics, including regression analyses. There have been no attempts to 
deploy a scale-down transformation of data to enhance linear regression models. 

Objectives: 

We aim to optimize linear regression models by implementing data transformation function to scale down all 
variables in an attempt to minimize the sum of squared error. 

Materials and Methods: 

We implemented non-Bayesian statistics using SPSS and MatLab. We used Excel to generate 40 trials of linear 
regression models, and each has 1,000 observations. We utilized SPSS to conduct regression analyses, Wilcoxon 
signed-rank test, and Cronbach’s alpha statistics to evaluate the performance of the optimization model. 

Results: 

The scale-down transformation succeeded by significantly reducing the sum of squared errors [absolute 
Z-score=5.511, effect size=0.779, p-value<0.001, Wilcoxon signed-rank test]. Inter-item reliability testing 
confirmed the robust internal consistency of the model [Cronbach’s alpha=0.993]. 

Conclusions: 

The optimization model is valuable for high-impact research based on regression. It can reduce the computational 
processing demands for powerful real-time and predictive analytics of big data. 

Keywords: artificial Intelligence, data Transformation, linear models, machine learning, polynomial models, 
predictive analytics, regression analysis 
1. Introduction 
Although data science and statistical modeling have been evolving for centuries, most analytics are not entirely 
accurate (Box, 1976). The British statistician, George EP Box, coined the epigram “All models are wrong, but 
some are useful” (Box, 1976; Field, 2015). The famous aphorism of statistics appeared in a paper published by 
George Box at the Journal of the American Statistical Association in 1976 (Berro, 2018; Box, 1976). Regression 
models describe a continuous response variable as a function of predictor variables that can predict the behavior of 
complex systems (Dawes, 1974; Searle, 1971). Regression analytics utilizes the least squares to model the 
causality relationships within data between explanatory and outcome variables (Grizzle, Starmer, & Koch, 1969). 
However, these methods are not sufficiently “bulletproof” in terms of statistical precision (Cohen, 1992; Hlaváč, 
Krajcarz, Hlaváčová, & Spadło, 2017). Sir Ronald Fisher, a British data scientist, introduced the modern 
regression model in 1922 (Edward, 2011; Efron, 1998; Halds, 1998). Ronald Fisher followed in the footsteps of 
contemporary statisticians, including Karl Pearson, a 19th-century English mathematician (Norton, 1978). Pearson 
innovated many statistical tests, including Pearson’s correlation, which is connected to Fisher’s regression models 
(Sedgwick, 2012). Simple regression examines the relationship between one predictor variable and one outcome 
variable in causality testing, while multiple regression, including linear and polynomial variants, examines a 
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multitude of explanatory variables for a higher predictive power (Al-Imam, 2020; Freedman, 1981; Godfrey, 1992; 
Zou, Tuncali, & Silverman, 2003). Machine learning, an application of artificial intelligence, relies on several 
methods, including regression models, non-biological neural networks, and classification trees (Al-Imam and 
Al-Lami, 2020; Al-Imam and Motyka, 2019; Al-Imam, Sahai, Al-Derzi, & Al-Shalchy, 2019; Jordan and Mitchell, 
2015). The optimization of those analytics can positively impact machine learning technologies (Everitt, Goertzel, 
& Potapov, 2017; Peuvo, 2018; Schneider, 2016). As mentioned earlier, regression exploits the least-squares 
method to extrapolate a line that best fits the causality association (Chevreuil, Lebrun, Nouy, & Rai, 2015; Van 
Dao, Chaitusaney, & Nguyen, 2016). Perfecting the least squares is critical for a rigorous statistical inference and 
predictive modelling. 

Most importantly, these optimized models will not only be more accurate in terms of statistical inference but will 
also be economical in terms of the computational processing demands for the analyses of large-scale arrays of data 
(Schilling et al., 2005). Scientists use several data transformation techniques to boost a spectrum of statistical tests, 
including the Fourier transformation, the Log Base-10 (Log10) transformation, the natural logarithm (Ln) 
transformation, and inverse transformation, as well as the square root and cubic root transformers (O’Hara and 
Kotze, 2010; Takeda et al., 1982). The scale-down optimization of data can capitalize on powerful and economic 
computational processing for real-time analyses and predictive models (Schilling et al., 2005). In 1965, the British 
statistician, Austin Bradford Hill, proposed the nine-element criteria to provide evidence for causality between a 
presumed effect and an observed outcome (Phillips and Goodman, 2004). Hill proposed to analyze the effect size, 
the strength of association, the replicability of the results, the specificity of association, the temporality of 
causation, the biological gradient effect, as well as plausibility, coherence, experimentation, and analogy (Fedak et 
al., 2015; Phillips and Goodman, 2004). If researchers and data analysts integrate optimized linear or polynomial 
models, in combination with Hill’s criteria, they can infer robust data that possess the least prediction error and the 
highest statistical power, while keeping the human resources and the requisite computational infrastructure to a 
minimum. 

Our primary objective is to optimize linear and polynomial models, principally for analytics that are dependent on 
correlation and regression statistics, by implementing a scale-down transform function that significantly reduces 
the error of residuals by minimizing the sum of squared errors (SSE). Thereby achieving more powerful and 
externally valid models that apply to real-time analytics, as well as predictive models that are necessary for 
high-impact research, based on big data (Al-Imam, 2017; Al-Imam, 2019; Al-Imam et al., 2019). 

2. Materials and Methods 
2.1 Mathematical Simulations 

We made multiple simulations based on a random number generator that follows a normal distribution [mean=0, 
standard deviation=1]. We created 40 trials (i.e., simulation models) for linear regression calculations [k=40], each 
test has a sample size of one thousand observations [n=1,000] for two variables as a predictor and an outcome (X 
and Y), thereby, summing to a grand sample size of 40,000 [n total=40,000]. We transformed the two variables, by 
dividing, each observation to the maximum observation within the same variable, by using the “max” function in 
Excel 2016, thereby scaling them down. Within each linear model, we calculated correlation and regression 
statistics, including the sum of squares (SS), mean of squares (MS), F statistic [ANOVA], and p-value [regression]. 
We calculated the sum of squared errors (SSE) using the formula SSE=∑ (y−ŷ)2 to fulfill the regression equation 
ŷ=b0+b1X. Calculations were conducted twice, before [pre-optimization] and after deploying the scale-down 
transformation [post-optimization]. We statistically tested the performance of the scale-down optimization model 
using the Wilcoxon signed-rank test for non-parametric within-subjects statistical inference by comparing the 
pre-optimization versus post-optimization statistics. Ultimately, we further examined the optimization efficacy of 
our model by implementing Cronbach’s alpha as a measure of the internal consistency of the summative optimized 
model. 

2.2 Statistical Analysis, Ethics, and Level of Evidence 

We implemented the Statistical Package for the Social Sciences [IBM-SPSS version 24] and Excel [Microsoft 
Office 2016] with integrated Data Analysis ToolPak. We made descriptive statistics using Excel and GNU-Octave 
version 5.1.0 [GNU’s Not UNIX Project]. We implemented MatLab high-level programming language (HLL) 
version R2019a [MathWorks] for two-dimensional array transposition before exporting the data to SPSS for 
Cronbach’s alpha calculations. We conducted an elaborate set of parametric and non-parametric models of 
non-Bayesian statistics, including linear and polynomial regression, Fisher’s ANOVA, Wilcoxon signed-rank test 
for within-subjects study design, and Cronbach’s alpha analytics for assessing the reliability and internal 
consistency of our proposed statistical model based on the scaling down of the data. 



mas.ccsenet.org Modern Applied Science Vol. 14, No. 5; 2020 

3 
 

The authors conducted the work described in this article following the Code of Ethics of the World Medical 
Association (Declaration of Helsinki) on medical research involving human subjects, EU Directive (210/63/EU) 
on the protection of animals used for scientific purposes, uniform requirements for manuscripts submitted to 
biomedical journals, and the ethical principles defined in the Farmington Consensus of 1997. According to the 
Oxford Centre for Evidence-based Medicine (OCEBM), our research represents “Absolute Better-Value or 
Worse-Value Analyses” under the category “Economic and Decision Analyses” (Greenhalgh, Howick, & Maskrey, 
2014; OCEBM Levels of Evidence, 2016). Accordingly, our study is of level-1c, which belongs to the top tier 
[level-1, Grade-A] of the categorization scheme rectified by the OCEBM (OCEBM Levels of Evidence, 2016). 

2.3 Systematic Review of the Literature 

During September 2019, we conducted a pragmatic review of the databases of peer-reviewed literature, including 
the Cochrane Library [the Cochrane Database of Systematic Reviews | the Cochrane Collaboration], PubMed [the 
United States National Library of Medicine], and Embase [Elsevier]. We implemented an exhaustive set of 
keywords based on medical subject headings (MeSH), in addition to generic terms, while using Boolean 
expression operators and truncations. We deputized keywords of five main themes, including 1) machine learning 
and artificial intelligence, 2) real-time and predictive analytics, 3) real-time analytics and epidemiology, 4) data 
transform functions, and 5) an amalgamation of the previous four themes. The aim is to explore the existing 
literature for prior attempts of using scale-down data transformation for enhancing and optimizing linear models. 

3. Results 
For the optimization model, we applied the scale-down transform for 40 trials of linear regression analyses (Table 
1). 

Table 1. Optimization Model Analytics 

Trial 

Pre-Optimization Post-Optimization  P-value 

[Pre-optimization vs. 
Post-optimization] 

R2 SSE 
F 

Score 
p-value R2 SSE 

F 
Score

p-value  

1 0.003 1.01E+09 2.960 0.086 0.003 81.656 2.960 0.086  

Absolute 
Z-score=5.511  

Effect size=0.779  

p-value<0.001 

† 

2 0.002 9.36E+08 1.543 0.214 0.002 86.240 1.543 0.214  

3 0.001 9.16E+08 0.930 0.335 0.002 81.523 0.930 0.335  

4 0.002 9.90E+08 2.219 0.137 0.002 115.759 2.219 0.137  

5 0.002 9.83E+08 1.898 0.169 0.002 86.326 1.898 0.169  

6 0.003 9.82E+08 2.752 0.097 0.003 111.207 2.752 0.097  

7 <0.001 1.03E+09 0.242 0.623 <0.001 112.320 0.242 0.623  

8 <0.001 1.01E+09 0.042 0.838 <0.001 122.491 0.042 0.838  

9 <0.001 9.75E+08 0.321 0.571 <0.001 72.631 0.321 0.571  

10 0.002 9.61E+08 1.968 0.161 0.002 91.278 1.968 0.161  

11 0.001 9.71E+08 0.152 0.697 0.001 73.725 0.152 0.697  

12 0.002 9.51E+08 0.105 0.746 0.002 89.030 0.105 0.746  

13 0.002 9.60E+08 0.528 0.468 0.002 81.494 0.528 0.468  

14 0.001 9.76E+08 0.446 0.504 0.001 122.198 0.446 0.504  

15 0.004 1.03E+09 0.887 0.347 0.004 74.295 0.887 0.347  

16 0.001 9.46E+08 0.520 0.471 0.001 90.658 0.520 0.471  

17 0.003 1.02E+09 0.879 0.349 0.003 93.520 0.879 0.349  

18 0.003 9.60E+08 0.712 0.399 0.003 82.434 0.712 0.399  

19 0.001 9.86E+08 0.447 0.504 0.001 76.680 0.447 0.504  

20 0.003 1.02E+09 0.816 0.367 0.003 92.841 0.816 0.367  

21 0.002 1.03E+09 0.525 0.469 0.002 74.150 0.525 0.469  

22 0.001 9.38E+08 0.160 0.689 0.001 102.680 0.160 0.689  
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23 0.001 9.79E+08 0.626 0.429 0.001 113.438 0.626 0.429  

24 0.002 1.02E+09 0.425 0.515 0.002 78.490 0.425 0.515  

25 0.002 9.84E+08 0.676 0.411 0.002 109.852 0.676 0.411  

26 0.004 9.62E+08 0.459 0.498 0.004 80.366 0.459 0.498  

27 0.002 9.98E+08 0.834 0.361 0.002 108.458 0.834 0.361  

28 0.004 9.93E+08 0.673 0.412 0.004 78.787 0.673 0.412  

29 0.003 9.73E+08 0.936 0.334 0.003 80.806 0.936 0.334  

30 0.002 9.18E+08 0.267 0.605 0.002 92.948 0.267 0.605  

31 0.003 1.01E+09 0.607 0.436 0.003 88.754 0.607 0.436  

32 0.004 9.32E+08 0.016 0.899 0.004 95.714 0.016 0.899  

33 0.001 1.02E+09 0.027 0.870 0.001 112.493 0.027 0.870  

34 0.002 9.96E+08 0.048 0.827 0.002 76.484 0.048 0.827  
35 0.002 1.01E+09 0.418 0.518 0.002 87.004 0.418 0.518  

36 0.001 9.22E+08 0.444 0.505 0.001 81.209 0.444 0.505  

37 0.004 9.81E+08 0.874 0.350 0.004 109.339 0.874 0.350  

38 0.001 9.41E+08 0.926 0.336 0.001 113.928 0.926 0.336  

39 0.003 1.02E+09 0.563 0.453 0.003 85.213 0.563 0.453  

40 0.003 9.71E+08 0.152 0.697 0.003 92.430 0.152 0.697  

† Wilcoxon signed-rank Statistics: Pre-optimization vs. Post-optimization [Sum of Squared Errors (SSE)].  

†† Linear Model-of-Interest in Bold Font [Random Selection, Trial 34]. 
The model was triumphant in attaining a significant reduction of the sum of squared errors (SSE) for each trial 
following the application of the scale-down transform [absolute Z-score = 5.511, effect size = 0.779 (i.e., strong 
effect), p-value < 0.001 for the Wilcoxon signed-rank test] (Table 2). We utilized a non-parametric alternative of 
the dependent Student’s t-test due to the violation of t-test assumptions, including the absence of statistical outliers, 
homoscedasticity, and the normality of distribution [Shapiro-Wilk test] (Table 2). 

Table 2. Optimization Model Statistics: Normality testing and Wilcoxon signed-rank test 

Case Processing Summary 

 

Cases 

Valid Missing Total 

N Percent NPercent N Percent

Pre-optimization SSE 40100.0% 0 0.0% 40100.0%

Post-optimization SSE40100.0% 0 0.0% 40100.0%
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Descriptive Statistics 

Pre-optimization SSE 

Mean 980447924.50 5280931.108

95% Confidence Interval for 
Mean 

Lower Bound 969766233.10 

Upper Bound 991129615.90 

5% Trimmed Mean 980985772.20 

Median 981555517.50 

Std. Deviation 33399540.930 

Range 118840731 

Interquartile Range 50899902 

Skewness -.198 .374

Kurtosis -.818 .733

Post-optimization SSE 

Mean 92.52123 2.359813

95% Confidence Interval for 
Mean 

Lower Bound 87.74805 

Upper Bound 97.29440 

5% Trimmed Mean 91.93900 

Median 88.89200 

Std. Deviation 14.924771 

Range 49.860 

Interquartile Range 28.212 

Skewness .574 .374

Kurtosis -.965 .733

Tests of Normality 

 
Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Pre-optimization SSE .081 40 .200* .968 40 .309 

Post-optimization SSE .148 40 .027 .907 40 .003 

*. This is a lower bound of the true significance. 

a. Lilliefors Significance Correction 

Wilcoxon Signed Ranks Test 

 N Mean Rank Sum of Ranks 

Post-optimization SSE - 
Pre-optimization SSE 

Negative Ranks 40a 20.50 820.00 

Positive Ranks 0b .00 .00 

Ties 0c   

Total 40   

a. Post-optimization SSE < Pre-optimization SSE 

b. Post-optimization SSE > Pre-optimization SSE 

c. Post-optimization SSE = Pre-optimization SSE 

Test Statisticsa 

 

Post-optimization 
SSE - 

Pre-optimization 
SSE 

Z -5.511b 

Asymp. Sig. (2-tailed) <0.001 

a. Wilcoxon Signed Ranks Test 

b. Based on positive ranks. 
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On the other hand, there was no significant change in the coefficient of determination (R2 score) and the F-score for 
the pre-optimized versus post-optimized trials, as we created each with a random number generator function using 
the Data Analysis ToolPak plugin in Excel. A randomly selected linear model, the 34th trial, manifested with a sum 
of squared errors of 9.96E+08 [pre-optimization] and 76.484 [post-optimization], confirming a significant SSE 
reduction and a better predictive model fitting. The scale-down transformation neither had a distortion nor an 
artefactual effect on the scattered correlates of the tested variables (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Randomly Selected Regression Model: Pre-optimization [upper, blue] and Post-optimization [lower, 
red] 

† Linear Model-of-Interest: Random Selection [Trial 34, Table 1]. 

†† Coefficient of Determination & Regression Equation for Linear and Polynomial Models in Bold Fonts. 

††† Identical, Superimposed Morphology, of the Scattered Distribution for Pre-optimization versus 
Post-optimization, i.e., No Deformation of Data. 

Lastly, Cronbach’s alpha analysis yielded collateral evidence and verified the internal consistency of the 
optimization model [Cronbach’s alpha=0.993]. Deleting any trial from the optimization model had no effect on the 
inter-item reliability with an exception for five simulations [1st, 4th, 5th, 6th, and 10th], the deletion of which 
increases the internal consistency to 0.998, an almost perfect consistent model. 
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4. Discussion 
Our optimization model applies to anticipated high-impact research that requires linear or polynomial model 
analyses (Figure 1), including anatomical sciences, dermatology, and medical research and practice. 

Boosted regression models are of utmost importance in the exponentially growing field of machine learning and 
artificial intelligence. The applications are not limited to psychoactive and novel psychoactive substances research, 
an emerging subdiscipline of addiction neuroscience and behavioral psychiatry. Optimized regression analytics 
are priceless when it comes to applications with extensive data analytics and bioinformatics, comprehensive 
genomic analyses, and analytics based on extracting information from open-source deposits of big data, for 
instance, Google Trends and Google Analytics databases. Optimum linear and polynomial models not only will 
reinforce the hypothesis testing for more powerful inferences but also will lessen the computational processing 
power and the human resources allocated for demanding real-time and predictive analyses. If our optimization 
model integrates with the anticipated quantum computing, the benefits will be monumental concerning the 
precision of analytics and the efficacy of the computational processing. 

Machine learning relies upon the analyses of big data using a plethora of well-established techniques of 
mathematical and data science models, including artificial neural networks, regression analysis, and decision trees 
(Jordan and Mitchell, 2015). Artificial intelligence techniques attempt to reach the lowest achievable error rates of 
mathematically interpreted predictions for causality associations (Everitt, Goertzel, & Potapov, 2017). Machine 
learning is mandatory for unwitnessed benefits when it comes to applications related to spatio-temporal 
description and prediction of phenomena of interest, including epidemiological and digital epidemiological 
investigations (Everitt, Goertzel, & Potapov, 2017; Jordan and Mitchell, 2015). The infrastructure of big data upon 
which machine learning algorithms operate is the same as those designated for classical epidemiology and digital 
epidemiological research (Rothman, Greenland, & Lash, 2008). Researchers can retrieve data from the databases 
using survey tools, internet snapshots, longitudinal studies, cross-sectional studies, analyses of web-based social 
networks, and electronic commerce website analytics of the surface web as well as the deep web, including the 
infamous Darknet hypermarket (Al-Imam A and Al-Shalchi, 2019; Al-Imam, 2017; Motyka and Al-Imam, 2019; 
Rothman, Greenland, & Lash, 2008). 

We reviewed the literature using a combination of thematic keywords search. There were 55,288 publications 
indexed in the Cochrane Library (117, 0.21%), PubMed (40, 0.07%), and Embase (55,131, 99.71%) (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Keywords-Based Systematic Review of the Databases of Literature 

† Date of Review of Literature: 20th of September 2019. 
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Following a full-text retrieval of papers of interest, only fifteen publications (0.03%) indexed in the national 
library of medicine were found relevant to the primary objective. However, none of these studies implemented our 
data transform method to boost linear or polynomial regression models. Since the last decade, there have been 
several attempts in the existing peer-reviewed literature to implement linear models as well as other 
machine-learning methods in combination with the data transform function, including logistic regression, 
regression trees and Fourier transform, logistic regression with Log10 transformation, logistic regression with Ln 
transformation, multiple linear regression with log10 transformation, cycling regression model with Fourier 
transform, proportional hazards Cox regression model, time-series analytics regression with Fourier transform, 
logistic regression with square root and log10 transformation, and proportional hazards model in combination with 
logistic regression (Lorenz et al., 2017; Menotti, Puddu, & Lanti, 2002; Shaban-Nejad, Michalowski, & 
Buckeridge, 2018). 

5. Conclusion 
Our novel transform and optimization method serves three primary purposes: 1) Reducing the sum of squared 
errors (SSE), which will provide a better line of best fit. 2) The scale-down transformation will significantly reduce 
the computational processing demands for mathematical calculations for big data with an extensive list of 
variables, as well as an extended number of observations for each variable that is tangible in multiple polynomial 
regression analyses. 3) Real-time processing of correlations and regression among exhaustive multidimensional 
arrays of data will even be more consuming in terms of the requirement of computational processing power that 
can burden supercomputers existing today and the near future. The optimization will transform all variables into a 
narrower range with limited decimal places and without deforming the original correlation of variables, which can 
be economical for subsequent mathematical and computational processing. 

5.1 Availability of Data 

Our data are available upon request from the corresponding author. 
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