On Null Curves in Minkowski 3-Space and Its Fractal Folding

A.E. El-Ahmady ${ }^{1}$, Malak E. Raslan ${ }^{2}$ \& A.T. M-Zidan ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Tanta University, Egypt
${ }^{2}$ Department of Mathematics, Faculty of Science, Damietta University, Egypt
Correspondence: A.T. M-Zidan, Mathematics Department, Faculty of Science, Damietta University, Egypt.
E-mail: atm_zidan@yahoo.com

Received: February 21, 2019
Accepted: March 26, 2020
Online Published: March 27, 2020
doi:10.5539/mas.v14n4p90
URL: https://doi.org/10.5539/mas.v14n4p90

Abstract

In this paper, a form for Frenet equations of all null curves in Minkowski 3-space has been presented. New types of foldings of curves are obtained. The connection between folding, deformation and Frenet equations of curves are also deduced.

Keywords: Minkowski 3-space, null curves, conditional fractal folding, deformation, Frenet equations
AMS (2010): 53A35, 51B20, 58C05.

1. Introduction

The Minkowski 3-space E_{1}^{3} is the Euclidean 3-space E^{3} provided with the standard flat metric given by

$$
g=d x_{1}^{2}+d x_{2}^{2}-d x_{3}^{2}
$$

where $\left(x_{1}, x_{2}, x_{3}\right)$ is a rectangular coordinate system in E_{1}^{3}. Since g is an indefinite metric, recall that a vector $v \in E_{1}^{3}$ is said space-like if $g(v, v)>0$ or $v=0$, time-like if $g(v, v)<0$ and null (light-like) if $g(v, v)=0$ and $v \neq 0$. Similarly, an arbitrary curve $\alpha=\alpha(s)$ in E_{1}^{3} can locally be space-like, time- like or null(light-like), if all of its velocity vectors $\alpha^{\prime}(s)$ are respectively, space-like, time-like or null (light-like) respectively. Space-like or time-like curve $\alpha(s)$ is said to be parameterized by arc length function s, if $g\left(\alpha^{\prime}(s), \alpha^{\prime}(s)\right)= \pm 1$. The velocity of the curve $\alpha(s)$ is given by $\left\|\alpha^{\prime}(s)\right\|$. A curve α is said to be regular if $\alpha^{\prime}(t) \neq 0$ for all $t \in I, \alpha \in L^{n}$ is space-like if its velocity vectors α^{\prime} are space-like for all $t \in I$, similarly for time-like and null. If α is a null curve, we can re-parameterize it such that, $\left\langle\alpha^{\prime}(t), \alpha^{\prime}(t)\right\rangle=0$ and $\alpha^{\prime}(t) \neq 0$, recall the norm of a vector v is given by $\|v\|=\sqrt{|g(v, v)|}$.
Given a unit speed curve $\alpha(s)$ in Minkowski space E_{1}^{3} we can possible define a Frenet frame $\{T(s), N(s), B(s)\}$ associated for each point s. Where $T(s), N(s)$ and $B(s)$ are the tangent, normal and binormal vector field (A. E. El-Ahmady \& A.T.M. Zidan. 2019) (A. E. El-Ahmady \& E. Al-Hesiny. 2013) (R. Lopez. 2008) (R. Aslaner, A. Ihsan Boran. 2009).

2. Preliminary Notes

Let $\alpha(\mathrm{s})$ be a curve in E_{1}^{3}. Then for the unit speed curve $\alpha(s)$ with non-null frame vectors, we distinguish three cases depending on the causal character of $T(s)$ and its Frenet equations are as follows,

$$
\left(\begin{array}{l}
T^{\prime} \\
N^{\prime} \\
B^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & k & 0 \\
\mu_{1} k & 0 & \mu_{2} \tau \\
0 & \mu_{3} \tau & 0
\end{array}\right)\left(\begin{array}{l}
T \\
N \\
B
\end{array}\right) .
$$

We write the following subcases,
Case 1. If $\alpha(s)$ is time-like curve in E_{1}^{3}, then T is time-like vector and T^{\prime} is space-like vector. Then $\mu_{i}(1<i<3)$, read $\mu_{1}=\mu_{2}=1, \mu_{3}=-1, T, B$ and N are mutually orthogonal vectors satisfying the equations, $g(N, N)=g(B, B)=1, g(T, T)=-1$.
Case 2. If $\alpha(s)$ is space like curve in E_{1}^{3}, then T is space like vector, since $T^{\prime}(s)$ is orthogonal to the space like vector $T(s), T^{\prime}(s)$ may be space like, time-like or light like. Thus we distinguish three cases according to $T^{\prime}(s)$.

Case 2.1. If the vector $T^{\prime}(s)$ is space-like, N is space like vector and B is time-like vector. Then $\mu_{i}(1<i<$ 3) read $\mu_{1}=-1, \mu_{2}=\mu_{3}=1, T, N$ and Bare mutually orthogonal vectors satisfying $g(T, T)=$ $g(N, N)=1, g(B, B)=-1$.
Case 2.2. If the vector $T^{\prime}(s)$ is time-like, N is time-like vector and B is space-like vector. Then $\mu_{i}(1<i<$ 3) read $\mu_{1}=\mu_{2}=\mu_{3}=1$, where the orthogonal vectors T, N and B are satisfying $g(T, T)=g(B, B)=$ 1, $g(N, N)=-1$.
Case 2.3. If the vector $T^{\prime}(s)$ is light like for all $s, N(s)=T^{\prime}(s)$ is light like vector and $B(s)$ is unique light like vector such that $g(N, B)=-1$ and it is orthogonal to T. The Frenet equations are

$$
\left(\begin{array}{c}
T^{\prime} \\
N^{\prime} \\
B^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & \tau & 0 \\
1 & 0 & -\tau
\end{array}\right)\left(\begin{array}{l}
T \\
N \\
B
\end{array}\right)
$$

Case 3. If $\alpha(s)$ is light like curve in $\mathrm{E}_{1}^{3}, g(N, N)>0$, when the parameterization is pseudo- arc so $g(N, N)=1$ with $g(T, T)=0, g(B, B)=0, g(T, N)=0$, and $B(s)$ is unique light like vector such that $g(T, B)=-1$ and it is orthogonal to N the pseudo torsion of $\alpha(s)$ be $\tau=-\left\langle N^{\prime}, B\right\rangle$, then the Frenet equations of $\alpha(s)$ are

$$
\left(\begin{array}{l}
T^{\prime} \\
N^{\prime} \\
B^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
0 & k & 0 \\
\tau & 0 & k \\
0 & \tau & 0
\end{array}\right) *
$$

Where the curvature k can take only two values, 0 when α is a straight null line, or 1 in all other cases (J. Walrave. 1995).
A regular curve $\alpha: I \rightarrow E_{1}^{3}$ is called a null curve if α^{\prime} is light like, that is $\left\langle\alpha^{\prime}, \alpha^{\prime}\right\rangle=0$ (M. P. Docarmo. 1992).

Let M and N be two smooth manifolds of dimensions m and n respectively. A map $f: M \rightarrow N$ is said to be an isometric folding of M into N if and only if for every piecewise geodesic path $\gamma: I \rightarrow M$ the induced path f o $\gamma: I \rightarrow N$ is piecewise geodesic and of the same length as γ, if f does not preserve the length it is called topological folding (A. E. El-Ahmady. 2007) (A. E. El-Ahmady \& E. Al-Hesiny. 2013).
A map $d: M \rightarrow M^{*}$ such that $M^{*}=d(M)$ where M and M^{*} are two smooth Riemannian manifolds is called deformation map if d is differentiable and has differentiable inverse. A deformation map $d: M \rightarrow M^{*}$ where M and M^{*} are two smooth Riemannian manifolds is called regular deformation if $\left.\forall x, y \in M, K(x)=K(y)\right) \Leftrightarrow$ $K(d(x))=K(d(y)), K(x)$ is the curvature at the point $x \in M$, when $(x)=K(d(x)) \forall x \in M$, it is the identity deformation which is regular deformation (M. P. Docarmo. 1992).
Definition 2.1. Let $u=\left(u_{1}, u_{2}, u_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$ be vectors in E_{1}^{3}, the vector product in Minkowski space-time E_{1}^{3} is defined by the determinant

$$
\mathrm{u} \wedge \mathrm{v}=\left|\begin{array}{ccc}
e_{1} & e_{2} & -e_{3} \\
\mathrm{u}_{1} & \mathrm{u}_{2} & \mathrm{u}_{3} \\
\mathrm{v}_{1} & \mathrm{v}_{2} & \mathrm{v}_{3}
\end{array}\right|
$$

Where e_{1}, e_{2} and e_{3} are mutually orthogonal vectors (coordinate direction vectors).

3. Form of Frenet Equations of Null Curves in Minkowski 3-Space

Theorem 3.1. Let $\xi(s)$ be a null curve in E_{1}^{3} with the standard flat metric given by $g=d x_{1}^{2}+d x_{2}^{2}-d x_{3}^{2}$. Then the bi-normal vector of $\xi(s)$ can be calculated by the form,
$B(s)=\left(\frac{-1}{\Delta_{1,2}}\left(\Delta_{2,3} b_{3}+x_{2}^{\prime \prime}\right), \frac{1}{\Delta_{1,2}}\left(\Delta_{1,3} b_{3}+x_{1}^{\prime \prime}\right), \frac{-\left(1+x_{3}^{\prime \prime 2}\right)}{2 x_{3}^{\prime}}\right), \Delta_{1,2} \neq 0, x_{3}^{\prime} \neq 0$.
Where $\Delta_{2,3}=\left(x_{2}^{\prime} x_{3}^{\prime \prime}-x_{3}^{\prime} x_{2}^{\prime \prime}\right), \Delta_{1,3}=\left(x_{1}^{\prime} x_{3}^{\prime \prime}-x_{3}^{\prime} x_{1}^{\prime \prime}\right)$ and $\Delta_{1,2}=\left(x_{1}^{\prime} x_{2}^{\prime \prime}-x_{2}^{\prime} x_{1}^{\prime \prime}\right)$.
Proof. Let $\xi(s)=\left(x_{1}(s), x_{2}(s), x_{3}(s)\right)$, be the parametric equation of any null curve in E_{1}^{3} where the tangent vector $T(s)=\left(x_{1}^{\prime}(s), x_{2}^{\prime}(s), x_{3}^{\prime}(s)\right)$ and the normal vector $N(s)=T^{\prime}(s)=\left(x_{1}^{\prime \prime}(s), x_{2}^{\prime \prime}(s), x_{3}^{\prime \prime}(s)\right)$. To calculate the bi-normal vector of the curve $\xi(s)$, let $B(s)=\left(b_{1}, b_{2}, b_{3}\right)$,
since $B(s)$ is unique light like vector, hence
$\langle B, B\rangle=0$ and so,
$b_{1}{ }^{2}+{b_{2}}^{2}-{b_{3}}^{2}=0$.(1)
Also, $g(T, B)=-1$ and so,

$$
x_{1}^{\prime} b_{1}+x_{2}^{\prime} b_{2}-x_{3}^{\prime} b_{3}=-1
$$

Since B is orthogonal to N where $\langle N, B\rangle=0$ so we get,

$$
x_{1}^{\prime \prime} b_{1}+x_{2}^{\prime \prime} b_{2}-x_{3}^{\prime \prime} b_{3}=0
$$

Multiply equation (2) by $x_{1}^{\prime \prime}$ and equation (3) by x_{1}^{\prime} and subtracting the product equations so we get,
$b_{2}=\frac{1}{\Delta_{1,2}}\left(\Delta_{1,3} b_{3}+x_{1}^{\prime \prime}\right), \Delta_{1,2} \neq 0$.
Multiply equation 2 by $x 2^{\prime \prime}$ and equation 3 by $x 2^{\prime}$ and subtracting the product equations. Then,
$b_{1}=\frac{-1}{\Delta_{1,2}}\left(\Delta_{2,3} b_{3}+x_{2}^{\prime \prime}\right), \Delta_{1,2} \neq 0$.
By substituting equations 4 and 5 in equation 1. Then,

$$
\left(\Delta_{2,3}^{2}+{\Delta_{1,3}}^{2}-\Delta_{1,2}^{2}\right){b_{3}}^{2}+x_{1}^{\prime \prime 2}+x_{2}^{\prime \prime 2}+2\left(\Delta_{1,3} x_{1}^{\prime \prime}+\Delta_{2,3} x_{2}^{\prime \prime}\right) b_{3}=0
$$

But $\left(\Delta_{2,3}{ }^{2}+\Delta_{1,3}{ }^{2}-{\Delta_{1,2}}^{2}\right)=0$ and so we get,

$$
b_{3}=\frac{-\left(x_{1}^{\prime \prime 2}+x_{2}^{\prime \prime 2}\right)}{2\left(\Delta_{1,3} x_{1}^{\prime \prime}+\Delta_{2,3} x_{2}^{\prime \prime}\right)} \cdot(6
$$

Also, b_{3} can be written in the form,

$$
\begin{equation*}
b_{3}=\frac{-\left[g(N, N)+x_{3}^{\prime \prime}{ }^{2}\right]}{2\left[g(T, N) x_{3}^{\prime \prime}-g(N, N) x_{3}^{\prime}\right]} . \tag{7}
\end{equation*}
$$

In equation (7), when the parameterization is pseudo-arc so $g(N, N)=1, g(T, N)=0$ and we get,

$$
b_{3}=\frac{-\left(1+x_{3}^{\prime \prime 2}\right)}{2 x_{3}^{\prime}}, x_{3}^{\prime} \neq 0
$$

Where $\Delta_{2,3}=\left(x_{2}^{\prime} x_{3}^{\prime \prime}-x_{3}^{\prime} x_{2}^{\prime \prime}\right), \Delta_{1,3}=\left(x_{1}^{\prime} x_{3}^{\prime \prime}-x_{3}^{\prime} x_{1}^{\prime \prime}\right)$, and $\Delta_{1,2}=\left(x_{1}^{\prime} x_{2}^{\prime \prime}-x_{2}^{\prime} x_{1}^{\prime \prime}\right)$. Then we get,

$$
\begin{equation*}
B(s)=\left(\frac{-1}{\Delta_{1,2}}\left(\Delta_{2,3} b_{3}+x_{2}^{\prime \prime}\right), \frac{1}{\Delta_{1,2}}\left(\Delta_{1,3} b_{3}+x_{1}^{\prime \prime}\right), \frac{-\left(1+x_{3}^{\prime \prime 2}\right)}{2 x_{3}^{\prime}}\right) \tag{9}
\end{equation*}
$$

Where $\Delta_{1,2} \neq 0, x_{3}^{\prime} \neq 0$ with curvature $k=1$ and torsion $\tau=-\left\langle N^{\prime}, B\right\rangle=\frac{1}{2} g\left(\alpha^{\prime \prime \prime}, \alpha^{\prime \prime \prime}\right)$.
Example 3.1. Let $\alpha(s)=\frac{1}{r^{2}}(\cosh (r s), r s, \sinh (r s))$ if we calculate $1^{\text {st }}$ and $2^{\text {nd }}$ order derivatives (with respect to s) of $\alpha(s)$ and so $T(s)=\frac{1}{r}(\sinh (r s), 1, \cosh (r s))$. Since $\langle T, T\rangle=0$ so $\alpha(s)$ is a null curve and $N(s)=T^{\prime}(s)=(\cosh (r s), 0, \sinh (r s))$ so $\langle N, N\rangle=1$, since $B(s)$ is unique light like vector such that $g(T, B)=1$ and it is orthogonal to T, by substituting in the equation (9). We get $B(s)=\frac{r}{2}(\sinh (r s),-$ $1, \cosh (r s))$ and so $\langle B, B\rangle=0, N^{\prime}=r(\sinh (r s), 0, \cosh (r s))$. The pseudo torsion is $\tau=-\left\langle N^{\prime}, B\right\rangle=\frac{-r^{2}}{2}$ where N is space like vector. Then $\alpha(s)$ is a null curve with curvature $k=1$ and the Frenet equations of $\alpha(s)$ are given by

$$
\left(\begin{array}{l}
T^{\prime} \\
N^{\prime} \\
B^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
0 & k & 0 \\
\tau & 0 & k \\
0 & \tau & 0
\end{array}\right)\left(\begin{array}{l}
T \\
N \\
B
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
\frac{-r^{2}}{2} & 0 & 1 \\
0 & \frac{-r^{2}}{2} & 0
\end{array}\right)\left(\begin{array}{c}
\frac{1}{r}(\sinh (r s), 1, \cosh (r s)) \\
(\cosh (r s), 0, \sinh (r s)) \\
\frac{r}{2}(\sinh (r s),-1, \cosh (r s))
\end{array}\right)
$$

Corollary 3.1 Let $\xi(s)$ be a null curve in E_{1}^{3} with non-zero curvature and pseudo torsion τ, then the bi-normal vector of $\xi(s)$ can be calculate by the form,

$$
B(s)=\left(\frac{1}{k}\right) N^{\prime}(s)-\left(\frac{\tau}{k}\right) T(s)=\left(\frac{1}{k}\right) \xi^{\prime \prime \prime}(s)-\left(\frac{\tau}{k}\right) \xi^{\prime}(s)
$$

Such that $\tau=-g\left(N^{\prime}, B\right)$ or $\tau=\frac{1}{2} g\left(\xi^{\prime \prime \prime}, \xi^{\prime \prime \prime}\right)$.
Theorem 3.2. Let $\xi(s)$ be a null curve in E_{1}^{3} with non-zero curvature and pseudo torsion $\tau(s)$. Then $\xi(s)$ satisfies a vector differential fourth order as follow,

$$
\frac{d 4 \xi}{d s^{4}}-2 \tau\left(\frac{d 2 \xi}{d s^{2}}\right)-\tau^{\prime} \frac{d \xi}{d s}=0
$$

Proof. Since $\xi(s)$ be a null curve in E_{1}^{3} from the Frenet equation (*). We get,

$$
T^{\prime}(s)=k N(s), N^{\prime}(s)=\tau T(s)+k B(s) \text { and } B^{\prime}(s)=\tau N(s)
$$

with $k=1$ and so we have,

$$
\begin{gathered}
T^{\prime \prime}(s)=N^{\prime}(s)=\tau T+B(s) \text { and } T^{\prime \prime \prime}(s)=\tau^{\prime} T+\tau T^{\prime}+B^{\prime}(s) . \text { Then, } \\
T^{\prime \prime \prime}(s)=\tau^{\prime} T+2 \tau T^{\prime} \text { and so } T^{\prime \prime \prime}(s)-2 \tau T^{\prime}-\tau^{\prime} T=0 \text { denoting } T=\frac{d \xi}{d s}, \\
\frac{d 4 \xi}{d s^{4}}-2 \tau\left(\frac{d 2 \xi}{d s^{2}}\right)-\tau^{\prime} \frac{d \xi}{d s}=0 .
\end{gathered}
$$

4. Folding of Null Curves

Theorem 4.1. Let $\xi(s)$ be a null curve in E_{1}^{3} with non-zero curvature and $\Psi(s)=f(\xi(s))$ be a topological folding of $\xi(s)$ for all s where $s \in$ Domain $(\Psi(s))=I \subset \operatorname{Domain} \xi(s)$ defined by frame vectors. Then $\Psi(s)=f(\xi(s))$ is a null curve and the Frenet apparatus of the folded curve $\Psi(s)$ can be formed by the Frenet apparatus of $\xi(s)$.
Proof. Let $\xi=\xi(s)$ be a null curve in E_{1}^{3} with non-zero curvature and $\Psi(s)=f(\xi(s))$, $s \in I \subset$ domain $\xi(s)$ is a topological folding of $\xi(s)$ with curvatures k_{f} and τ_{f} and so,
$\Psi(s)=f(\xi(s)), \Psi^{\prime}(s)=f^{\prime}(\xi) \xi^{\prime}(s)=f^{\prime}(\xi) T(s)$. And we get,
$\left\langle\Psi^{\prime}, \Psi^{\prime}\right\rangle=\left\langle f^{\prime} \xi^{\prime}(s), f^{\prime} \xi^{\prime}(s)\right\rangle=f^{\prime 2}\langle T(s), T(s)\rangle=0$. Since $\xi(s)$ is a null curve with $\langle T(s), T(s)\rangle=0, f^{\prime 2}>0$ for all s. Then $\Psi(s)$ is a null curve with curvatures $k_{f}=k=1$ and $T_{f}=f^{\prime}(s) T(s)$ where,
$\Psi^{\prime \prime \prime}(s)=T^{3} f^{\prime \prime \prime}(\xi)+3 T N f^{\prime \prime}(\xi)+f^{\prime}(\xi) \xi^{\prime \prime \prime}(s)$.
By substituting the value of $\xi^{\prime \prime \prime}(s)$ from the Frenet apparatus of the curve $\xi(\mathrm{s})$ in corollary 3.1. Then,
$T_{f}=T(s) f^{\prime}(\xi)$,
$N_{f}=\Psi^{\prime \prime}(s)=N(s) f^{\prime}(\xi)+T^{2}(s) f^{\prime \prime}(\xi)$,

$$
B_{f}=\Psi^{\prime \prime \prime}(s)=f^{\prime}(\xi) B(s)+T^{3} f^{\prime \prime \prime}(\xi)+3 T N f^{\prime \prime}(\xi), \tau_{f}=\tau=0
$$

$B_{f}=\Psi^{\prime \prime \prime}-\tau_{f} \Psi^{\prime}=\left(\tau-\tau_{f}\right) f^{\prime}(\xi) T+f^{\prime}(\xi) B+T^{3} f^{\prime \prime \prime}(\xi)+3 T N f^{\prime \prime}(\xi)$, for all $\tau \neq 0$ and $\tau_{f} \neq 0$.
Corollary 4.1. Let $\xi(s)$ be a null curve in E_{1}^{3} and $\Psi(s)=f(\xi(s))$ be a topological folding of $\xi(s)$. Then the limit of folding's of $\xi(s)$ is a null point.
Proof. Let $\Psi(s)=f(\xi(s))$ be a topological folding of the null curve $\xi(s)$ in E_{1}^{3} so $\Psi(s)$ be null curve and we have,

$$
\begin{aligned}
& \Psi_{1}(s): f(\xi(s)) \rightarrow f(\xi(s)), \Psi_{2}(s): \Psi_{1}(f(\xi(s))) \rightarrow \Psi_{1}(f(\xi(s))), \\
& \Psi_{3}(s): \Psi_{2}\left(\Psi_{1}(f(\xi(s)))\right) \rightarrow \Psi_{2}\left(\Psi_{1}(f(\xi(s)))\right), \ldots, \\
&\left.\left.\Psi_{n}: \Psi_{(n-1)}\left(\Psi_{(n-2)}\left(\ldots \Psi_{1} f(\xi)\right)\right)\right) \ldots\right) \rightarrow \Psi_{(n-1)}\left(\Psi_{(n-2)}\left(\ldots \Psi_{1}(f(\xi))\right) \ldots\right)
\end{aligned}
$$

Then $\lim _{n \rightarrow \infty} \Psi_{n}=p=(0,0,0)$, which is a null point.
Definition 4.1. Let $\left.\xi(s)=\left\{x_{1}(s), x_{2}(s), x_{3}(s)\right)\right\}$ be a null curve in E_{1}^{3}. Then $\Psi(\mathrm{s})$ be an isometric folding defined as follows,
$\left.\Psi(\mathrm{s}): \xi(\mathrm{s})=\left\{x_{1}(s), x_{2}(s), x_{3}(s)\right)\right\} \rightarrow \xi_{f}=\left\{\left(\frac{\left|x_{1}(s)\right|}{m}, \frac{\left|x_{2}(s)\right|}{m}, \frac{\left|x_{3}(s)\right|}{m}\right)\right\}$ for all $s,|m|>1, m \neq 0$.
Theorem 4.2. Let $\xi(s)=\left(x_{1}(s), x_{2}(s), x_{3}(s)\right)$ be a null curve in E_{1}^{3} and $\Psi(\xi)=\left(\frac{\left|x_{1}(s)\right|}{m}, \frac{\left|x_{2}(s)\right|}{m}, \frac{\left|x_{3}(s)\right|}{m}\right)$ for all s be an isometric folding of $\xi(s),|m|>1$. Then the folding $\Psi(s)$ be a null curve and, $\left(\begin{array}{l}T_{f} \\ N_{f} \\ B_{f}\end{array}\right)=$ $\left(\begin{array}{ccc}\frac{\delta}{m} & 0 & 0 \\ 0 & \frac{\delta}{m} & 0 \\ \delta m & 0 & 0\end{array}\right)\left(\begin{array}{l}T \\ N \\ B\end{array}\right), \delta=1$ if $x_{i}(s)>0$ and $\delta=-1$ if $x_{i}(s)<0, i \in\{1,2,3\}$.

Proof. Let $\Psi(\xi): \xi(s)=\left(x_{1}(s), x_{2}(s), x_{3}(s)\right) \rightarrow\left(\frac{\left|x_{1}(s)\right|}{m}, \frac{\left|x_{2}(s)\right|}{m}, \frac{\left|x_{3}(s)\right|}{m}\right),|m|>1$, be an isometric folding of the null curve $\xi(s)=\quad\left(x_{1}(s), x_{2}(s), x_{3}(s)\right) \quad$ in $\quad E_{1}^{3}$. If $\quad x_{i}(s)>0, \quad i \in \quad\{1,2,3\}$, then $\Psi^{\prime}=\frac{d \Psi}{d s}=\frac{1}{m}\left(x_{1}^{\prime}(s), x_{2}^{\prime}(s), x_{3}^{\prime}(s)\right)$, since $\xi(s)$ be a null curve where $\langle T(s), T(s)\rangle=0$ and $\left\langle T^{\prime}(s), T^{\prime}(s)\right\rangle=0$, for the folded curve $\xi_{f}(s)=\left(\frac{x_{1}(s)}{m}, \frac{x_{2}(s)}{m}, \frac{x_{3}(s)}{m}\right)$ since $\left\langle T_{f}(s), T_{f}(s)\right\rangle=\frac{1}{m^{2}}\langle T(s), T(s)\rangle=0 \quad$ and $\left\langle T_{f}{ }^{\prime}(s), T_{f}{ }^{\prime}(s)\right\rangle=\frac{1}{m^{2}}\left\langle T^{\prime}(s), T^{\prime}(s)\right\rangle=0$, then the folded curve $\xi_{f}(s)$ is a null curve. Since $B(s)$ is unique light like vector, also $g(T, B)=-1$ and B is orthogonal to N. Then,
$T_{f}(\mathrm{~s})=\Psi^{\prime}(s)=\frac{1}{m} T(s), N_{f}(\mathrm{~s})=T_{f}^{\prime}=\frac{1}{m} T^{\prime}(s)=\frac{1}{m} N(s)$ and from theorem(1), we get,
$B_{f}(\mathrm{~s})=m B(s)$.
If $x_{i}(s)<0, i \in\{1,2,3\}$ and $\xi_{f}(s)=\left(\frac{-x_{1}(s)}{m}, \frac{-x_{2}(s)}{m}, \frac{-x_{3}(s)}{m}\right)$, so $T_{f}(\mathrm{~s})=\frac{-1}{m} T(s), N_{f}(\mathrm{~s})=\frac{-1}{m} N(s)$ and $B_{f}(\mathrm{~s})=-m B(s)$. Then the Frenet apparatus of the folding $\Psi(\xi)$ can be formed by the Frenet apparatus of $\xi(s)$.
Now we introduce a type of folding which make the null curves to be space like curves and time like curves and the converse as follows,

5. Conditional Fractal Folding of Null Curves

Definition 5.1 Let $\xi(s)$ be any curve in E_{1}^{n} the map which is defined as $\xi_{f}:\left(x_{1}(s), x_{2}(s), \ldots, x_{i}(s), \ldots, x_{n}\right) \rightarrow$ $\left(x_{1}(s), x_{2}(s), \ldots, \varepsilon x_{i}(s), \ldots, x_{n}(s)\right)$ for $\varepsilon \leq 1, \varepsilon \neq 0$ is called conditional fractal folding of the coordinates x_{i}, ε depends on the type of the curve ξ_{f} (space like, time like and null curve) (M. EL-Ghoul \& A. M. Soliman. 2002).

Theorem 5.1. Let $\xi(\mathrm{s})$ be a null curve in E_{1}^{3}. Under the conditional fractal folding $\Psi(\mathrm{s})$: $\xi(\mathrm{s})=$ $\left.\left\{x_{1}(s), x_{2}(s), x_{3}(s)\right)\right\} \rightarrow \xi_{f}=\left(x_{1}(s), x_{2}(s), \varepsilon x_{3}(s)\right), \varepsilon \neq 0$ for all s, then ξ_{f} is space like curve if $|\varepsilon|<1, \xi_{f}$ is null curve if $\varepsilon= \pm 1$ and ξ_{f} is time like curve if $|\varepsilon|>1$.
Proof. Let $\left.\xi(\mathrm{s})=\left\{x_{1}(s), x_{2}(s), x_{3}(s)\right)\right\}$ be a null curve in $E_{1}^{3},\langle T, T\rangle=0$, so $x_{1}{ }^{2}+x_{2}{ }^{2}=x_{3}{ }^{2}$ and $\Psi(\mathrm{s})$ be conditional folding defined as $\Psi(\mathrm{s}): \xi(\mathrm{s}) \rightarrow \xi_{f}$, if $\xi_{f}=\left(x_{1}(s),\left(x_{2}(s), \varepsilon x_{3}\right), \varepsilon \neq 0\right.$, so $\left\langle T_{f}, T_{f}\right\rangle=x_{1}{ }^{2}+$ $x_{2}{ }^{2}-\varepsilon^{2} x_{3}{ }^{2}$ and then let $g(s)=\left\langle T_{f}, T_{f}\right\rangle$, then we have $g^{\prime}(s)=2\left\langle T_{f}, T_{f}^{\prime}\right\rangle=2\left\langle T_{f}, k_{f} N_{f}\right\rangle=0$ where $k_{f} \neq 0$ is constant, so $g^{\prime}(s)=0$ and $g(s)=c_{1}, c_{1}$ is constant.
If $c_{1}>0,\left\langle T_{f}, T_{f}\right\rangle>0$ and $x_{1}{ }^{2}+x_{2}{ }^{2}-\varepsilon^{2} x_{3}{ }^{2}>0$ so $x_{3}{ }^{2}\left(1-\varepsilon^{2}\right)>0, \varepsilon^{2}<1$, then ξ_{f} is space- like if $|\varepsilon|<1$.
If $c_{1}<0$ we have $\left\langle T_{f}, T_{f}\right\rangle<0$ and $\varepsilon^{2}>1$, then ξ_{f} is time like curve if $|\varepsilon|>1$.
If $c_{1}=0,\left\langle T_{f}, T_{f}\right\rangle=0$ and so $\varepsilon^{2}=1$, then ξ_{f} is null curve if $\varepsilon= \pm 1$.
Corollary 5.1. Let $\xi(\mathrm{s})$ be a null curve in E_{1}^{3}. Under the conditional fractal folding which is defined as,
$\left.\Psi(\mathrm{s}): \xi(\mathrm{s})=\left\{x_{1}(s), x_{2}(s), x_{3}(s)\right)\right\} \rightarrow \xi_{f}=\left(x_{1}(s), x_{2}(s), \varepsilon x_{3}(s)\right)$ for all $\varepsilon \leq 1, \varepsilon \neq 0$.
The Frenet equations of the folded curve ξ_{f} is depends on ε.
Corollary 5.2. Let $\xi(\mathrm{s})$ be a null curve in E_{1}^{3} and $\Psi(\mathrm{t})$ be conditional fractal folding defined as $\Psi(\mathrm{s})$: $\left.\xi(\mathrm{s})=\left\{x_{1}(s), x_{2}(s), x_{3}(s)\right)\right\} \rightarrow \xi_{f}$ and $\xi_{f}=\left(\varepsilon x_{1}(s), \varepsilon x_{2}(\mathrm{~s}), x_{3}(s)\right), \varepsilon \neq 0, \varepsilon \leq 1$ for all s. Then
ξ_{f} is space like curve if $|\varepsilon|>1, \xi_{f}$ is time like curve if $|\varepsilon|<1$. and ξ_{f} is null curve if $\varepsilon= \pm 1$.
Corollary 5.3. Let $\left.\xi(\mathrm{s})=\left\{x_{1}(s), x_{2}(s), x_{3}(s)\right)\right\}$ be any curve in E_{1}^{3} under the conditional fractal folding $\Psi(\mathrm{s}): \quad \xi(\mathrm{s}) \rightarrow \xi_{f}, \xi_{f}=\left(\varepsilon x_{1}(s), x_{2}(\mathrm{~s}), x_{3}(s)\right)$ or $\xi_{f}=\left(x_{1}(s), \varepsilon x_{2}(\mathrm{~s}), x_{3}(s)\right), \quad \varepsilon \neq 0,|\varepsilon|<1$, for all s. Then the limit of a sequence of foldings of $\xi(\mathrm{s})$ is never being null curve.
Proof. Let the limit of a sequence of foldings of any curve $\xi(\mathrm{s})$ in E_{1}^{3} be a null curve with $\xi_{f}=\left(0, x_{2}(\mathrm{~s}), x_{3}(s)\right)$, or $\xi_{f}=\left(x_{1}(s), 0, x_{3}(s)\right)$ and $\xi_{f}=\left(x_{1}(\mathrm{~s}), x_{2}(s), 0\right)$, then from theorem 3.1, the bi-normal vector of the folded curve B_{f} undefined, also $N_{f}^{\prime}=\tau T_{f}-k B_{f}$ undefined. The Frenet equations of ξ_{f} cannot appoints and so this contradict with ξ_{f} be null curve. Then ξ_{f} never being null curve.
Theorem 5.2. Let $\left.\xi(\mathrm{s})=\left\{x_{1}(s), x_{2}(s), x_{3}(s)\right)\right\}$ be a null curve in E_{1}^{3}. Then the conditional folding $\xi_{f}=$ $\left(\varepsilon x_{1}(s), \varepsilon x_{2}(s), \varepsilon x_{3}(s)\right),|\varepsilon|<1$, of $\xi(s)$ be null curve. And the Frenet equations of the folded curve ξ_{f} can be formed by the Frenet equations of ξ (s).

Proof. Let $\left.\xi(\mathrm{s})=\left\{x_{1}(s), x_{2}(s), x_{3}(s)\right)\right\}$, be null curve in E_{1}^{3} and $\xi_{f}=\left(\varepsilon x_{1}(s), \varepsilon x_{2}(s), \varepsilon x_{3}(s)\right),|\varepsilon|<1$ be a conditional fractal folding of $\xi(s)$ and so $\left\langle T_{f}, T_{f}\right\rangle=\varepsilon^{2}\langle T(s), T(s)\rangle=0$. Then the folded curve ξ_{f} is null curve, with curvature $k_{f}=k=1$ and torsion $\tau_{f}=\tau$, by using the form of Frenet equations in theorem1. Then we have,

$$
\left.\begin{array}{rl}
T_{f}(\mathrm{~s}) & =\varepsilon T(s) \\
N_{f}(\mathrm{~s}) & =\varepsilon N(s) \\
B_{f}(\mathrm{~s}) & =\left(\frac{1}{\varepsilon}\right) B(s)
\end{array}\right\} .
$$

Corollary 5.4. Let $\xi(\mathrm{s})=\left\{\left(x_{1}(s), x_{2}(s), x_{3}(s)\right)\right\}$ be a null curve in E_{1}^{3}. Then the conditional fractal folding $\xi_{f}=\left(\varepsilon_{i} x_{1}(s), \varepsilon_{i} x_{2}(s), \varepsilon_{i} x_{3}(s)\right), i \in \mathbb{N},\left|\varepsilon_{i}\right|<1, \varepsilon_{i} \neq 0$ be a null curve and the limit of a sequence of foldings of a null curve ξ (s) be a null point.
Proof. Let $\left.\xi(\mathrm{s})=\left\{x_{1}(s), x_{2}(s), x_{3}(s)\right)\right\}$ be a null curve in E_{1}^{3}. So $\langle T(s), T(s)\rangle$, since $\left\langle T_{f}(s), T_{f}(s)\right\rangle=$ $\varepsilon_{i}{ }^{2}\langle T(s), T(s)\rangle=0, \varepsilon_{i} \neq 0$, then ξ_{f} is a null curve.
Let $f: \xi \rightarrow \varepsilon_{i} \xi$ be a conditional fractal folding of the null curve ξ such that $\forall x, y \in \xi, d(x, y)$ $\geq d(f(x), f(y))$ where $\xi(\mathrm{s})$ be a null curve. By successive steps of conditional fractal folding's we get,

$$
\begin{gathered}
f_{1}: \xi \rightarrow \varepsilon_{1} \xi,\left|\varepsilon_{1}\right|<1, \\
f_{2}: \varepsilon_{1} \xi \rightarrow \varepsilon_{2}(\xi), \varepsilon_{2}<\varepsilon_{1}, \\
f_{3}: \varepsilon_{2} \xi \rightarrow \varepsilon_{3}(\xi), \varepsilon_{3}<\varepsilon_{2} \cdots, \\
f_{n}: \varepsilon_{(n-1)} \xi \rightarrow \varepsilon_{n}(\xi), \varepsilon_{n}<\varepsilon_{(n-1)} \ll 1,
\end{gathered}
$$

$\lim _{n \rightarrow \infty} f_{n}(\xi)=p$ where $p=(0,0,0)$ is a null point.
Theorem 5.5. If $\xi(s)$ and $\bar{\xi}(s)$ are null curves with non-zero curvature in E_{1}^{3} and $F_{\tau}: \xi \rightarrow \bar{\xi}$ is an isotorsion folding, then the torsion of $\bar{\xi}$ identically zero if and only if ξ is a part of the null cubic.
Proof. Let $\bar{\xi}$ be a null curve in E_{1}^{3} has torsion identically zero. Since F_{τ} is an isotorsion folding from ξ into $\bar{\xi}$. Then the torsion of ξ is zero and the Maclaurin series can be written as,
$\xi(s)=\xi(0)+\xi^{\prime}(0) s+\xi^{\prime \prime}(0) \frac{s^{2}}{2}+\xi^{\prime \prime \prime}(0) \frac{s^{3}}{6}$.
Since $B(s)=-\xi^{\prime \prime \prime}(s)$ when $\tau=0$. So we get,
$\xi(s)=\xi(0)+T(0) s+N(0) \frac{s^{2}}{2}-B(0) \frac{s^{3}}{6}$. With Frenet frame $\{T, N, B\}$ of $\xi(s)$ in this case $g(T, T)=$ $g(B, B)=0, g(T, B)=g(N, N)=1$. Without loss of generality,
assume that $T(0)=\frac{1}{\sqrt{2}}(1,0,1), N(0)=(0,1,0)$ and $B(0)=\frac{1}{\sqrt{2}}(1,0,-1)$ so we get,
$\xi(s)=\frac{1}{6 \sqrt{2}}\left(6 s-s^{3}, 3 \sqrt{2} s^{2}, 6 s+s^{3}\right)$. Then $\xi(s)$ is a part of null cubic. Conversely let the curve $\xi(s)$ be a part of the null cubic, then the torsion of $\xi(s)$ identically zero. Since F_{τ} is an isotorsion folding and $\bar{\xi}$ has torsion identically zero.

6. Conditional Deformations of Null Curves in E_{1}^{3}

Theorem 6.1. Let $\xi(s)$ be a null curve in E_{1}^{3} and $F(x)=M x+c, c \in \mathbb{R}, M \neq 0$ be a conditional deformation of $\xi(s)$ defined as $\mathrm{F}(s)=\left(M x_{1}(\mathrm{~s})+\mathrm{c}, \mathrm{M} x_{2}(s)+c, \mathrm{M} x_{3}(s)+c\right)$.Then the deformation $\mathrm{F}(s)$ be a null curve and,

$$
\left(\begin{array}{c}
T_{F} \\
N_{F} \\
B_{F}
\end{array}\right)=\left(\begin{array}{ccc}
M & 0 & 0 \\
0 & M & 0 \\
0 & 0 & \frac{1}{M}
\end{array}\right)\left(\begin{array}{l}
T \\
N \\
B
\end{array}\right)
$$

Proof. Let $\xi(s)$ be a null curve in E_{1}^{3} and $F(s)$ be a conditional deformation of $\xi(s)$ defined as $F(s)=$ $M \xi(s)+c$, since $\xi(s)$ is a null curve so $\left\langle\xi^{\prime}, \xi^{\prime}\right\rangle=0, M \neq 0$ we get,
$F^{\prime}(\mathrm{s})=\mathrm{M} \xi^{\prime}(s),\left\langle F^{\prime}, F^{\prime}\right\rangle=M^{2}\left\langle\xi^{\prime}, \xi^{\prime}\right\rangle=0$. Then $F(s)$ is a null curve with $k=k_{d}=1$ and we get,
$T_{F}(s)=F^{\prime}(s)=M \xi^{\prime}(s)=M T(s)$,
$N_{F}(s)=T_{F}{ }^{\prime}(s)=M T^{\prime}(s)=M N(s)$,
$B_{F}(s)=\frac{1}{M} B$, where the torsion be $\tau_{F}=-\left\langle N_{F}{ }^{\prime}, B_{F}\right\rangle=\tau$. Then the Frenet apparatus of $F(s)$ can be formed by the Frenet apparatus of $\xi(s)$.
Corollary 6.1. A null curve $\xi(s)$ in E_{1}^{3} under the conditional deformation $F(s)=M \xi(s)+c$ of $\xi(s), M \neq 0$ has the first curvature identically zero if and only if $F(\xi)$ be a part of a straight line.
Proof. Assume that the conditional deformation $F(\xi)$ of the null curve $\xi(s)$ be $\mathrm{F}(s)=\left(M x_{1}(\mathrm{~s})+\right.$ $\left.\mathrm{c}, \mathrm{M} x_{2}(s)+c, \mathrm{M} x_{3}(s)+c\right)$ where $M \neq 0$ such that $\operatorname{dim} F(\xi)=\operatorname{dim} \xi(s)$ and from the Frenet equations with first curvature $\mathrm{k}=0$, then $F^{\prime \prime}(\xi)=M N(s)=0$ and this implies that $F(\xi)$ is a straight line, where $k_{F}=\left\|T_{F}^{\prime}(s)\right\|, N_{F}(s)=T_{F}^{\prime}(s)$. Conversely, let $F(\xi)$ be a straight line then $F^{\prime \prime}(\xi)=M N(s)=0$ and $F(\xi)$ has the curvature k_{F} which is identically zero.
Remark 6.1. If $\alpha(\mathrm{s})$ be a light-like curve in E_{1}^{3} with standard flat metric $g=-d \bar{x}^{2}+d \bar{y}^{2}+d \bar{z}^{2}, g(N, N)>$ 0 , when the parameterization is pseudo arc so $g(N, N)=1$ with $g(T, T)=0, g(B, B)=0$ and $g(T, N)=$ 0 , and $B(s)$ is unique light like vector such that $g(T, B)=1$ and it is orthogonal to N the pseudo torsion of $\alpha(\mathrm{s})$ be $\tau=-\left\langle N^{\prime}, B\right\rangle$, then the Frenet equations of $\alpha(\mathrm{s})$ are

$$
\left(\begin{array}{c}
T^{\prime} \\
N^{\prime} \\
B^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & k & 0 \\
\tau & 0 & -k \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{l}
T \\
N \\
B
\end{array}\right) \cdot 10 .
$$

Where the curvature k can take only two values 0 when α is a straight null line or 1 in all other cases.
Theorem 6.2. Let $\xi(s)$ be a null curve in E_{1}^{3} with standard flat metric $g=d x^{2}+d y^{2}-d z^{2}$. Under the conditional deformation,
$D: \quad \xi(s)=(x(s), y(s), z(s)) \rightarrow \quad D(\xi)=(\bar{x}(s), \bar{y}(s), \bar{z}(s)) \quad=(z(s), y(s),-x(s))$ which rotation the coordinates x and z in x-z plane with rotation angle $\theta=\frac{n \pi}{2}, n \in \mathbb{R}, n$ is odd integer. Then $D(\xi)$ be a null curve with standard flat metric $g=-d \bar{x}^{2}+d \bar{y}^{2}+d \bar{z}^{2}$.
Proof. Let $\xi(s)$ be a null curve in E_{1}^{3} with standard flat metric $g=d x^{2}+d y^{2}-d z^{2}$ since the equation of which rotation coordinates x and z in $\mathrm{x}-\mathrm{z}$ plane can be written as,
$\binom{\bar{x}}{\bar{z}}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)\binom{x}{z}, \bar{y}=y$. Under the conditional deformation $D(\xi)$ which rotation coordinates x and z with rotation angle $\theta=\frac{n \pi}{2}$, and $n \in \mathbb{R}, n$ is odd integer then $\binom{\bar{x}}{\bar{z}}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\binom{x}{z}, \bar{y}=y$, or $\binom{\bar{x}}{\bar{z}}=$ $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\binom{x}{z}, \bar{y}=y$,
$D(\xi)=(\bar{x}(s), \bar{y}(s), \bar{z}(s))=(z(s), y(s),-x(s))$ also,
$g\left(D^{\prime}, D^{\prime}\right)=-d \bar{x}^{2}+d \bar{y}^{2}+d \bar{z}^{2}$,
$\left\langle D^{\prime}, D^{\prime}\right\rangle=-d \bar{x}^{2}+d \bar{y}^{2}+d \bar{z}^{2}=d x^{2}+d y^{2}-d z^{2}=\left\langle\xi^{\prime}, \xi^{\prime}\right\rangle=0$. Then the conditional deformation $D(\xi)$ be a null curve with standard flat metric $g=-d \bar{x}^{2}+d \bar{y}^{2}+d \bar{z}^{2}$.
Theorem 6.3. Let $\xi(s)$ be a null curve in E_{1}^{3} with the standard flat metric given by $g=-d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}$. Then the bi-normal vector of can be calculated by,
$B(s)=\left(\frac{1}{\Delta_{1,2}}\left(x_{2}^{\prime \prime}-\Delta_{2,3} b_{3}\right), \frac{1}{\Delta_{1,2}}\left(\Delta_{1,3} b_{3}-x_{1}^{\prime \prime}\right), \frac{-\left(1+x_{3}^{\prime \prime 2}\right)}{2 x_{3}^{\prime}}\right), \Delta_{1,2} \neq 0, x_{3}^{\prime} \neq 0$.
Where $\Delta_{2,3}=\left(x_{2}^{\prime} x_{3}^{\prime \prime}-x_{3}^{\prime} x_{2}^{\prime \prime}\right), \Delta_{1,3}=\left(x_{1}^{\prime} x_{3}^{\prime \prime}-x_{3}^{\prime} x_{1}^{\prime \prime}\right)$ and $\Delta_{1,2}=\left(x_{1}^{\prime} x_{2}^{\prime \prime}-x_{2}^{\prime} x_{1}^{\prime \prime}\right)$.
Proof. Let $\xi(s)=\left(x_{1}(s), x_{2}(s), x_{3}(s)\right)$ be a null curve in E_{1}^{3} with tangent vector $T(s)=\left(x_{1}^{\prime}(s), x_{2}^{\prime}(s)\right.$, $\left.x_{3}^{\prime}(s)\right)$ and the normal vector $N(s)=T^{\prime}(s)=\left(x_{1}^{\prime \prime}(s), x_{2}^{\prime \prime}(s), x_{3}^{\prime \prime}(s)\right)$, to calculate the bi-normal vector of the curve $\xi(s)$, let $B(s)=\left(b_{1}, b_{2}, b_{3}\right)$, since $B(s)$ is unique light-like vector. Then, $\langle B, B\rangle=0$ and we get,

$$
\begin{equation*}
-b_{1}^{2}+{b_{2}}^{2}+b_{3}^{2}=0 \tag{11}
\end{equation*}
$$

Also since $g(T, B)=1$ we get,

$$
\begin{equation*}
-x_{1}^{\prime} b_{1}+x_{2}^{\prime} b_{2}+x_{3}^{\prime} b_{3}=1 \tag{12}
\end{equation*}
$$

Since B be orthogonal to N, then $\langle N, B\rangle=0$ and we get,

$$
\begin{equation*}
-x_{1}^{\prime \prime} b_{1}+x_{2}^{\prime \prime} b_{2}+x_{3}^{\prime \prime} b_{3}=0 \tag{13}
\end{equation*}
$$

By solving these equations as theorem1, we get the bi-normal vector be

$$
\begin{equation*}
B(s)=\left(\frac{1}{\Delta_{1,2}}\left(\Delta_{2,3} b_{3}+x_{2}^{\prime \prime}\right), \frac{1}{\Delta_{1,2}}\left(\Delta_{1,3} b_{3}+x_{1}^{\prime \prime}\right), \frac{\left(1-x_{3}^{\prime \prime 2}\right)}{2 x_{3}^{\prime}}\right), \Delta_{1,2} \neq 0, x_{3}^{\prime} \neq 0 \tag{14}
\end{equation*}
$$

Where $\Delta_{2,3}=\left(x_{2}^{\prime} x_{3}^{\prime \prime}-x_{3}^{\prime} x_{2}^{\prime \prime}\right), \Delta_{1,3}=\left(x_{1}^{\prime} x_{3}^{\prime \prime}-x_{3}^{\prime} x_{1}^{\prime \prime}\right)$ and $\Delta_{1,2}=\left(x_{1}^{\prime} x_{2}^{\prime \prime}-x_{2}^{\prime} x_{1}^{\prime \prime}\right)$ and so,

$$
b_{1}=\frac{1}{\Delta_{1,2}}\left(\Delta_{2,3} b_{3}+x_{2}^{\prime \prime}\right), b_{2}=\frac{1}{\Delta_{1,2}}\left(\Delta_{1,3} b_{3}+x_{1}^{\prime \prime}\right) \text { and } b_{3}=\frac{\left(x_{2}^{\prime \prime 2}-x_{1}^{\prime \prime 2}\right)}{2\left(\Delta_{1,3} x_{1}^{\prime \prime}-\Delta_{2,3} x_{2}^{\prime \prime}\right)}
$$

Also b_{3} can be written in the form,

$$
\begin{equation*}
b_{3}=\frac{\left[g(N, N)-x_{3}^{\prime \prime 2}\right]}{2\left[g(N, N) x_{3}^{\prime}-g(T, N) x_{3}^{\prime \prime}\right]} \tag{15}
\end{equation*}
$$

In equation (15), when the parameterization is pseudo-arc so $g(N, N)=1, g(T, N)=0$. Then,

$$
\begin{equation*}
b_{3}=\frac{\left(1-x_{3}^{\prime \prime 2}\right)}{2 x_{3}^{\prime}}, x_{3}^{\prime} \neq 0 \tag{16}
\end{equation*}
$$

Example 6.1. Let $\alpha(s)=\frac{1}{r^{2}}(\cosh (r s), r s, \sinh (r s))$ be a null curve in E_{1}^{3} with standard flat metric $g=d x^{2}+d y^{2}-d z^{2}$ and $\alpha_{D}^{r^{2}}(s)=\frac{1}{r^{2}}(\sinh (r s), r s, \cosh (r s))$ be deformation of the null curve $\alpha(s)$ by rotation coordinates x and z with rotation angle $\theta=\frac{n \pi}{2}, n$ is odd integer with standard flat metric $g=$ $-d \bar{x}^{2}+d \bar{y}^{2}+d \bar{z}^{2}$. If we calculate $1^{\text {st }}$ and $2^{\text {nd }}$ order derivatives (with respect to s) of $\alpha_{D}(s)$ and so $T(s)=$ $\frac{1}{r}(\cosh (r s), 1, \sinh (r s))$, since $\langle T, T\rangle=0 \quad$ so $\quad \alpha(s) \quad$ is null a curve and $N(s)=T^{\prime}(s)=$ ${ }^{r}(\sinh (r s), 0, \cosh (r s))$, so $\langle N, N\rangle=1$, since $B(s)$ is unique light like vector such that $g(T, B)=1$ and it is orthogonal to T by substituting in the equation (13). Then $B(s)=\frac{-r}{2}(\cosh (r s),-1, \sinh (r s))$, so $\langle B, B\rangle=0, N^{\prime}=r(\cosh (r s), 0, \sinh (r s))$, the pseudo torsion is $\tau=-\left\langle N^{\prime}, B\right\rangle=\frac{1}{2} g\left(\alpha^{\prime \prime \prime}, \alpha^{\prime \prime \prime}\right)=\frac{-r^{2}}{2}, N$ is space like vector. Then $\alpha(s)$ is a null curve with curvature $k=1$ and the Frenet equations of $\alpha(s)$ are given by

$$
\left(\begin{array}{l}
T^{\prime} \\
N^{\prime} \\
B^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & k & 0 \\
\tau & 0 & -k \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{l}
T \\
N \\
B
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
\frac{-r^{2}}{2} & 0 & -1 \\
0 & \frac{r^{2}}{2} & 0
\end{array}\right)\left(\begin{array}{c}
\frac{1}{r}(\cosh (r s), 1, \sinh (r s)) \\
(\sinh (r s), 0, \cosh (r s)) \\
\frac{-r}{2}(\cosh (r s),-1, \sinh (r s))
\end{array}\right)
$$

Corollary 6.2. Under the conditional deformation which is defined by,
$D: \xi(s)=(x(s), y(s), z(s)) \rightarrow D(\xi)=(z(s), y(s), x(s))$, the Frenet equations of $D(\xi)$ are invariant.
Proof. The proof is clear from theorem 6.3, the Frenet equations of $D(\xi)$ calculates from equation (10).

References

A. E. El-Ahmady. (2007). The variation of the density on chaotic spheres in chaotic space-like Minkowski space time, Chaos. Solutions and Fractals, 31, 1272-1278. https://doi.org/10.1016/j.chaos.2005.10.112
A. E. El-Ahmady \& A. El-Araby. (2010). On fuzzy spheres in fuzzy Minkowski space. Nuovo Cimento, 125B.
A. E. El-Ahmady \& A.T.M. Zidan. (2018). On hyperbola in Minkowski3-space and its deformations. International Journal of Applied Mathematics and Statistics, 57(5),115-127.
A. E. El-Ahmady \& A.T.M. Zidan. (2019). On the retraction of pseudo null space-like curves in Minkowski 3-space. JP Journal of Geometry and Topology, 23(2), 89-106. https://doi.org/10.17654/GT023020089
A. E. El-Ahmady \& E. Al-Hesiny. (2013) On the geometry of curves in Minkowski 3-space and its folding. Applied Mathematics, 4(5), 746-752. https://doi.org/10.4236/am.2013.45103
J. Walrave. (1995). Curves and surfaces in Minkowski space, Ph.D. Thesis, ProQuest LLC, AnnArbor, Mich, USA, Katholieke Universiteit, Leuven, Belgium.
M. EL-Ghoul \& A. M. Soliman. (2002). Retraction of Chaotic Manifolds and Fractal. LE MATEMATICHE, LVII Fasc(II), 229-240.
M. P. Docarmo. (1992). Riemannian geometry. Boston: Birkhauser. https://doi.org/10.1007/978-1-4757-2201-7
R. Aslaner, A. \& Ihsan Boran. (2009). On the geometry of null curves in the Minkowski 4-space. Turk J Math, 33, 265-272. https://doi.org/10.3906/mat-0711-31
R. Lopez. (2008). Differential geometry of curves and surfaces in Lorentz -Minkowski space, Instituto de Matematica Estatistica, University of Sao Paulo, Brazil.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

