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Abstract 

In this paper, a form for Frenet equations of all null curves in Minkowski 3-space has been presented. New types 
of foldings of curves are obtained. The connection between folding, deformation and Frenet equations of curves 
are also deduced.  
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1. Introduction 

The Minkowski 3-space  is the Euclidean 3-space  provided with the standard flat metric given by = 	 + 	 − 	, 
where ( , , ) is a rectangular coordinate system in . Since  is an indefinite metric, recall that a 
vector	 ∈  is said space-like if ( , ) > 0	 	 = 0, time-like if ( , ) < 0 and null (light-like) if ( , ) = 0	 	 ≠ 0. Similarly, an arbitrary curve	 = ( ) in  can locally be space-like, time- like or 
null(light-like), if all of its velocity vectors ( ) are respectively, space-like, time-like or null (light-like) 
respectively. Space-like or time-like curve ( )  is said to be parameterized by arc length function s, 
if	 ( ( ), ( )) = ±1. The velocity of the curve ( )	is given by ‖ ′( )‖. A curve  is said to be regular 
if ( ) ≠ 0 for all 	 ∈ 	 , ∈  is space-like if its velocity vectors are space-like for all	 ∈ , similarly 
for time-like and null. If  is a null curve, we can re-parameterize it such that, 〈 ( ), ( )〉 = 0 and ( ) ≠ 0, recall the norm of a vector  is given by	‖ ‖ = | ( , )|. 
Given a unit speed curve ( )  in Minkowski space 	 	 	 	 	 	 	 	{ ( ), ( ), ( )}	 associated for each point .  Where ( ), ( ) and ( ) are the tangent, normal and binormal vector field (A. E. El-Ahmady & A.T.M. Zidan. 2019) 
(A. E. El-Ahmady & E. Al-Hesiny. 2013) (R. Lopez. 2008) (R. Aslaner, A. Ihsan Boran. 2009).  

2. Preliminary Notes  

Let (s) be a curve in . Then for the unit speed curve ( ) with non-null frame vectors, we distinguish 
three cases depending on the causal character of ( ) and its Frenet equations are as follows, ′′′ = 	 0 000 0 . 
We write the following subcases,  

Case 1. If ( ) is time-like curve in , then  is time-like vector and ′ is space-like vector. Then (1 < < 3),  read = = 1, 	 = −1, ,  and  are mutually orthogonal vectors satisfying the 
equations, ( , ) = ( , ) = 1, ( , ) = −1. 
 Case 2. If ( ) is space like curve in E , then  is space like vector, since ′( )	is orthogonal to the space 
like vector ( ), ′( ) may be space like, time-like or light like. Thus we distinguish three cases according 
to	 ( ). 
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Case 2.1. If the vector ′( ) is space-like,  is space like vector and  is time-like vector. Then (1 < <3)	 	 = −1, = = 1, , 	 	 	 	 ℎ 	 	 	 ( , ) =  ( , ) = 1, ( , ) = −1. 

Case 2.2. If the vector ′( ) is time-like,  is time-like vector and  is space-like vector. Then (1 < <3) read = = = 1, where the orthogonal vectors ,  and  are satisfying ( , ) = ( , ) =1, ( , ) = −1. 

Case 2.3. If the vector ′( ) is light like for all s, ( ) = ′( ) is light like vector and ( )is unique light like 
vector such that ( , ) = −1 and it is orthogonal to . The Frenet equations are ′′′ = 	 0 1 00 01 0 − .	
Case 3. If ( )  is light like curve in E ,  ( , ) > 0,  when the parameterization is pseudo- arc so ( , ) = 1 with ( , ) = 0, ( , ) = 0, ( , ) = 0, and ( ) is unique light like vector such that ( , ) = −1  and it is orthogonal to  the pseudo torsion of ( )  be = −〈 , 〉,  then the Frenet 
equations of ( ) are ′′′ = 0 000 0 	∗	
Where the curvature  can take only two values, 0 when  is a straight null line, or 1 in all other cases (J. 
Walrave. 1995). 

A regular curve ∶ →	  is called a null curve if ′ is light like, that is 〈 , ′	〉 = 0	 (M. P. Docarmo. 
1992). 

Let	  and  be two smooth manifolds of dimensions  and  respectively. A map  :  →  is said to 
be an isometric folding of  into  if and only if for every piecewise geodesic path  : →  the induced 
path о  : →  is piecewise geodesic and of the same length as , if  does not preserve the length it is 
called topological folding (A. E. El-Ahmady. 2007) (A. E. El-Ahmady & E. Al-Hesiny. 2013). 

A map :  →	 ∗	 such	that	 ∗ = ( ) where  and ∗ are two smooth Riemannian manifolds is called 
deformation map if  is differentiable and has differentiable inverse. A deformation map :  →	 ∗ where  
and ∗ are two smooth Riemannian manifolds is called regular deformation if ∀	 	, 	 , 	( 	) = 	 ( ))  	( ) = 	 	 	( 	) , ( )	is the curvature at the point 	  ,  when ( ) 	= ( 	( ))  ∀	 	 , it is the 
identity deformation which is regular deformation (M. P. Docarmo. 1992). 

Definition 2.1. Let u = u 	,	u 	,	u 	  and v = v 	,	v 	,	v 	,  be vectors in E , the vector product in Minkowski 
space-time E  is defined by the determinant u ∧ v = −u 	 u 	 	u 	v 	 v 	 v 	 . 
Where 	, 	 and 	 are mutually orthogonal vectors (coordinate direction vectors). 

3. Form of Frenet Equations of Null Curves in Minkowski 3-Space 

Theorem 3.1. Let ( ) be a null curve in E 	 with the standard flat metric given by = 	 + 	 − 	. 
Then the bi-normal vector of ( ) can be calculated by the form, ( ) =	 ∆ , 	∆ , 	 + , ∆ , 	 ∆ , 	 + 	 , ( 	 )	 	 , ∆ , ≠ 0, ≠ 0.	 	
Where	 ∆ , =	 ( 	 − 	 	), ∆ , = ( 	 	 − 	 	)	 and	 ∆ , = ( 	 − 	 	).	
Proof. Let ( ) =	 ( ), ( ), ( ) , be the parametric equation of any null curve in 		 where the tangent 
vector ( ) = 	 ( ( ), ( ), ( ))  and the normal vector ( ) = 	 ( ) = 	 ( ( ), ( ), ( )).  To 
calculate the bi-normal vector of the curve ( ),	 let ( ) = ( , , ),  

since ( ) is unique light like vector, hence  〈 , 〉 = 0	 and so,	 		 + − = 0. (1)	
Also, ( , ) = −1 and so,  



mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020 

92 
 

	 	 + 	 − 	 = −1. (2)	
Since  is orthogonal to  where 〈 , 〉 = 	0 so we get,  	 	 + 	 − 	 = 0. (3)	
Multiply equation (2) by  and equation (3) by  and subtracting the product equations so we get,  	 = ∆ , 	 ∆ , 	 + 	 	 , ∆ , 	≠ 0. (4)	
Multiply equation 2 by 2′′ and equation 3 by 2′ and subtracting the product equations. Then,  	 = ∆ , 	 	∆ , 	 + , ∆ , 	≠ 0. (5)	
By substituting equations 4 and 5 in equation 1. Then, ∆ , + ∆ , − ∆ , 	 +	 + +	 2 ∆ , 	 + ∆ , 	 	 = 0.	 	
But	 ∆ , + ∆ , − ∆ , 	 = 0 and so we get, 		 = 	 	(∆ , 	 ∆ , 	 	) . (6)	
Also,  can be written in the form,  	 = [	 ( , ) 	 	]	 ( , ) ( , ) 	 	 . (7)	
In equation (7), when the parameterization is pseudo-arc so ( , ) = 1, ( , ) = 0	 and we get, 	 = ( 	 )	 , ≠ 0. (8)	
Where ∆ , = ( 	 − 	 	), ∆ , = ( 	 − 	 	), and ∆ , = ( 	 − 	 	). Then we get,  ( ) = −1∆ , 	∆ , 	 + , 1∆ , 	 ∆ , 	 + 	 	 , −(1 +	 )2 	 	 . (9) 
Where ∆ , ≠ 0, 	≠ 0 with curvature = 1 and torsion = −〈 , 〉 = 	 ( , ).  

Example 3.1. Let ( ) = ( ℎ( ) , , ℎ( )) if we calculate 1st and 2nd order derivatives (with respect 

to s) of ( )  and so ( ) = 	 ( ℎ( ) , 1, ℎ( )).  Since 	〈 , 〉 = 0  so ( )  is a null curve and ( ) = ( ) = 	 ( ℎ( ) , 0, ℎ( ))	 	〈 , 〉 = 1,  since ( )  is unique light like vector such that ( , ) = 1and it is orthogonal to , by substituting in the equation (9). We get ( ) = ( ℎ( ), −1, ℎ( )) and so 〈 , 〉 = 0, = (sinh( ) , 0, cosh( )). The pseudo torsion is =	−〈 , 〉 =  

where  is space like vector. Then ( ) is a null curve with curvature = 1 and the Frenet equations of ( ) are given by 

′′′ = 0 000 0 = 0 1 0−2 0 10 −2 0
1 (sinh( ) , 1, cosh( ))(cosh( ) , 0, sinh( ))2 (sinh( ) , −1, cosh( ))	 . 

Corollary 3.1 Let ( ) be a null curve in E 	  with non-zero curvature and pseudo torsion , then the 
bi-normal vector of ( ) can be calculate by the form,  ( ) = 	 1 ( ) − ( ) = 	 1 ( )	– ( ).	 
Such that	 = 	− ( , )	 	 = 	 ( , ). 
Theorem 3.2. Let ( ) be a null curve in E 	  with non-zero curvature and pseudo torsion ( ). Then ( )	 	 	 	 	 ℎ	 	 	 , 4 − 	2 	 2 −	 = 0.	 
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Proof. Since ( ) be a null curve in E 	 from the Frenet equation (∗). We get, 	 ( ) = ( ), ( ) = ( ) + ( )	 	 ( ) = ( ),	 
with = 1 and so we have, 	 ( ) = ( ) = 	 	 + 	 ( )	 	 ( ) = 	 	 +	 	 + 	 ( ). ℎ , 

( ) = 	 	 +	2 	 	 	 	 ( ) −	2 	 − 	 = 0	 	 = ,	4 − 	2 	 2 −	 = 0.	
4. Folding of Null Curves   

Theorem 4.1. Let ( ) be a null curve in E 	 with non-zero curvature and ᴪ( ) = 	 ( )  be a topological 
folding of ( )  for all  where ∈  Domain (ᴪ( )) = ⊂ 	 	 ( )  defined by frame vectors. Then ᴪ( ) = ( )  is a null curve and the Frenet apparatus of the folded curve ᴪ( ) can be formed by the Frenet 
apparatus of ( ). 
Proof. Let	 = ( ) be a null curve in 	 with non-zero curvature and ᴪ( ) = ( ) , ∈ ⊂	domain ( ) 
is a topological folding of ( ) with curvatures  and  and so,  ᴪ( ) = ( ) , ᴪ′( ) = ( ) ′( ) = 	 ( )	 ( ).	And we get,  〈ᴪ′, ᴪ′〉 	= 	 〈 ′ ( ), ′ ′( )〉 	= 	 ′ 〈 ( ), ( )〉 = 0. Since	 ( ) is a null curve with 〈 ( ), ( )〉 = 0, ′ > 0 
for all . Then	ᴪ( ) is a null curve with curvatures = = 1 and = ( )	 ( ) where, ᴪ ( ) = ( ) + 3 	 ( ) + ( ) ( ).  

By substituting the value of ( ) from the Frenet apparatus of the curve (s) in corollary 3.1. Then,  = ( )	 ( ), = ᴪ ( ) = ( )	 ( ) + ( )	 ( ), = ᴪ′′′( ) = ( ) ( ) + ( ) + 3 	 ( ), = = 0, = ᴪ − ᴪ = − ( ) + ( ) +	 ( ) + 3 	 ( ), for all ≠ 0 and ≠ 0. 
Corollary 4.1. Let	 ( ) be a null curve in	 	 and ᴪ( ) = ( )  be a topological folding of ( ). Then the 
limit of folding's of ( ) is a null point. 

Proof. Let	ᴪ( ) = ( )  be a topological folding of the null curve ( )	in 	 so	ᴪ( ) be null curve and we 
have, ᴪ ( ):	 ( ) → 	 ( ) , ᴪ ( ):	ᴪ ( ( ) ) → 	ᴪ 	 ( ) ,	 ᴪ ( ):	ᴪ (ᴪ ( ( ) )) → 	ᴪ ᴪ ( ) , …	,	 ᴪ :	ᴪ( )(ᴪ( ) …ᴪ ( ) ))… ) 	→ 	ᴪ( )(ᴪ( ) …ᴪ ( ) … )	 
Then lim → ᴪ = = (0, 0, 0), which is a null point. 

Definition 4.1. Let	 ( ) = 	 { ( ), ( ), ( ))} be a null curve in . Then ᴪ(s) be an isometric folding 
defined as follows, ᴪ(s): (s) = { ( ), ( ), ( ))} 	→ 	 = | ( )| , | ( )| , | ( )|

 for all , | | > 1, ≠ 0. 
Theorem 4.2. Let ( ) = ( ( ), ( ), ( )) be a null curve in  and ᴪ( ) = | ( )| , | ( )| , | ( )|

 for 

all  be an isometric folding of 	 ( ), | | > 1.  Then the folding ᴪ( )  be a null curve and, =
0 00 00 0 , = 1 if ( ) > 0 and = −1 if ( ) < 0, ∈ {1, 2, 3}. 
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Proof. Let ᴪ( ):	 ( ) = ( ), ( ), ( ) → 	 (| ( )| , | ( )| , | ( )|), | | > 1, be an isometric folding of the 

null curve ( ) =  ( ), ( ), ( )  in .  If ( ) > 0,  ∈  {1, 2, 3},  then ᴪ′ = ᴪ 	= 	( ( ), ( ), ( )), since	 ( ) be a null curve where	〈 ( ), ( )〉 = 0 and 〈 ( ), ′( )〉 = 0, 
for the folded curve ( ) = 	 ( ) , ( ) , ( )	  since 〈 ( ), ( )〉 = 	 〈 ( ), ( )〉 = 0  and 〈 ( ), ′( )〉 = 	 	〈 ( ), ′( )〉 	= 0, then the folded curve ( ) is a null curve. Since ( ) is unique 

light like vector, also ( , ) = −1 and  is orthogonal to . Then,  (s) = ᴪ ( ) = ( ), (s) = = ( ) = ( ) and from theorem(1), we get,  (s) = ( ).  

If ( ) < 0,  ∈  {1, 2, 3}  and ( ) = ( ) , ( ) , ( )	 ,  so (s) = ( ),  (s) = ( )  and (s) = − ( ). Then the Frenet apparatus of the folding ᴪ( ) can be formed by the Frenet apparatus of ( ).  

Now we introduce a type of folding which make the null curves to be space like curves and time like curves and 
the converse as follows, 

5. Conditional Fractal Folding of Null Curves   

Definition 5.1 Let ( ) be any curve in E  the map which is defined as :	( ( ), ( ), … , ( ), … , ) →	( ( ), ( ), … , ( ), … , ( )) for ≤ 1, ≠ 0 is called conditional fractal folding of the coordinates ,  depends on the type of the curve  (space like, time like and null curve) ( M. EL-Ghoul & A. M. Soliman. 
2002). 

Theorem 5.1. Let (s)  be a null curve in .  Under the conditional fractal folding ᴪ(s):  (s) = { ( ), ( ), ( ))	} 	→  = ( ( ), ( ), ( )),  ≠ 0  for all ,  then  is space like curve if | | < 1,  is null curve if = ±1 and  is time like curve if | | > 1.  

Proof. Let (s)= { ( ), ( ), ( ))} be a null curve in , 〈 , 〉 = 0, so + =  and ᴪ(s) be 
conditional folding defined as ᴪ(s): (s) → , if = ( ( ), (	 ( ), ), ≠ 0, so 〈 , 	〉 = +− 	  and then let ( ) = 	 〈 , 	〉,  then we have ( ) = 	2〈 , 	〉 = 	2〈 , 	〉 = 0  where ≠ 0 is constant, so ( ) = 0 and ( ) = ,  is constant. 

If > 0, 〈 , 	〉 > 0 and + − 	 > 0 so 	(1 − 	) > 0, < 1, then  is space- like if | | < 1.  

If < 0 we have 〈 , 	〉 < 0 and > 1, then  is time like curve if | | > 1.  

If = 0, 〈 , 	〉 = 0 and so = 1, then  is null curve if = ±1.  

Corollary 5.1. Let (s) be a null curve in . Under the conditional fractal folding which is defined as,  ᴪ(s): (s)= { ( ), ( ), ( ))	} → = ( ( ), ( ), ( )) for all ≤ 1, ≠ 0.  

The Frenet equations of the folded curve  is depends on .  

Corollary 5.2. Let (s) be a null curve in  and ᴪ(t) be conditional fractal folding defined as ᴪ(s): (s) = ( ), ( ), ( ) 	} 	→  and = ( ), (s), ( ) , ≠ 0, ≤ 1 for all . Then 

 is space like curve if | | > 1,  is time like curve if | | < 1. and  is null curve if = ±1.  

Corollary 5.3. Let (s) = ( ), ( ), ( ) } be any curve in  under the conditional fractal folding ᴪ(s):  (s)  → , = ( ), 	 (s), ( )  or = ( ( ), (s),  ( )), , ≠ 0, | | < 1,  for all . 
Then the limit of a sequence of foldings of (s) is never being null curve.  

Proof. Let the limit of a sequence of foldings of any curve (s)  in  be a null curve with =	 0, (s), ( ) ,  or = ( ( ), 0,  ( ))  and = ( (s), ( ), 0),  then from theorem 3.1, the 
bi-normal vector of the folded curve  undefined, also = −  undefined. The Frenet equations of 

 cannot appoints and so this contradict with  be null curve. Then  never being null curve.  

Theorem 5.2. Let (s) = { ( ), ( ), ( ))} be a null curve in . Then the conditional folding = ( ), ( ), 	 ( ) , | | < 1, of (s) be null curve. And the Frenet equations of the folded curve  can 
be formed by the Frenet equations of (s). 
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Proof. Let (s) = { ( ), ( ), ( ))}, be null curve in  and = ( ), ( ), 	 ( ) , | | < 1 be 
a conditional fractal folding of ( ) and so 〈 , 〉 = 	〈 ( ), ( )〉 = 0. Then the folded curve  is null 
curve, with curvature = = 1 and torsion = , by using the form of Frenet equations in theorem1. Then 
we have,  (s) = 	 ( )	(s) = ( )	(s) = 1 ( ) . 
Corollary 5.4. Let (s) = {( ( ), ( ), ( ))} be a null curve in . Then the conditional fractal folding = ( ), ( ), ( ) , ∈ ℕ, | | < 1, ≠ 0 be a null curve and the limit of a sequence of foldings 
of a null curve (s) be a null point. 

Proof. Let (s) =  { ( ), ( ), ( ))}  be a null curve in .  So 〈 ( ), ( )〉,  since 〈 ( ), ( )〉 = 〈 ( ), ( )〉 = 0, ≠ 0, then  is a null curve. 

Let :	 → 	  be a conditional fractal folding of the null curve 	  such that 	 , 	 ,  ( , ) ≥ 	 ( ( ), ( )) where (s) be a null curve. By successive steps of conditional fractal folding's we get,  :	 → 	 , | | < 1,	:	 → 	 ( ), < ,	:	 → 	 ( ), < 	⋯ ,	:	 ( ) → 	 ( ), < ( ) ≪ 1,	lim → ( )	 =  where = (0, 0, 0) is a null point.  

Theorem 5.5. If ( ) and ̅( ) are null curves with non-zero curvature in E 	 and : → ̅ is an isotorsion 
folding, then the torsion of ̅ identically zero if and only if  is a part of the null cubic. 

Proof. Let ̅ be a null curve in E 	 has torsion identically zero. Since F  is an isotorsion folding from  into ̅. Then the torsion of  is zero and the Maclaurin series can be written as, 	( ) = (0) + (0) + (0) + (0) .  

Since ( ) = − ( ) when = 0. So we get, 	 ( ) =  (0) + (0) + (0) − (0) .  With Frenet frame { , , }  of ( )  in this case ( , ) =( , ) = 0, ( , ) = ( , ) = 1. Without loss of generality,  

assume that (0) = √ (1, 0, 1), (0) = (0, 1, 0) and (0) = √ (1, 0, −1) so we get, ( ) = √ 6 − , 3√2	 , 6 + . Then ( ) is a part of null cubic. Conversely let the curve ( ) be a part 

of the null cubic, then the torsion of ( ) identically zero. Since F  is an isotorsion folding and ̅ has torsion 
identically zero.  

6. Conditional Deformations of Null Curves in   

Theorem 6.1. Let ( ) be a null curve in  and ( ) = 	 + 	 , ∈ ℝ, ≠ 0 be a conditional deformation 
of ( ) defined as	F( ) = ( (s) + c	, M ( ) + 	,M ( ) + ).Then the deformation F( ) be a null curve 
and, 

= 0 00 00 0 1 . 
Proof. Let ( ) be a null curve in  and ( ) be a conditional deformation of ( ) defined as ( )= ( ) + , since ( ) is a null curve so 〈 ′, ′	〉 = 0, ≠ 0 we get, ′(s) = M ( ), 〈 ′, ′	〉 = 〈 ′, ′〉 = 0. Then ( ) is a null curve with = = 1 and we get,  ( ) = ( ) = ( ) = ( ), ( ) = ′( ) = ( ) = ( ), 
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( ) = , where the torsion be =	−〈 ′, 〉 = . Then the Frenet apparatus of ( ) can be formed 

by the Frenet apparatus of ( ). 
Corollary 6.1. A null curve	 ( ) in  under the conditional deformation	 ( )= ( ) +  of ( ), ≠ 0 
has the first curvature identically zero if and only if ( ) be a part of a straight line. 

Proof. Assume that the conditional deformation ( )  of the null curve ( )  be F( ) =  ( (s) +c	,M ( ) + 	,M ( ) + ) where ≠ 0 such that dim ( ) = dim ( ) and from the Frenet equations 
with first curvature k = 0, then ( ) = 	 ( ) = 0 and this implies that ( ) is a straight line, where = ‖ ( )‖, ( ) = ( ). Conversely, let ( ) be a straight line then ( ) = ( ) = 0 and ( ) 
has the curvature  which is identically zero. 

Remark 6.1. If (s) be a light-like curve in E  with standard flat metric = − ̅	 + 	 + 	̅ , ( , ) >0, when the parameterization is pseudo arc so ( , ) = 1 with ( , ) = 0, ( , ) = 0 and ( , ) =0, and ( ) is unique light like vector such that ( , ) = 1 and it is orthogonal to  the pseudo torsion of (s) be = −〈 , 〉, then the Frenet equations of (s) are ′′′ = 0 00 −0 − 0 . 10. 
Where the curvature  can take only two values 0 when  is a straight null line or 1 in all other cases. 

Theorem 6.2. Let ( ) be a null curve in E 	 with standard flat metric = 	 + 	 −	 	 . Under the 
conditional deformation,  :  ( ) = ( ( ), ( ), ( )) →  ( ) = ( ̅( ), ( ), ̅( ))  = ( ( ), ( ), − ( ))  which rotation the 
coordinates  and  in x-z plane with rotation angle = , ∈ ℝ,  is odd integer. Then ( ) be a null 

curve with standard flat metric = − ̅	 + 	 + 	̅ .  

Proof. Let ( ) be a null curve in E 	 with standard flat metric = 	 + 	 −	 	  since the equation of 
which rotation coordinates  and  in x-z plane can be written as, 

 ̅ ̅ = cos sin−sin cos 	 , = . Under the conditional deformation ( ) which rotation coordinates  

and  with rotation angle = , and ∈ ℝ,  is odd integer then ̅ ̅ = 0 1−1 0  , = , or ̅ ̅ = 0 −11 0 	 , = ,  ( ) = ( ̅( ), ( ), ̅( )) = ( ), ( ), − ( )  also,  ( , ) = − ̅	 + 	 + 	̅ , 
 〈 , ′〉 = − ̅	 + 	 + 	̅  = 	 + 	 −	 	  = 〈 , ′〉 = 0. Then the conditional deformation ( ) 
be a null curve with standard flat metric = − ̅	 + 	 + 	̅ .  

Theorem 6.3. Let ( ) be a null curve in E 	 with the standard flat metric given by = − 	 + 	 + 	. 
Then the bi-normal vector of can be calculated by,  ( ) = ∆ , −	∆ , 	 	 , ∆ , 	 ∆ , 	 − 	 , ( 	 )	 	 , ∆ , ≠ 0, ≠ 0.  

Where ∆ , = ( 	  − 	 	), ∆ , = ( 	 − 	 	) and ∆ , = ( 	 − 	 	). 
Proof. Let ( ) = ( ( ), ( ), ( )) be a null curve in E 	 with tangent vector ( ) = ( ( ), ( ), ( )) and the normal vector ( ) = ( ) = ( ( ), ( ), ( )), to calculate the bi-normal vector of the 
curve ( ), let ( ) = ( , , ), since ( ) is unique light-like vector. Then, 

 〈 , 〉 = 0 and we get, − + + = 0. (11) 
Also since ( , ) = 1 we get,  − 	 + 	 + 	 = 1. (12) 
Since  be orthogonal to , then 〈 , 〉 = 	0 and we get, − 	 + 	 + 	 = 0. (13) 
By solving these equations as theorem1, we get the bi-normal vector be  
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( ) = ∆ , 	 	∆ , 	 + , ∆ , 	 ∆ , 	 + 	 	 , ( 	 )	 	 , ∆ , ≠ 0, ≠ 0. (14) 
Where ∆ , = ( 	 − 	 	), ∆ , = ( 	 − 	 	) and ∆ , = ( 	 − 	 	) and so,  =	 ∆ , 	 	∆ , 	 + , = 	 ∆ , 	 ∆ , 	 + 	 	  and =	 	 	(∆ , 	 	∆ , 	 	)	. 
Also  can be written in the form, = [	 ( , ) 	−	 	]2[	 ( , ) − ( , ) ]	 	 . (15) 
In equation (15), when the parameterization is pseudo-arc so ( , ) = 1, ( , ) = 0. Then, = (1 −	 )2 	 , ≠ 0. (16) 
Example 6.1. Let ( ) = (cosh( ) , , sinh( ))  be a null curve in E 	  with standard flat metric = 	 + 	 −	 	  and ( ) = (sinh( ), 	 , cosh( )	) be deformation of the null curve ( ) by 
rotation coordinates  and  with rotation angle = ,  is odd integer with standard flat metric =− ̅	 + 	 + 	̅ . If we calculate 1st and 2nd order derivatives (with respect to s) of ( ) and so ( ) = (cosh( ) , 1, 	sinh( )),  since 〈 , 〉 = 0  so ( )  is null a curve and ( ) = ( ) = (sinh( ) , 0, cosh( )), so 〈 , 〉 = 1, since ( ) is unique light like vector such that ( , ) = 1 and it is 
orthogonal to  by substituting in the equation (13).  Then ( ) = (cosh( ), − 1, sinh( )),  so 〈 , 〉 = 0, = (cosh( ) , 0, 	sinh( )), the pseudo torsion is = −〈 , 〉 = 	 ( , ) = 	 ,  is 
space like vector. Then ( ) is a null curve with curvature = 1 and the Frenet equations of ( ) are given 
by 

′′′ = 0 00 −0 − 0 = 0 1 0−2 0 −10 2 0
1 (cosh( ) , 1, 	sinh( ))(sinh( ) , 0, 	cosh( ))−2 (cosh( ) , −1, sinh( ))	 . 

Corollary 6.2. Under the conditional deformation which is defined by,  : ( ) = ( ( ), ( ), ( )) → ( ) = ( ), ( ), ( ) , the Frenet equations of ( ) are invariant. 

Proof. The proof is clear from theorem 6.3, the Frenet equations of ( ) calculates from equation (10). 
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