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Abstract 

The literature indicates catastrophic potential for electric vehicles around the year 2019. Amidst the predicted 
time, this research revisits the prequel analysis with state-of-the-art deterministic artificial intelligence 
methodologies to posit the potential for catastrophe in the upcoming year. The methodology has proven effective 
with motion mechanics, electrodynamics, and even financial analysis of sales date in the prequels, since the 
model commences with simple regression for mathematical model formulation asserting the certainty 
equivalence principle, followed by derivative modeling and eventually catastrophe analysis of the derivative 
models. The prequel analysis paradigms are retained in this sequel utilizing both monthly and cumulative sales 
data in simple least squares algorithms for predictive curve fitting to establish context and help correctly model 
the mathematical degree of the data. Extrapolation by forward time-propagation established predictions for 
models of various mathematical degrees (again merely for context). Next, catastrophe analysis (of the derivative 
form) revealed stable and unstable equilibrium points and then parametric variation was induced to evaluate the 
resulting behavior of the derivative models, highlighting the importance of the coefficient of the second order 
term (the acceleration or change of rate of sales as a forcing function). While the forcing function typically 
embodies both gasoline prices and vehicle charging proliferation, the relative stability of gas prices together with 
factors such as vehicle-to-grid elevate charging-station proliferation as the primary forcing function of 
slow-dynamics in catastrophe analysis. This brief manuscript revisits the prequel research to test the validity of 
those conclusions and with the benefit of the passage of time, reveal how well the mathematical modeling 
predicted real behavior. The main finding is the predicted potential catastrophe is less likely to occur and 
recommendations are made to insure catastrophe is averted. 

Keywords: electric vehicles, catastrophe theory, equilibrium point, jump theory, deterministic artificial 
intelligence, sustainable transportation, demand response, gas prices, charging stations 

1. Introduction 

1.1 Introduce the Problem 

Recent literature (Sands, 2017) revealed the distinct possibility of an unexpected catastrophic crash in sales of 
electric vehicles in 2019. 

1.1.1  Why is This Problem Important? 

How does the study relate to previous work in the area? Subsequent to that prequel research, the rapid rise of 
non-stochastic artificial intelligence methodologies (Baker, 2018), (Sands, InTech, 2019), (Lobo, 2018) 
stemming from combinations of physics-based controls (Sands, Lorenz, 2009), (Sands, 2012), (Sands, 2015) and 
mathematical system identification from data (Sands, Comp., 2017), (Sands, J.Space Exp., 2017), (Sands, Kenny, 
2017), (Sands, Phys J., 2017), (Sands, J.Space Exp., 2017), (Sands, Armani, 2018) together with adaptive 
systems methods (Nakatani, 2014), (Nakatani, 2016), (Sands, Aero, 2019), (Cooper, 2017), (Smeresky, 2018), 
(Sands, Algor., 2019), (Sands, Bollino, 2018) has been adopted and incorporated into new educational schemes 
driven by military operational imperatives (Kuklinski, et al., 2019), (Sands, Mihalik, 2016), (Bittick, et al., 2019), 
(Sands, “satellite”, 2009), (Sands, Intl. J. Electro., 2018) with accompanying educational imperatives (Mihalik, 
et al., 2017), (Camacho, et al., 2017). How does this manuscript differ from, and build on, the earlier report? 
These methods have been successfully applied to quite disparate disciplines piecemeal as the techniques have 
been developed, bestowing the ability for data-informed decision-making, e.g. should a military plan to invest 
heavily in electric vehicles with a realistic anticipation of a robust commercial industrial base. 
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1.1.2  What are the Primary and Secondary Hypotheses and Objectives of the Study, and What, if any, are the 
Links to Theory? 

In this manuscript, state-of-the-art deterministic artificial intelligent methodologies (Smeresky, et al., 2020) are 
applied to first utilize optimal system-identification (simple regression) to provide deterministic models.  By 
invoking the certainty-equivalence principle, those deterministic models are parameterized to establish 
decision-making and process control motivations by establishing the deterministic self-awareness statement. The 
math models are differentiated to yield differential models that are used in catastrophe analysis to predict a 
potential shock event in vehicle sales. Shock events inherent in some classes of differential equations embody 
rapid, unexpected dramatic changes in data, and they are also referred to as “jump discontinuities”. 

1.1.3  How do the Hypotheses and Research Design Relate to One Another? 

Utilizing such methods previously used on (non-electric) military systems increase the likelihood of adoption, 
since the methods are well known and trusted. 

1.1.4  What are the Theoretical and Practical Implications of the Study? 

The main aim of this work is to ascertain whether the potential catastrophe has been averted, and use this 
information to make recommendations for the future. Catastrophe is driven by a slow-moving dynamic driven by 
a forcing function, predominantly gasoline prices and also electric-vehicle charging proliferation which is 
amplified by vehicle to grid (V2G) technology. (Vehicle to grid, 2018) 

2. Materials and Methods 

Materials and methods normally comprised of three sections: definitions, data, and methods to include details on 
the new additional data since the 2015 data used in the prequel (Sands, 2017).  Here the definitions (Gohlke, 
2018) and data (Light Duty, 2018), (Monthly Plug-in, 2018), (Plug-in, 2018), Cobb, 2018) are placed in the 
appendix at the end of the manuscript; while a brief contextual introduction to the methods (taken from 
deterministic artificial intelligence) utilized to produce the results in section 3 are included immediately in 
section 2.2 with background materials on electric vehicles in section 2.1 

2.1 Materials (Literature Review) 

An interesting manuscript “The effect of perceived risk on the purchase intention of electric vehicles: an 
extension to the technology acceptance model” (Thilina, 2019) seeks to analyze significant market penetration 
for the sale of electric vehicles accompanied by the analysis (Mo, 2018) of life-cycle cost of ownership including 
congestion and environmental impacts (Tu, 2019), (Rajeev, et al., 2019), (Hao, 2017), (Philipsen, et al., 2019), 
(Lopez-Arboleda, et al., 2019), (Almeida, et al., 2019). Considerable emphasis have been placed on 
improvements in vehicle charging (Wolbertus, et al., 2019) amongst many other underlying technological areas 
(Zhao, et al., 2019) seeking to improve the value proposition to potential buyers (Jager, et al., 2019), (Zhang, L., 
et al., 2019), (Li, et al., 2019), (Minnerup, et al., 2019), (Muller, 2019) and also make recommendations in both 
technology (Zha, et al., 2019), (Li, et al., 2019), (Zha, et al., 2019), (Li, et al., 2019), (Jiyan, et al., 2019), (Pier, 
et al., 2019), (Agaton, et al., 2019), (Fujita, T., et al., 2019), (Watanabe, et al., 2019), (Kusaka, et al., 2019), 
(Zhang, W., et al., 2019), (Fujita, H., et al., 2019), (Mayer, et al., 2019), (Ricciardi, et al., 2019), (Chen, et al., 
2019), (Yu, Z., et al., 2019), (Senda, et al., 2019), (Marquez-Fernandez, et al., 2019), (Wu, D., et al., 2019), 
(Wang, H., et al., 2019), (Obayashi, et al., 2019), (Gong, et al., 2019), (Vermeulen, et al., 2019), (Jia, J., et al., 
2019), (Li, Q., et al., 2019) and policy incentives (Zhang, X., et al., 2019), (Ortar, et al., 2019), (Li, W., et al, 
2019) culminating in charging strategies to influence the obvious trade-off between gasoline prices and charging 
availability (Zhao, Y., et al, 2019), (Wolbertus, et al., 2019), (Zethmayr, et al., 2019), (Bansal, et al., 2019), (Yuan, 
et al., 2019). This manuscript presumes all of these contending aspects are self-evident in vehicle sales data as a 
reflection of buyers’ perceptions. Therefore sales data remain the focus for analysis here as we seek to predict the 
future electric vehicle market (Lee, et al., 2011), (Electric Vehicle, 2019), (EV Sales, 2019), (Researchers, 2019), 
(Electric Vehicles Markets, 2019), (Electric Vehicle (EV) Transmission, 2019), (Electric Vehicle Market Size, 
2019), (Electric Vehicle Market, 2019), (Global Electric, 2019), (Global EV, 2019), (Electric Vehicle Market by, 
2019), (Electric Vehicle Market Forecast Report, 2019), (Electric Vehicle Market by Type, 2019), (Driving into 
2025, 2019), (Electric Vehicle Market Outlook, 2019), (Electric Vehicle Sales Forecast and the Charging, 2019), 
(For Widespread Adoption, 2019), (Global Electric Vehicle Market (BEV, PHEV), 2019) . 

2.2 Methods 

Using the new data articulated and explained in sections 2.1-2.3 along with, analysis methods taken from 
deterministic artificial intelligence are applied to the exact dataset used for the prequel, where the data has 
merely been appended with the new data bestowing results in the following section of this manuscript 



mas.ccsenet.org Modern Applied Science Vol. 14, No. 3; 2020 

3 
 

comparable to the prequel. Definition of equations for the system that are optimal commence the effort such that 
sales data is reflected by the modeling. A brief divergence is taken (simple time-extrapolation) to establish the 
paradigm of the dynamics and grant a remedial expectation of the results. Next, the impact of slow-moving 
dynamics on the fast-moving (dominant) dynamic is investigated using differential forms of the optimal system 
equations. Such dual dynamic (slow and fast-moving) is the hallmark of Catastrophe theory, where often 
confounding nonlinear affects are seen. Decisions are often made using systems assumed to be linear, while 
otherwise unstable linear system models (those not settling at zero steady-state) can be slowly changing such that 
they can rapidly become stable (i.e. catastrophically settle at zero monthly sales). Equilibrium points are revealed 
by equating the differential forms (the principle re-parameterization) of the system equations to zero. Stability or 
instability is determined at each equilibrium. Slow modification of the differential equations illuminates “jump 
discontinuities” associated with potential catastrophe. Sales undesirably go to zero at a stable equilibrium point 
with a jump discontinuity. 

The modification of system equations is driven by a forcing function predominantly comprised of gasoline prices 
and charging station proliferation, while gas prices are presumably not the dominant factor due to relative 
stability; and thus, EV charging station adoption amplified by V2G enhancements predominantly establish the 
forcing function. 

3. Results 

The following results follow the general process-flow of deterministic artificial intelligence: 1) perform optimal 
system identification, and then 2) reparametrize the optimal system dynamics to bestow predictive decision 
making. In this research, an intermediate step is inserted to establish the paradigm of the system dynamics and 
provide some measure of anticipation of expected results. 

3.1 System Identification: Optimally Fitting Data to Assumed Models 

Figure 1a shows the least squares analysis based on monthly and total sales of vehicles. The significant fact that 
actual cumulative sales data does not require a third-order (or higher) mathematical model to optimally fit the 
data, implying the existance of catastrophe of cumulative sales data (precititous, unexpected plummeting) is 
unlikely. The variance proportion of the dependent variable predictable by the independent variable is the 
coefficient of determination R in equation (1), while the correlation coefficient r, indicates the strength between 
variables and relationships, and may be calculated enroute to the coefficient of determination in equation (2). 
The basic equation of least squares is purposefully ommitted to preclude the accidental implication that system 
identificaion must be done with least squares, while other algorithms (e.g. extended least squares, posterior 
residuals, exponential forgetting, etc.) would also suffice (Sands, Computation 2017), (Sands, J.Space Exp. 
2017). 

= , (1)= ∑ ̅
, (2)= 219.7 , (3)= 0.4348 + 189.34 , (4)= 0.0658 − 7.5938 + 409.7 , (5)= 0.0019 − 0.2661 + 9.7575 + 145.14 , (6)= −3 × 10 + 0.0074 − 0.6855 + 22.547 + 19.788 , (7)

Notice the proportion is not increased by increasing the order of the mathematical model, and thus a third-order 
system (and accompanying risk of catastrophe) is unnecessary. These facts fit intuition, since the cumulative 
total has built over years, and it is difficult to fathom a non-theoretical occurrence that would cause the 
cumulative total to go to zero (implying rapid depletion of the cumulative total via removal of hundreds of 
thousands of cars from the streets).  This initial analysis is provided as an intermediate check of theory.  Next, 
we commence the catastrophe analysis by switching to analysis of monthly sales data derivatives (as opposed to 
cumulative sales data) where equations (3)-(7) are the optimal system models established in the generic 
procedure of deterministic artificial intelligence, whose subsequent step is to parameterize to establish 
decision-making and process control motivations. The re-parameterization utilizes differential forms, but first we 
take a short informative digression to use extrapolation via forward time progression to bestow an initial instinct 
and establish an expected-result from the subsequent catastrophe analysis using differential forms. 

It is also noteworthy to compare the prequel research results which concluded a potential catastrophe in 2019.  
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users. Adoption by military units should be pursued, since such would establish a (non-fickle) client base, as 
such units tend to react relatively slowly to negative forcing functions. 

4.1 Future Research 

Periodic re-evaluation with updates sales data should be considered, especially in instances when driving 
functions change, especially gasoline prices).  
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A.2.3. Hybrid electric vehicle sales taken directly from (Gohlke, 2019) and (Light Duty, 2019) 

During May 2018, 31,918 hybrid electric vehicles (23,041 cars and 8,877 light trucks) were sold in the United 
States, down 5.4% over the sales in May 2017. Toyota accounted for 53.0% share of total hybrid electric vehicles 
sales in this month. Prius (Prius C, Prius V and Prius Liftback in total) accounted for 18.0% (5,748 vehicles) of 
total hybrid electric vehicle sales, down 29.2% from May 2017. The May 2018 hybrid electric vehicle sales share 
of light-duty vehicle (<= 10,000 lbs. GVW) sales was 2.01%, while May 2018 hybrid electric vehicle cars captured 
4.59% share of total car sales.  

A.2.4. Hydrogen fuel cell electric vehicle sales 

There were 102 Toyota Mirai, 30 Honda Clarity and 19 Hyundai Tucson sold in the United States in May 2018. 
Data and verbiage is taken directly from (Gohlke, 2019) and (Light Duty, 2019), where verbiage is modified for 
clarity and easier reading including definition of some terms left undefined in the cited reference 

A.3.4. Light duty Vehicle Sales 

Total 1,590,729 light duty vehicles (502,240 cars and 1,088,489 light trucks) were sold in the United States during 
May 2018, up 4.7% from the sales in May 2017. Light trucks continued to outsell cars in this month, 68.4% to 
31.6%. Data and verbiage is taken directly from (Gohlke, 2019) and (Light Duty, 2019), where verbiage is 
modified for clarity and easier reading including definition of some terms left undefined in the cited reference 

 

 

Copyrights 

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 
license (http://creativecommons.org/licenses/by/3.0/). 

 

 


