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Abstract 

In this paper, we introduce a special spacelike Smarandache curves  reference to the Bishop frame of a regular 
spacelike curve  in Minkowski 3-space ℝ . From that point, we investigate the Frenet invariants of a special 
case in ℝ  and we obtain some properties of these curves when the base curve  is contained in a plane. Lastly, 
we shall give two examples to illustrate these curves. 
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1. Introduction 

When considering the theory of curves in the Euclidean spaces ℝ  and Minkowski spaces ℝ , we discovered 
that the Smarandache curves are this regular curve whose position vector is composed of Frenet frame vectors on 
other regular curves(M. M. Wageeda, E. M. Solouma, & M. Bary., 2019)(C. Ashbacher., 1997). 

When considering in the reference (C. Ashbacher., 1997) (M. A. Soliman, W. M. Mahmoud, E. M. Solouma, &  
M. Bary., 2019) (H. Iseri, 2002)(L. Mao.,2006) we find the Smarandache geometries are a generalization of 
classical geometries, and the Smarandache geometries can be either partially Euclidean and partially 
Non-Euclidean. Then recently, special Smarandache curves in the Euclidean and Minkowski spaces are studied 
by some authors (O. Bektas, & S. Yuce., 2013) (M. Cetin, Y. Tuncer, & M. K. Karacan., 2014)(E. M. Solouma, 
2017a) (E. M. Solouma, 2017b) (K. Taskopru, & M. Tosun, 2014). 

In this work, we mention spacelike special curves (Smarandache curves) according to Bishop frame of a 
spacelike curve  in the three-dimension Minkowski space ℝ . In Section 2, we give the basic conceptions of 
three-dimension Minkowski 3-space ℝ  and give of Bishop frame that will be used during this work. In Section 
3, we investigate the Bishop special spacelike 	 , 	 	, 		 	 	 	 −  in terms of the 
curvature functions ( )	 		 ( ) of the base curve in  ℝ . On top of that, we obtain some properties on 
these special curves when the curve	  is contained in a plane. Finally, in Section 4, we give two examples to 
clarify these curves. 

2. Preliminaries 

The Minkowski 3-space ℝ  is three-dimensional Euclidean space provided with the Lorentzian inner product, =	− 	 + 	 + 	  

where ( 	, 	, ) is a rectangular coordinate system of ℝ . An arbitrary vector 	 ∈ ℝ  can have one of 
three characters; it can be spacelike if ( 	, ) > 0		 		 = 0 , timelike if ( 	, ) < 0		 and null if ( 	, )0			 		 ≠ 0. Similarly, an arbitrary curve = 	 ( ) can be locally spacelike, timelike or null if all 
of its velocity vectors = 	 ( ) are spacelike, timelike or null, respectively (R. Lopez., 2014).(B. O'Neill., 
1983). 

Let {T, N, B} denote that Frenet frame, and suggest that {T, N, B} moving along the spacelike special curve  
with arc-length parameter . The Frenet trihedron consists of the following: (1. the tangent vector {T}, 2. the 
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principal normal vector {N}, 3. the binormal vector {B}). Then this frame (Frenet frame) has the following 
properties: (B. O'Neill., 1983). ′( )′( )′( ) 	=  

0 ( ) 0− ( ) 0 ( )0 ( ) 0 ( )( )( ) 		                                   (1) 

Where = ±1	 , ( ( ), ( )) = 1 , ( ( ), ( )) = 	 , 	( ( ), ( )) = 	−	 	  & ( ( ), ( )) =( ( ), ( )) = 	 ( ( ), ( )) = 0. If = 1, then ( ) is a spacelike curve, and the ( ) consists of the 
following: (spacelike principal normal { } and timelike binormal { }. Also, if =	−1, then ( ) is a 
spacelike curve with timelike principal normal { } and spacelike binormal  { }. 
Let = 	 ( ) be a regular curve in ℝ . If the tangent vector field of this curve forms a constant angle with a 
constant vector field , then this curve is called a general helix or an inclined curve (M. P. Do Carmo, 1976). 

The Lorentzian sphere of radius 	 > 	0  and with a center in the origin in the space ℝ  is defined by, = {	 	 ∈ ℝ ∶ 	 ( , ) = 	 }. 
The parallel transport (or Bishop) frame we can say is an alternative approach to defining a moving frame that is 
well defined even when the curve has vanished the second derivative(L. R. Bishop, 1975) (B. Bukcu, & M. K. 
Karacan, 1975). 

Suppose that we consider the parallel transport (or Bishop) frame { ( ), ( ), ( )} of the special spacelike 
curve ( ) such that ( ) the spacelike unit tangent vector, ( ) is spacelike unit normal vector, and ( ) the timelike unit binormal vector. The Bishop frame { ( ), ( ), ( )} is expressed as (B. Bukcu, & 
M. K. Karacan, 1975) (B. Bukcu, & M. K. Karacan, 2010). ′( )′( )′( ) 	=  

0 ( ) −	 ( )− ( ) 0 0− ( ) 0 0 ( )( )( ) 		                                (2) 

Where  ( ( ), ( )) = 1  , ( ), ( ) = 	  ,  	 ( ), ( ) = 	−	 	  & ( ), ( ) =( ), ( ) = 	 ( ), ( ) = 0. Here, we shall call ( ) and ( ) as Bishop curvatures. The 
relation matrix may be expressed as, ( )( )( ) 	=  

1 0 00 cosh ( ) sinh ( )0 sinh ( ) cosh ( ) ( )( )( ) 		                                   (3) 

Where ( ) = arctanh ;	 ≠ 0,( ) = − 	 ( )		 ,( ) = 	 | ( ) −	 	( )|	.                                       (4) 

And ( ) = 	 ( ) cosh ( ),( ) = 	 ( ) sinh ( ) . 
Let = 	 ( )  be a regular non-null curve parametrized by arc-length in three-dimension Minkowski space ℝ  with its Bishop frame { ( ), ( ), ( )}. Then { , , 	&	 } −  of  are defined, 
respectively as follows: φ( ) = φ( ∗) = √ 	(T( ) + ( )), φ( ) = φ( ∗) = √ 	(T( ) + ( )), φ( ) = φ( ∗) = √ 	( ( ) + ( )), φ( ) = φ( ∗) = √ 	(T( ) + ( ) + ( )). 
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3. Main Results 

In this section, we introduce the special spacelike curves reference to the parallel transport frame in 
three-dimension Minkowski space ℝ . by the same token, we obtain the natural curvature functions of these 
curves and studying some properties on it when the base curve = 	 ( ) especially is contained in a plane. 

3.1 Spacelike TB1-Special Curves 

Definition 3.1. Let = 	 ( )  be a regular spacelike curve in ℝ  reference to moving Bishop frame { ( ), ( ), ( )}. Then the special spacelike 	 − 	 (Smarandache curve) are defined by, φ( ) = φ( ∗) = √ 	(T( ) + ( )).                                 (5) 

Theorem 3.1. Let = 	 ( ) be a spacelike curve in ℝ  with the moving Bishop frame { ( ), ( ), ( )}. 
If the base curve  is contained in a plane, then the spacelike 	 −  (Smarandache curve) is a circular 
helix with 	( ) 	≠ (1 + 	 ) 	( )	 and its natural curvature functions satisfying the following equations; ( ∗) = 	 √ 	 ( ) 	 ( ( ) ) ( )	[( 	 ) 	 ] , ( ∗) = 	 √ 	 ( ( 	 ) 	 	( )( )[ ( ) ] [( ) 	 ] 	 	( 	 	 ) .                          (6) 

Proof. Let φ = φ( ∗) be a spacelike 	 − ℎ 	  with base curve = 	 ( ). From Eq. (5) 
and using Eq. (2), we get ′( ∗) = 		 ∗ 	 ∗	 = 	 √ 	(−	 	 ( ) + ( ) − 	 ( )).                       (7) 

Hence ( ∗) = 	 ( ) 	 	(−	 	 ( ) + ( ) − 	 ( )).                        (8) 

Where 

	 ∗	 = 	 ( ) 	√ .                                            (9) 

Differentiating Eq. (8) with respect to , we have ′( ∗) = 	 √2[(1 + ) − 	 ] 	( ( ) + ( ) + 	 ( )). 
Where = ( − )[ − ( + 1) − ] + − 	,= ( − )( − 1) − ( + − 	),= ( − ) + 	 	( − 	) + (1 + )	 . 
Then, the curvature and the principal normal vector field of  are respectively, ( ∗) = 	√2	 + ( − )[(1 + ) − 	 ] 	, 
and ( ∗) = 	 ( ) + ( ) + 	 ( )+ ( − ) . 
Also, the binormal vector of  is 

 ( ∗) = 	 {−[ 	 +	 	 ] ( ) + [ 	 	 −	 	 ] ( ) − [ +	 	 ] ( )}(1 + ) − 	 	 + ( − ) 	. 
 

Now, from Eq. (7) we have, 
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′′	( ∗) = 	 1√2	{ [ −	 −	 ] ( ) + [ − 		 	 ]	 ( ) + [ 	 −	 ] ( )}, 
and ′′′	( ∗) = 	 1√2	{ ( ) + 	 ( ) + ( )}, 
where = ( − ) + 	( + 2	 − 3	 −	 ),= 	 + 	 	 	( −	 − 3	 	),																																					= 	−	 	 	( −	 − 3	 	) −	 	.																														  
Then the torsion of  is given by formulae 

= √2 	( 	 +	 	 ) − 	 	 	( 	 +	 	 ) +	 	 	( −	 − 	 	 )+	 	[ 	 	+ 	 	 	( −	 	−	 )	][ 	 	( −	 ) −	 ] + 	 	[ 	(2	 −	 +	 ) −	 	 ]−	 	[ − 	 	 	( −	 −	 +	 	 ] 		 . 
So, if 	 ( ) is contained in a plane, then  and  are constants which implies that the spacelike 	 −ℎ 	   is a circular helix and Eq. (6) holds which complete the proof. 

3.2 Spacelike 	 − 	  

Definition 3.2. Let = ( )  be a regular spacelike curve in ℝ  reference to moving Bishop frame { ( ), ( ), ( )}. Then the special spacelike 	 −Smarandache curves are defined by, φ( ) = φ( ∗) = √ 	(T( ) + ( )).                                 (10) 

Theorem 3.2. Let = 	 ( ) be a spacelike curve in ℝ  with the moving Bishop frame { ( ), ( ), ( )}. 
If the base curve  is contained in a plane, then the spacelike 	 − ℎ 	   is a circular helix 
with 	( ) + (1 − 	 ) 	( ) 	≠ 0	 and its curvature functions are satisfying the following equations; ( ∗) = 	 ( )		( ) ( 	 ) 	( ) , ( ∗) = 	 √ 		 	( 	 )	( )	[ 	( ) ( 	 ) 	( )] .                             (11) 

Proof. Let φ = φ( ∗) be a spacelike 	 − ℎ 	  curves according to the base curve	 =	 ( ). From Eq. (10), we get ′( ∗) = 		 ∗ 	 ∗	 = 	 √ 	(−	 	 ( ) + ( ) − 	 ( )).                       (12) 

Hence ( ∗) = 	 	( ) ( 	 ) 	( ) 	(−	 	 ( ) + ( ) − 	 ( )).                    (13) 

Where 

	 ∗	 = 	 	( ) ( 	 ) 	( )√ .                                          (14) 

Then ′( ∗) = 	 √2[ 	( ) + (1 − 	 ) 	( )] 	( ( ) + ( ) + 	 ( )). 
Where  = ( − − )[ + (1 − ) ] + [ + (1 − ) ]	,= ( − 	 	 	 )( 	 + (1 − )	 ) − [ 	 + (1 − ) ],= ( 	 − )( 	 + (1 − )	 ) +	 [ 	 + (1 − ) ].  

So, 
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( ∗) = 	 √2	 + ( − )	[ 	( ) + (1 − 	 ) 	( )] 	, 
and ( ∗) = 	 ( ) + ( ) + 	 ( )+ ( − ) . 
Also, ( ∗) = −[ 	 +	 	 ] ( ) + ( − 1)	 	 ( ) − [ 	 +	 	 	 ] ( )	( ) + (1 − 	 ) 	( )	 + ( − )	 	. 
Now, from Eq. (12) we have ′′	( ∗) = 	 1√2	{ [ −	 −	 ] ( ) + [ − 		 	 	 ]	 ( ) + [ 	 −	 ] ( )}, 
and ′′′	( ∗) = 	 1√2	{ ( ) + 	 ( ) + ( )}, 
where = 	[3 + 	( − )−2	 −	 ],= 	 − 	 	 	( +	 − + ( 	 ) 	),= 		 	 	( +	 − + ( 	 ) 	) −	 	.  

Then, 

= √2 	( 	 − )	( 	 	 + 	 	 ) + 	 	 ( − )		( − 	 	 )+ ( 	 + 	 )		( − − 	)	[	 	( 	 −	 ) + ( − 	 	 )] + 	 	 	[	 − (1 + ) ]−	 	[ ( − 	 	 ) +	 	( −	 −	 )] 		 . 
Now, if the base curve ( ) is contained in a plane, then the spacelike 	 − ℎ 	  is a 
circular helix and Eqs. (11) holds which complete the proof. 

3.3 Spacelike 	 		 − 	  

Definition 3.3. Let = ( )  be a regular spacelike curve in ℝ  reference to moving Bishop frame { ( ), ( ), ( )}. Then the special spacelike 	 −Smarandache curves are defined by, φ( ) = φ( ∗) = √ 	( ( ) + ( )).                          (15) 

Theorem 3.3. Let = 	 ( ) be a spacelike curve in ℝ  with the moving Bishop frame { ( ), ( ), ( )}. 
If the base curve  is contained in a plane, then the spacelike 	 − ℎ 	  is also contained 
in a plane with 	 ( ) + ( ) ≠ 0	 and its curvature satisfying the following equation; ( ∗) = 	 	 	(	 )	

.                                    (16) 

Proof. Let φ = φ( ∗) be a spacelike 	 	 − ℎ 	  according to the base curve	 = 	 ( ). 
From Eq. (15), we get ( ∗) = 		 ∗ 	 ∗	 = 	−	 	√ 	( + ) ( ).                            (17) 

Hence ( ∗) = 	−	 	 ( ).                                     (18) 

Where 	 ∗	 = 	 √ .                                         (19) 

Then ′( ∗) = 	 √2+ 	(−	 	 	 ( ) + 	 	 	 ( )). 
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So, ( ∗) = 	 	 	(	 )	
. 

and ( ∗) = 	−	 	 	 ( ) + 	 	 	 ( )( − ) . 
Also, B (σ∗) = 1ε(κ − κ )	(κ 	B (σ) +	κ 	B (σ)). 
From Eq. (17) we have, ( ∗) = 	−	√2	{( + ) ( ) + ( + ) ( ) − ( + ) ( )}. 
And ( ∗) = 	 1√2	{ ( ) + 	 ( ) + ( )}. 
Where = ( + )( −	 ) − ( + ),= −	 	[ 	( + ) + 2	 ( + )],= 	 	[ 	( + ) + 2	 ( + )].  

Then, = √2		 	( + 	 )( − )( + ) 		 . 
So, if the base curve ( ) is contained in a plane, then the spacelike 	 − ℎ 	  is also 
contained in a plane and the Eq. (16) holds, this completes the proof. 

3.4 Spacelike 		 	 − 	  

Definition 3.4. Let = ( )  be a regular spacelike curve in ℝ  reference to moving Bishop frame { ( ), ( ), ( )}. Then the special spacelike 	 	 −Smarandache curves are defined by, φ( ) = φ( ∗) = √ 	(T( ) + ( ) + ( )).                               (20) 

Theorem 3.4. Let = 	 ( ) be a spacelike curve in ℝ  with the moving Bishop frame { ( ), ( ), ( )}. 
If the base curve  is contained in a plane, then the spacelike 	 	 − ℎ 	   is also 
contained in a plane with ( ), ( ) ≠ 0 and its natural curvature satisfying the following equation; ( ∗) = 	 √ ( )	 ( ) ( ) 	 	 	( ) ( ) 	 	 .                               (21) 

Proof. Let φ = φ( ∗)  be a spacelike 	 	 − ℎ 	  curves according to the base 
curve	 = 	 ( ). From Eq. (20), we get ′( ∗) = 		 ∗ 	 ∗	 = 	 √ 	(−	 	( + )	 ( ) + ( ) − 	 ( )).                (22) 

Hence ( ∗) = 	 	 	( )	 ( ) ( ) 	 ( )( ) ( ) 	 	 	.                            (23) 

Where 

	 ∗	 = 	 ( ) ( ) 	 	√ .                               (24) 

Then, from Eq. (23) we get ′( ∗) = 	√3	( ( ) + ( ) + 	 ( ))[(1 + ) + (1 − ) + 2	 	 ] 	. 
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Where  = 	[ − ( + + )][(1 + ) + (1 − ) + 2	 	 ]+2 	( + )	[(1 + ) + (1 − ) + ( ) ]	,= [(1 + ) + (1 − ) + 2	 	 ][ − 	 	 ( + )]−2	 	[(1 + ) + (1 − ) + ( ) ],= [(1 + ) + (1 − ) + 2	 	 ][ − 	 	 ( + )]+	2	 	[(1 + ) + (1 − ) + ( ) ].
 

Then ( ∗) = 	 √3	 + ( − )	[(1 + ) + (1 − ) + 2	 	 ] 	, 
and ( ∗) = 	 ( ) + ( ) + 	 ( )+ ( − ) . 
Also, the binormal vector of  is ( ∗) = ( ) + ( ) + 	 ( )(1 + ) + (1 − ) + 2	 	 		 + ( − )		. 
Where = − 	 − 	 		,= 	 	 	( + ) − 	 	,= 	− 	 − 	 	( + ). 
Now, from Eq. (21) we have ( ∗) = 	 1√3	{ [ − ( + +	 )] ( ) + [ − 		 	 	( +	 )]	 ( ) + [ 	 	( +	 ) + ]	 ( )}. 
And ′′′	( ∗) = 	 1√3	{ ( ) + 	 ( ) + ( )}, 
where = ( +	 )( − ) + 	 	[3( + ) − −	 ],= 	 − 	 ( +	 )	[ + ( −	 )]	,= ( +	 )	[ + ( −	 )] −	 	.  

Then, 

= √3
[ − 	 ( +	 )][ + 	 ( +	 )]+[ 	 ( +	 ) − ′	]	[ − 	 ( +	 )]−	 	[ − ( + +	 )][ + ][ − ]+	 	[	( + )[(1 − ) + (1 + ) − ] + ( ) ]−	 	[	( + )[(1 + ) + (1 − ) + ] + ( + )] 		

. 
Now, if the base curve ( ) is contained in a plane, then the spacelike − ℎ 	  is also 
contained in a plane and the Eq. (21) holds. This completes the proof. 

4. Examples 

In this section, we construct two examples of the spacelike Smarandache curves in ℝ  with the moving Bishop 
frame { ( ), ( ), ( )} of the base curve ( ). The first example corresponds with the case = 1. In the 
second example, we assume = −	1. 

Example 4.1. Case = 1. Let ( ) = (3 sinh 	, 3 cosh 	, 	 	) be a spacelike curve parametrized by 

arc-length with timelike binormal vector (see Figure 1). Then 
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( ) = 34 cosh 4 	, 34 sinh 4 	, 54	 .	 
This vector is spacelike and future-directed, we have =	 	≠ 0. Hence ( ) = (sinh 4 	, cosh 4 	, 0	)	, ( ) = 54 cosh 4 	, 54 sinh 4 	, 34	 . 
The torsion is =	 ≠ 0  and ( ) = 	−	 	 = 	 	

 . From Eq. (4), we get =	 cosh 	
 , =	 sinh 	

. Also from Eq. (2), we get ( ) = 	−	 ( )	 ( )	 	, ( ) = 	−	 ( )	 ( )	 	 , 

the we have ( ) = −18 sinh 9	16 −	98 sinh 16 ,−18 cosh 9	16 +	98 cosh 16 ,−34 sinh 5	16 ,		 
 ( ) = 	 18 cosh 9	16 +	98 cosh 16 , 18 sinh 9	16 −	98 sinh 16 , 34 cosh 5	16 . 
 

Figure 1. The spacelike 	 − ℎ 	  with base curve ( ) on . 

Figure 2. The spacelike 	 − ℎ 	  with base curve ( ) on . 
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Figure 3. The spacelike 	 − ℎ 	  with base curve ( ) on . 

 

 

 

Figure 4. The spacelike 	 	 − ℎ 	  with base curve ( ) on . 

Example 4.2. Case = −1.  Let now Let ( ) = √ (cosh( ) , sinh( )	 , )  be a spacelike curve 

parametrized by arc-length with timelike principal normal vector (see Figure 5). Then it is easy to show that ( ) = √ (sinh( ) , cosh( ) , 1), = √ ≠ 0, = √ ≠ 0	 	 ( ) = √ 	 = 	 √ .		From Eq. (4), we get =	√ cosh √  , =	√ 	sinh √ . 

 From Eq. (2), we get ( ) = 	 ( )	 ( )	 	, ( ) = 	 ( )	 ( )	 	. Then we have, ( ) = √24 √2 + 1 cosh √2 + 1√2 −	 √24 √2 + 1 cosh √2 + 1√2 , √24 √2 + 1 sinh √2 + 1√2+	 √24(√2 + 1) sinh (√2 + 1)	√2 , √22 sinh 	√2 , 
( ) = − √24 √2 + 1 sinh √2 + 1√2 +	 √24 √2 + 1 sinh √2 + 1√2 ,− √24 √2 + 1 cosh √2 + 1√2−	 √24(√2 + 1) cosh (√2 + 1)	√2 ,−√22 cosh 	√2 , 
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Figure 5. The spacelike curve = ( ) on . 

 

Figure 6. The spacelike 	 − ℎ 	  with base curve ( ) on . 

Figure 7. The spacelike 	 − ℎ 	  with base curve ( ) on . 
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Figure 8. The spacelike 	 − ℎ 	  with base curve ( ) on . 

Figure 9. The spacelike 	 	 − ℎ 	  with base curve ( ) on . 
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