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Abstract 
Contemporary climate studies are quite numerous, and the topic in general has become politically charged, 
where opposing political interests have generated juxtaposed studies with contradictory results despite near 
unanimous acceptance of the fact the planet is warning. One emotionally charged issue is whether the increase is 
man-made or naturally occurring. This study avoids political pitfalls and controversial postulations, instead 
seeking to add to the literature a mathematical catastrophe analysis based on derivative modelling and 
extrapolation to deduce whether an unexpected (sudden) rise or fall in dynamic global atmospheric temperatures 
(e.g. an ice age) is predicted by the dynamic atmospheric temperature data. The study concludes that 
extrapolations of a derivative model encounter an unstable equilibrium point at the end of this century leading to 
a prediction of the potential for a sudden, dramatic increase in global average temperatures. The author takes 
care not to make controversial predictions, instead merely follows the mathematical facts where they lead: The 
potential for a catastrophe if the unnamed causes of global temperature increases remain unaddressed. 
Keywords: optimal modeling, derivative modeling, catastrophe analysis, deterministic artificial intelligence, 
global warming, climate change, heat wave, climate models 

1. Introduction 
1.1 Introduce the Problem 

Univariate time series techniques presented in (Romilly, Peter, 2005) to model the properties of a global mean 
temperature dataset in order to develop a parsimonious forecasting model allows managerial decision-making 
over the short-term horizon. The estimation results confirmed the findings of a number of previous studies, 
namely that global mean temperatures increased significantly throughout the 20th century. 

1.2 Explore Importance of the Problem 

The definitive study (Vermeer, M., & Rahmstorf, S., 2009) was published by the National Academy of Sciences 
revealing a simple relationship linking global sea-level variations on time scales of decades to centuries to global 
mean temperature. This relationship was tested on synthetic data from a global climate model for the past 
millennium and the next century (1880–2000), and the results affirmed prior studies.  

1.3 Describe Relevant Scholarship 

The causes of the rise of global average temperature in (Ring, M., Lindner, D., Cross, E., & Schlesinger, M., 
2009) was illustrated by using two independent methods to analyze the temperature measurements: Singular 
Spectrum Analysis and Climate Model Simulation. The concurrence of the results of the two methods, each 
using 13 additional years of temperature measurements from 1998 through 2010, shows humanity (not nature) 
has increased the Earth’s global temperature since the 19th century. According to the study, humanity is also 
responsible for the most recent period of warming from 1976 to 2010. Internal climate variability is primarily 
responsible for the early 20th century warming from 1904 to 1944 and the subsequent cooling from 1944 to 1976. 
The impacts of global warming and climate change via an increase in average global temperatures were studied 
in (Singh, B., & Onkar, S., 2012), postulating natural events and human activities are main contributors to such 
increases in average global temperatures, for example rising emissions of carbon dioxide from vehicles, factories 
and power stations, emissions of carbon dioxide due to our use of fossil energy in general together leading to an 
estimated temperature increase by 2 to 6o Celsius by the year 2100, They conclude the rise in planetary average 
temperatures are primarily caused by increases in “greenhouse” gases such as Carbon Dioxide (CO2), Nitrous 



mas.ccsenet.org Modern Applied Science Vol. 14, No. 2; 2020 

2 
 

oxide (NOX), Sulphur dioxide (SO2), Hydrogen etc.  

1.4 State Hypotheses and Their Correspondence to Research Design 

Following the definitive study by the National Academy of Science affirming the rise in global average 
temperatures and subsequent studies illustrating impacts, man-made causes, and correlating the temperature 
increase to specific chemical constituents, this manuscript investigates the potential for a sudden, precipitous 
catastrophic temperature rise by invoking system modeling from deterministic artificial intelligence as well as 
mathematical catastrophe analysis of derivative models. Catastrophe theory assumes a slow dynamic acts on the 
dominant fast dynamic indicated by the data. The slow dynamic can shift the curves of system models slowly 
until the derivative models cross zero, resulting in creation of a system equilibrium point. If the equilibrium point 
is stable, the temperature rise will suddenly cease, while an unstable equilibrium point indicates the potential for 
a precipitous, unexpected spike in temperatures akin a stock market crash. Catastrophe theory requires 
mathematical models, so the general method of deterministic artificial intelligence provides these dynamic 
atmospheric temperature models by first calculating optimal system models, then invoking the certainty 
equivalence principle to utilize the optimal models for atmospheric dynamics for predication of future conditions. 
Initial prediction by simple extrapolation sets the expectation for subsequent differentiation of dynamic 
atmospheric temperature models for catastrophe analysis. This application of the general method of deterministic 
artificial intelligence has proven effective for several classes systems (to be described in the next paragraph), and 
this manuscript uses the same techniques for predication of dynamic atmospheric temperature. 

2. Method 
2.1 Self-Awareness 

Nonlinear adaptive identification and control techniques developed for space systems (Sands, T., Lorenz, R. 
2009) (Sands, T., 2012) (Nakatani, S., 2014) (Sands, T., 2015) (Nakatani, S., 2016) (Sands, T., 2017) (Nakatani, 
S., 2018) (Smeresky, B., & Rizzo, A., 2018) (Baker, K., Cooper, M., Heidlauf, P., & Sands, T., 2018) (Heidlauf, 
P., & Cooper, M., 2017) permitted innovative, new space missions (Sands, T., 2009) (Sands, T., 2018) (Sands, T., 
Lu, D., Chu, J., & Cheng, B., 2018) by utilizing the governing physics (motion mechanics) to establish the 
deterministic self-awareness equations (math models to be adapted during operations). These techniques were 
initially applied merely to system identification for control, they quickly proved their efficacy applied to a 
myriad of component systems, both mechanical (Sands, T., Lu, D., Chu, J., & Cheng, B., 2018) (Sands, T., Kim, 
J., & Agrawal, B., 2006) (Sands, T., 2007). (Kim, J., Sands, T., & Agrawal, B., 2007). (Sands, T., Kim, J., & 
Agrawal, B., 2009) (Sands, T., Kim, J., & Agrawal, B., 2012) (Sands, T., Kim, J., & Agrawal, B., 2016) 
(Agrawal, B., Kim, J., & Sands, T., 2017) (Sands, T., Kim, J., & Agrawal, B., 2018) and electrical (Cooper, M., 
Heidlauf, P., & Sands, T., 2017), culminating in a generalized methodology (Sands, T., 2017) of deterministic 
artificial intelligence. Applying the general methodology (referred to as deterministic artificial intelligence) to a 
disparate application, the key distinguishing feature is the choice of self-awareness equations. In the case of 
electrical systems (Cooper, M., Heidlauf, P., & Sands, T., 2017), the governing physics (electro-mechanics) 
established the math models.  

Following successful application of the general methodology to a wide range of applications (Sands, T., & 
Kenny, T., 2017) (Sands, T., 2017) from piezo-electrics to sensors (Sands, T., 2018). and even digital 
manufacturing (Sands, T., & Armani, C., 2018), the method most recently proved effective on time-series data 
(Sands, T., 2017) (Sands, T., 2018) for the sale of electric vehicles. Ref (Sands, T., & Armani, C., 2018) 
compares more than one dozen variations of establishing self-awareness statements. Several of the methods 
utilize the underlying materials mechanics, while several other methods used standard 2-norm optimal curve 
fitting. Application to electrical vehicles sales in ref (Sands, T., 2017) (Sands, T., 2018) used standard curve 
fitting to establish the mathematical models, but then differentiated those models to permit catastrophe analysis 
to investigate the possibility of a sudden, dramatic change in the sales data caused by a slow-moving dynamic 
that drives the optimal mathematical models to an equilibrium point. In that case, a stable equilibrium point 
(resulting in sales dramatically falling to rest at zero) was the potential disaster.  

Building on that success, this manuscript seeks to investigate the potential for a sudden catastrophic rise in 
dynamic atmospheric global average temperatures by first articulating system identification techniques for 
modeling to provide intuition, followed by derivative system analysis seeking future unstable equilibrium points. 
In this instance, unstable equilibrium points would indicate a sudden, dramatic rise (as opposed to a fall as seen 
with stable equilibrium points).  
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Figure 2. Sample evaluation of equilibrium points taken from (Sands, T., 2017) as self-awareness equation 
parameters are varied by an un-articulated slow-moving dynamic 

 

Notice in Figure 2, normal application of catastrophe analysis imposes an known, slowly changing dynamic 
acting on the self-awareness parameters. The study in (Sands, T., 2017) determined that the b parameter was 
most sensitive to changes, and those changes resulted in potential creation of stable and unstable equilibrium 
points. In this research, it shall be seen that a slow-moving dynamic is not necessary. Upon time-derivative of the 
self-awareness equations, the possibility of equilibrium point creation will be immediately apparent. 

3. Results 
In the Results section, summarize the collected data and the analysis performed on those data relevant to the 
discourse that is to follow. Report the data in sufficient detail to justify your conclusions. Mention all relevant 
results, including those that run counter to expectation; be sure to include small effect sizes (or statistically 
nonsignificant findings) when theory predicts large (or statistically significant) ones. Do not hide uncomfortable 
results by omission. Do not include individual scores or raw data with the exception, for example, of single-case 
designs or illustrative examples. In the spirit of data sharing (encouraged by APA and other professional 
associations and sometimes required by funding agencies), raw data, including study characteristics and 
indivldual effect sizes used in a meta -analysis, can be made available on supplemental online archives. 

Following the methods described in section 2, section 3.1 begins with enumeration of the optimal system models 
for equations of increasing order and coefficient of determination for current data followed by extrapolation of 
the data to predict behavior of the models throughout this century. Next, in section 3.2 optimal derivative models 
are developed to permit mathematical catastrophe analysis, where equilibrium points of the derivative models are 
sought and evaluated as stable or non-stable.  

3.1 Optimal System Equations 

Well known 2-norm optimization procedures (Sands, T., 2017) (Sands, T., 2018) are used to fit the recorded data 
to equations of increasing order. Linear (1st order) equations reveal the general trend of the data, while 
increasingly sophisticated equations account for higher order dynamics.  

3.1.1 Years 1880-2018 

Equations 1-6 display the optimal models for equations of increasing mathematical order, while the respective 
coefficients of determination are shown in table 1. The recorded data together with the model-predicted data are 
displayed together in figure 1, where the coefficient of determination, indicating how well observed outcomes 
are replicated by the model, based on the proportion of total variation of outcomes explained by the model, as 
listed in table 1. At this point, we see that no notable accuracy improvement results from increasing model order 
from 5 to 6. Thus, nominal time-series analysis of the data would indicate the 5th order model is sufficient, and 
no precipitous temperature increase seems likely. Both assertions will prove incorrect section 3.2 will use 
catastrophe analysis of derivative models, illustrating the justification for merely asserting that time-series 
analysis in this manuscript merely provides a context for subsequent analysis, as opposed to being the basis of 
conclusions about the data. In the equations in this manuscript, T is the average monthly global temperature in a 
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R., 2018) (Nakatani, S., & Timothy Sands, T., 2018) (Sands, T., & Mihalik, R., 2016) (Sands, T., Mihalik, R., & 
Camacho, H., 2018). The APC was funded by corresponding author. 
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