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Abstract

Contemporary climate studies are quite numerous, and the topic in general has become politically charged,
where opposing political interests have generated juxtaposed studies with contradictory results despite near
unanimous acceptance of the fact the planet is warning. One emotionally charged issue is whether the increase is
man-made or naturally occurring. This study avoids political pitfalls and controversial postulations, instead
seeking to add to the literature a mathematical catastrophe analysis based on derivative modelling and
extrapolation to deduce whether an unexpected (sudden) rise or fall in dynamic global atmospheric temperatures
(e.g. an ice age) is predicted by the dynamic atmospheric temperature data. The study concludes that
extrapolations of a derivative model encounter an unstable equilibrium point at the end of this century leading to
a prediction of the potential for a sudden, dramatic increase in global average temperatures. The author takes
care not to make controversial predictions, instead merely follows the mathematical facts where they lead: The
potential for a catastrophe if the unnamed causes of global temperature increases remain unaddressed.
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global warming, climate change, heat wave, climate models

1. Introduction
1.1 Introduce the Problem

Univariate time series techniques presented in (Romilly, Peter, 2005) to model the properties of a global mean
temperature dataset in order to develop a parsimonious forecasting model allows managerial decision-making
over the short-term horizon. The estimation results confirmed the findings of a number of previous studies,
namely that global mean temperatures increased significantly throughout the 20th century.

1.2 Explore Importance of the Problem

The definitive study (Vermeer, M., & Rahmstorf, S., 2009) was published by the National Academy of Sciences
revealing a simple relationship linking global sea-level variations on time scales of decades to centuries to global
mean temperature. This relationship was tested on synthetic data from a global climate model for the past
millennium and the next century (1880-2000), and the results affirmed prior studies.

1.3 Describe Relevant Scholarship

The causes of the rise of global average temperature in (Ring, M., Lindner, D., Cross, E., & Schlesinger, M.,
2009) was illustrated by using two independent methods to analyze the temperature measurements: Singular
Spectrum Analysis and Climate Model Simulation. The concurrence of the results of the two methods, each
using 13 additional years of temperature measurements from 1998 through 2010, shows humanity (not nature)
has increased the Earth’s global temperature since the 19th century. According to the study, humanity is also
responsible for the most recent period of warming from 1976 to 2010. Internal climate variability is primarily
responsible for the early 20th century warming from 1904 to 1944 and the subsequent cooling from 1944 to 1976.
The impacts of global warming and climate change via an increase in average global temperatures were studied
in (Singh, B., & Onkar, S., 2012), postulating natural events and human activities are main contributors to such
increases in average global temperatures, for example rising emissions of carbon dioxide from vehicles, factories
and power stations, emissions of carbon dioxide due to our use of fossil energy in general together leading to an
estimated temperature increase by 2 to 6° Celsius by the year 2100, They conclude the rise in planetary average
temperatures are primarily caused by increases in “greenhouse” gases such as Carbon Dioxide (CO2), Nitrous
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oxide (NOX), Sulphur dioxide (SO2), Hydrogen etc.
1.4 State Hypotheses and Their Correspondence to Research Design

Following the definitive study by the National Academy of Science affirming the rise in global average
temperatures and subsequent studies illustrating impacts, man-made causes, and correlating the temperature
increase to specific chemical constituents, this manuscript investigates the potential for a sudden, precipitous
catastrophic temperature rise by invoking system modeling from deterministic artificial intelligence as well as
mathematical catastrophe analysis of derivative models. Catastrophe theory assumes a slow dynamic acts on the
dominant fast dynamic indicated by the data. The slow dynamic can shift the curves of system models slowly
until the derivative models cross zero, resulting in creation of a system equilibrium point. If the equilibrium point
is stable, the temperature rise will suddenly cease, while an unstable equilibrium point indicates the potential for
a precipitous, unexpected spike in temperatures akin a stock market crash. Catastrophe theory requires
mathematical models, so the general method of deterministic artificial intelligence provides these dynamic
atmospheric temperature models by first calculating optimal system models, then invoking the certainty
equivalence principle to utilize the optimal models for atmospheric dynamics for predication of future conditions.
Initial prediction by simple extrapolation sets the expectation for subsequent differentiation of dynamic
atmospheric temperature models for catastrophe analysis. This application of the general method of deterministic
artificial intelligence has proven effective for several classes systems (to be described in the next paragraph), and
this manuscript uses the same techniques for predication of dynamic atmospheric temperature.

2. Method
2.1 Self-Awareness

Nonlinear adaptive identification and control techniques developed for space systems (Sands, T., Lorenz, R.
2009) (Sands, T., 2012) (Nakatani, S., 2014) (Sands, T., 2015) (Nakatani, S., 2016) (Sands, T., 2017) (Nakatani,
S., 2018) (Smeresky, B., & Rizzo, A., 2018) (Baker, K., Cooper, M., Heidlauf, P., & Sands, T., 2018) (Heidlauf,
P., & Cooper, M., 2017) permitted innovative, new space missions (Sands, T., 2009) (Sands, T., 2018) (Sands, T.,
Lu, D., Chu, J., & Cheng, B., 2018) by utilizing the governing physics (motion mechanics) to establish the
deterministic self-awareness equations (math models to be adapted during operations). These techniques were
initially applied merely to system identification for control, they quickly proved their efficacy applied to a
myriad of component systems, both mechanical (Sands, T., Lu, D., Chu, J., & Cheng, B., 2018) (Sands, T., Kim,
J., & Agrawal, B., 2006) (Sands, T., 2007). (Kim, J., Sands, T., & Agrawal, B., 2007). (Sands, T., Kim, J., &
Agrawal, B., 2009) (Sands, T., Kim, J., & Agrawal, B., 2012) (Sands, T., Kim, J., & Agrawal, B., 2016)
(Agrawal, B., Kim, J., & Sands, T., 2017) (Sands, T., Kim, J., & Agrawal, B., 2018) and electrical (Cooper, M.,
Heidlauf, P., & Sands, T., 2017), culminating in a generalized methodology (Sands, T., 2017) of deterministic
artificial intelligence. Applying the general methodology (referred to as deterministic artificial intelligence) to a
disparate application, the key distinguishing feature is the choice of self-awareness equations. In the case of
electrical systems (Cooper, M., Heidlauf, P., & Sands, T., 2017), the governing physics (electro-mechanics)
established the math models.

Following successful application of the general methodology to a wide range of applications (Sands, T., &
Kenny, T., 2017) (Sands, T., 2017) from piezo-electrics to sensors (Sands, T., 2018). and even digital
manufacturing (Sands, T., & Armani, C., 2018), the method most recently proved effective on time-series data
(Sands, T., 2017) (Sands, T., 2018) for the sale of electric vehicles. Ref (Sands, T., & Armani, C., 2018)
compares more than one dozen variations of establishing self-awareness statements. Several of the methods
utilize the underlying materials mechanics, while several other methods used standard 2-norm optimal curve
fitting. Application to electrical vehicles sales in ref (Sands, T., 2017) (Sands, T., 2018) used standard curve
fitting to establish the mathematical models, but then differentiated those models to permit catastrophe analysis
to investigate the possibility of a sudden, dramatic change in the sales data caused by a slow-moving dynamic
that drives the optimal mathematical models to an equilibrium point. In that case, a stable equilibrium point
(resulting in sales dramatically falling to rest at zero) was the potential disaster.

Building on that success, this manuscript seeks to investigate the potential for a sudden catastrophic rise in
dynamic atmospheric global average temperatures by first articulating system identification techniques for
modeling to provide intuition, followed by derivative system analysis seeking future unstable equilibrium points.
In this instance, unstable equilibrium points would indicate a sudden, dramatic rise (as opposed to a fall as seen
with stable equilibrium points).
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Figure 1. Deterministic artificial intelligence processes
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2.2 Control

The motivation for finding the right self-awareness equations lies in the use of those equations for process
control and decision-making. Establish control equations by invoking the certainty equivalence principle. Since
that term has different definitions in disparate scientific fields, a definition in context of optimal estimation and
optimal control follows.

Certainty equivalence principle: the optimal control is exactly the same as it would be if all unknowns were
known and took values equal to their linear least square estimates (equivalently, their conditional means) based
upon observations up to time t.

2.3 Disturb

After making decision and implementing process controls, natural processes disturb the process away from the
idealized situation. These disturbances are not restricted to slow-moving dynamics associated with catastrophe
analysis.

2.4 Observe

Process observation is key to driving towards the desired solution of the system equations. Especially in the cited
references, the control is formulated explicitly using the self-awareness equations, so the action taken to correct
the decision making process flow from observations of unexpected results followed by adaption of the
self-awareness equations. The certainty equivalence principle applies to the observation as well as the
correction/adaption steps of the deterministic artificial intelligence process.

2.5 Correct/Adapt Self-Awareness

Observations are used (by any chosen mathematical method) to correct the self-awareness equations, and
afterwards the new, updated self-awareness equations are used for process control actions as before.

2.6 Deterministic Artificial Intelligence Applied to Global Temperature Data

Using average global temperature data (GISS Surface Temperature Analysis,2018) taken from the National
Aeronautics and Space Administration, optimal system modeling produces several models of increasing order
and increasing confidence. This methodology matches the methods of establishing self-awareness equations for
both digital manufacturing and for time-series electrical vehicle sales.

2.7 Catastrophe Analysis

Intuition comes from time-propagation of the optimal system models via a simple mathematical approach. With
this slight intuition (lacking any slow-moving dynamic), time-differentiation of the optimal system models
reveals the rate of increase, but also the existence of equilibrium points is sought. Catastrophe analysis uses these
derivative forms and imposes a slow-changing dynamic on the equation, while monitoring the effects on
potential equilibrium points. Evaluation of equilibrium points as stable or unstable indicate cessation in the rise
of average global temperatures or alternatively the potential for a sudden catastrophic temperature increase,
respectively. Least squares in section 3.1 reveals optimal self-awareness equations, and these models are
differentiated in section 3.2 to produce the mathematical models used in catastrophe analysis.
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Figure 2. Sample evaluation of equilibrium points taken from (Sands, T., 2017) as self-awareness equation
parameters are varied by an un-articulated slow-moving dynamic

Notice in Figure 2, normal application of catastrophe analysis imposes an known, slowly changing dynamic
acting on the self-awareness parameters. The study in (Sands, T., 2017) determined that the b parameter was
most sensitive to changes, and those changes resulted in potential creation of stable and unstable equilibrium
points. In this research, it shall be seen that a slow-moving dynamic is not necessary. Upon time-derivative of the
self-awareness equations, the possibility of equilibrium point creation will be immediately apparent.

3. Results

In the Results section, summarize the collected data and the analysis performed on those data relevant to the
discourse that is to follow. Report the data in sufficient detail to justify your conclusions. Mention all relevant
results, including those that run counter to expectation; be sure to include small effect sizes (or statistically
nonsignificant findings) when theory predicts large (or statistically significant) ones. Do not hide uncomfortable
results by omission. Do not include individual scores or raw data with the exception, for example, of single-case
designs or illustrative examples. In the spirit of data sharing (encouraged by APA and other professional
associations and sometimes required by funding agencies), raw data, including study characteristics and
indivldual effect sizes used in a meta -analysis, can be made available on supplemental online archives.

Following the methods described in section 2, section 3.1 begins with enumeration of the optimal system models
for equations of increasing order and coefficient of determination for current data followed by extrapolation of
the data to predict behavior of the models throughout this century. Next, in section 3.2 optimal derivative models
are developed to permit mathematical catastrophe analysis, where equilibrium points of the derivative models are
sought and evaluated as stable or non-stable.

3.1 Optimal System Equations

Well known 2-norm optimization procedures (Sands, T., 2017) (Sands, T., 2018) are used to fit the recorded data
to equations of increasing order. Linear (Ist order) equations reveal the general trend of the data, while
increasingly sophisticated equations account for higher order dynamics.

3.1.1 Years 1880-2018

Equations 1-6 display the optimal models for equations of increasing mathematical order, while the respective
coefficients of determination are shown in table 1. The recorded data together with the model-predicted data are
displayed together in figure 1, where the coefficient of determination, indicating how well observed outcomes
are replicated by the model, based on the proportion of total variation of outcomes explained by the model, as
listed in table 1. At this point, we see that no notable accuracy improvement results from increasing model order
from 5 to 6. Thus, nominal time-series analysis of the data would indicate the 5th order model is sufficient, and
no precipitous temperature increase seems likely. Both assertions will prove incorrect section 3.2 will use
catastrophe analysis of derivative models, illustrating the justification for merely asserting that time-series
analysis in this manuscript merely provides a context for subsequent analysis, as opposed to being the basis of
conclusions about the data. In the equations in this manuscript, T is the average monthly global temperature in a
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given year, Y.

T = 0.0094Y — 18.206 1)

T =9 x 1075Y2 — 0.3224Y + 304.94 Q)

T =1x107°Y® — 0.0067Y2 + 12.809Y — 8222 )

T =1x10"8Y*—7 x 1075Y3 4 0.2149Y2 — 274.98Y + 131926 )

T = —6x 1071075 4+ 6 X 1076Y* — 0.0244Y3 + 47.533Y2 — 46367Y + 2 x 107 Q)

T=2x%x10"12y%—-2x1078Y> + 0.0001Y* — 0.2771Y3 — 416.87Y% — 334168Y + 1 x 108 ©®)

Table 1. Coefficient of determination, R* for optimal models

1st order 2nd order 3rd order 4t order 5th order 6th order

0.7992 0.8843 0.9037 0.9054 0.9143 0.9143

residual sum of squares

Note. R>=1—

total sum of squares

3.1.2 Years 1880-2100

Simple extrapolation of equations (1)-(6) to the end of the century provides some initial insight to set our
expectations for more sophisticated catastrophe analysis, and the results are displayed in figure 2. The “raw data”
is extrapolated simply by using the 1* order slope as the rate of change to predict the next months expected raw
data. Notice the 4™ order system model seems to indicate a precipitous drop in temperatures at the turn of the
century, while the 5™ order system model predicts a continued steady climb. The 6™ order system equations
indicate a precipitous rise in temperatures at the turn of the century. Later, in section 3.2 attention will be drawn on
the results of catastrophe analysis on the optimal derivative models of 3", 4", 5™ and 6™ order.
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Figure 1. Optimal system models of increasing order for the years 1880-2018
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Figure 2. Extrapolated optimal system equations for models of increasing order for years 1880-2100

3.2 Optimal Derivative Models

Time-differentiation (with respect to years) of equations (1)-(6) produce equations (7)-(12). These equations
represent the time-rate-of-change of the temperature data. An important notion of catastrophe analysis is the seek
equilibrium points of the derivative models, and subsequently evaluate the stability or instability of the equilibrium
points. Catastrophe analysis assumes an unknown slow-dynamic acting on the dominant fast-dynamic embodied in
equations (1)-(6). This slow-dynamic can cause a system that was climbing to (for example) reach a stable
equilibrium point unexpectedly. The stable equilibrium point would cause a catastrophic and unexpected fall in the
data, despite a steady climb leading up to the point before the equilibrium point is encountered. The opposite is also
possible, where a steadily falling system could encounter an unstable equilibrium point that causes a sudden
(surprising), catastrophic increase.

T 0.0094 )
dt
% =15 x 1075Y — 0.3224 ®)
% =3x1076Y2 — 0.0134Y + 12.809 &)
% =4x1078Y3 —21x 1075Y2 + 0.4298Y — 274.98 (10)
% =—30x107107* + 24 x 1076Y3 + 142.599Y2 — 0.0732Y — 46367 (11)
% =12 x10712Y5 — 10 x 1078Y* + 0.0004Y3 — 0.8313Y2 — 833.74Y — 334168 (12)

3.2.1 Years 1880-2018

The results of equations (9)-(12) are plotted in figure 3 for the highest four orders of equations. Catastrophe
analysis is normally reserved for models of third-order form (at least) whose derivatives are therefore second order
at least (and therefore we commence with equation 9). None of the derivative models in figure 3 cross zero, so no
equilibrium points have been seen in the years 1880-2018. Notice that even a dramatic slow-dynamic imposed on
the system would not likely produce equilibrium points, since shifting the curves slightly higher/lower (or even
dramatically higher/lower) would not result in zero-crossings.
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Figure 3. Optimal derivative models: equations (10) and (11) are read using the second y-axes on the right

3.2.2 Years 1880-2100

Next, derivative models are extrapolated to the end of the century as displayed in figure 4a. Notice that even a
dramatic slow-dynamic imposed on the systems in figure 4a would not likely produce equilibrium points, since
shifting the curves slightly higher/lower (or even dramatically higher/lower) would not result in zero-crossings. It
is interesting to note the fourth order system model whose third order derivative form reveals a steadily increasing
temperature throughout the entire century, but does not cross zero, and thus does not encounter an equilibrium
point (either stable or unstable). Thus a realistic prediction would be steady temperature rise, but no catastrophe.
On the other hand, figure 4b displays a zero-crossing (even without imposition of a slow-moving dynamic), and
therefore an equilibrium point are encountered. If the points is unstable, a catastrophic, unexpectedly sharp
increase in temperature would be indicated as a potential at the end of the century. Figure 5 illustrates that indeed
the equilibrium point is unstable.

-1.75 80 2000 700000000
0
70 600000000
-2000
60 JE—
o 500000000
-4000
0
6000 400000000
40
-8000 300000000
30
-10000
200000000
20
-12000 —Equation (12)
——Equation (9) 100000000
21 10 -14000 — Equation (11)
* o eEquation (10)
-2.15 0 -16000 0
1880 1930 1980 2030 2080 1880 1930 1980 2030 2080
(a) Third and fourth order models (b) Fifth and sixth order models

Figure 4. Extrapolated optimal derivative models: equations (10) and (11)

are read using the second y-axes on the right
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Figure 5. Unstable equilibrium point in the year 2096

4. Discussion

The results of this research further reinforce many previous studies but go further to reveal a potential
catastrophe just prior to the turn of the century (assuming the causes listed in the references remain, e.g.
hydrocarbon fuel use, accumulation of carbon dioxide, and others). All models investigated illustrate consistently
increasing temperatures, while the derivative model with the highest confidence indicates an unstable
equilibrium point that could lead to a jump discontinuity, where a seemingly unexplained sudden spike in
temperature was revealed by catastrophe analysis of the average global temperature data since the year 1880.

Future research should include efforts to correlate causes of temperature increase to the variable coefficients in
the models, leading to the ability take the most effective corrective actions to avoid the catastrophe. This is a key
second step in deterministic artificial intelligence methods, especially when the dynamics atmospheric models
are derived using empirical data (invoking the certainly equivalence principle); instead of using dynamic models
from physics-based equations, where certainty equivalence is unnecessary. Furthermore, periodic repetition of
the catastrophe analysis should be performed with newly evolving data to monitor the slowly changing dynamic
associated with catastrophe theory.

4.1 Future Research

The formative research does not analyze estimation errors of the polynomial coefficients, instead merely accepts
very high correlation coefficients (exceeding 0.9) as indications of very high correlation (yet not causal).
Interesting future research also includes investigation of the efficacy of penalized splines replacing polynomial
forms. While this research has its basis in deterministic (non-stochastic) artificial intelligence methods, it
remains of interest to compare these results to a stastistical study of the errors and uncertainty to aid the reader
ascertain reliability of conclusions indicated here.
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