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Abstract 
In current local area networks, multimode fibers (MMFs), mainly graded index (GI) MMFs, are the main types 
of fibers used for data communications. Because of their high bandwidth, they are considered the main method 
of transmission that allows to offer multiservice broadband services using optical multiplexing techniques. 

The MGDM (ModeGroup Division Multiplexing) is a Multiplexing technique, which aims to improve the 
performance of the multimode optical fiber by spatially multiplexing the data streams to be transmitted. In this 
work, we study optical MIMO (multi-input multi-output) transmission systems on an MMF optical fiber, 
specifically the adaptation of the architecture of MIMO transmission systems. In this context, we have studied 
the mode group multiplexing technique (MDGM), to evaluate the transmission capacity. In fact, the latter 
depends on the injection conditions and the state of the optical fiber. 

Keywords: Optical MIMO, multimode fiber O-MGDM and transmission capacity 

1. Introduction  
Multimode fiber (MMF), is a very interesting method of transmission due to its low cost compared to single 
mode fiber (SMF), in indoor broadband networks (Koonen, 2006). 

The main objectives are the optimization of these networks for the transport of a particular set of services (voice 
telephony, Internet, etc.) to the end user and the integration of new broadband services. Because of its broad 
bandwidth, MMF is the only medium capable of offering a multi-service broadband in office and indoor 
networks, using multiplexing techniques. To simultaneously transport different types of services (having 
different bandwidths, specific signal formats, various requirements in terms of quality of service (QoS)), such 
multiplexing technique must respect a high efficiency/cost ratio. 

As part of improving the bandwidth of optical fiber MMF, several methods have been applied to optics . These 
methods include Wavelength Division Multiplexing (WDM) (Gu et al., 2006), optical Frequency Division 
Multiplexing (O-FDM) (Nishio and Numai, 2013), the space division multiplexing (SDM) (Winzer et al., 
2014)(Mizuno and Miyamoto, 2017), the optical Time division multiplexing O-TDM (Chi et al., 2014) and the 
mode group diversity multiplexing (MGDM) technique (Tsekrekos, 2008)(Chen et al., 2011). 

In the following we will focus on the mode group diversity multiplexing (MGDM) technique, which is a 
developed version of a wireless transmission chain known as the BLAST (Basic Local Alignment Search Tool) 
(Kuchta et al., 2004). 

The MGDM multiplexing technique is based on the spatial detection and launching of subgroups to create a 
number of independent communication channels on a single MMF fiber, which increases the transmission 
capacity (Baklouti and Attia, 2013). 

In principle, the MGDM technique is similar to the MIMO (multiple input - multiple output) system in radio 
communications. 
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C = Blogଶ[det ቀI୩ + ୗ୒ୖ୑ HH∗ቁ]	 	 	 	 	 	 	 (3)	
Where, (*) is the conjugate transpose, M is the number of modes of the MMF fiber and B is the bandwidth of the 
fiber.  

3. Excitation Condition in the MGDM System 
For an MGDM system, the incident field at the input side of the optical fiber is considered a Gaussian 
characterized by three parameters that determine the state of excitation of MMF, these parameters are (Raddatz 
et al., 1998) : 

Radial offset (F) 

Spot size (w) 

angular offset (θ) 

These parameters affect the capacity and transmission quality in the fiber by MGDM. In the following we study 
the choice of these parameters. 

3.1 The Choice of Radial Offset (F) and Spot Size (w) 

The distribution of the intensity of the luminous flux at the output of the fiber depends on the number of modes 
excited at the entrance of the fiber. 

So the relation between radial offset F and spot size w is expressed as follows (Calzavara et al., 1984.): M =	ቀ୵బ୵ ቁଶ + {(ూశ౭)మ౭బమ 					ୱ୧	୊ழ௪
రూ౓౭బమ												ୱ୧	୊வ௪       (4) 

And the choice of the radial offset is related to the optimization of the injection conditions in order to minimize 
the interferences between the channels 

3.2 The Choice of Angular Offset  

It is possible to reduce the crosstalk between the channels by introducing the injection of the luminous flux with 
an angular offset compatible with the launching of helical rays. For a helical radius, there exists a unique angle 
(θ) as a result for each radial offset (F), the relation between θ and F is given by (Calzavara et al., 1984.): 

θ = arsin(୊.୬బ√ଶ∆ୟ.୬ )          (5)  

Where,” a” is the diameter of the optical fiber, n is the refractive index. 

4. Simulation of the Capacity of the MGDM System4.1 Transmission Capacity  

Figure 4 shows the effect of transmission and reception conditions on the change of the capacity of the system. 
As shown in the figure, the capacity of the (2 × 2) system is significantly reduced compared to (3 × 3) channels, 
(reduced by22 bits/s/Hz at 17 bits/sec/Hz for SNR = 30 dB). The transmission conditions of the MGDM 
channels depend on the excitation conditions F, w and θ. 



mas.ccsenet

 

4.2 Simula

In this par
d = 62.5μm
optical sig

Figure 4 sh

4.3 Simula

The follow
MGDM sy

For this we

After simu

t.org 

ation with Opti

rt we will reali
m and attenuat

gnals into radio

hows a diagram

ation Results 

wing results ser
ystem. 

e used three le

ulation we pres

Figu

isystem Softwa

ze an optical t
tion of 0.25dB

o signals. 

m of the optica

Figure

rve to study th

engths L1 = 10

sent in receptio

Modern

ure 4. The capa

are 

transmission ch
B / Km, a laser

al transmission

e 4. System tran

he effect of mu

00m, L2 = 400m

on the shape o

n Applied Scienc

37 

acity of the MG

hain composed
r that will fix t

n chain. 

nsmission cha

ultimode optica

m and L3 = 4K

f the obtained 

ce

GDM system 

d of a multimo
the wavelength

in (2 × 2) MG

al fiber length 

Km. 

eye-diagram:

 

ode optical fib
hs, a photodiod

DM 

on the perform

Vol. 14, No. 1;

 

er of core diam
de to transform

mance of the (2

2020 

meter 
m the 

 

2 × 2) 



mas.ccsenet

 

t.org 

Figure 5. E

Figure 6. Ey

Modern

Eye-diagram fo

ye-diagram fo

n Applied Scienc

38 

or an optical fib

r an optical fib

ce

ber of length L

ber of length L

L1 = 100m 

 

L2 = 400m. 

Vol. 14, No. 1;

 

2020 



mas.ccsenet.org Modern Applied Science Vol. 14, No. 1; 2020 

39 
 

 

Figure 7. Eye-diagram for an optical fiber of length L3 = 4Km 

4.4 Discussion of Results 

We simulated the transmission system (2 * 2) MGDM by setting the injection parameters (offset, spot size and 
angular offset), and by changing the length of the optical fiber. 

We have drawn the eye diagram for a length L = 100m and we found a good opening (Figure 5), for the length 
L2 = 400m, we have a fairly open eye (Figure 6), then for the length L3 = 4Km we found a bad opening (Figure 
7). 
5. Conclusion 
In this paper, we have studied and analyzed the performance of the MGDM system, by studying the optimization 
of the injection, detection and length parameters of the MMF fiber using the Optisystem software in order to 
simulate the transmission capacity of the MGDM system O-MIMO via Matlab. 

In our future research, we will try to experimentally realize our (3 × 3) MGDM (2 × 2) MGDM system. 
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