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Abstract 
Java is a volcanic island arc formed by the northwards subduction of the Eurasian and Australian Plates. Due to 
this active subduction, Java has been frequently shocked by earthquakes, which might induce tsunami events. 
However, there are hardly any ancient geological records of tsunami events in the area. This study aims to 
determine the presence and to identify sedimentary characters of tsunami deposit in Tegal Buleud, South 
Sukabumi, West Java. In the study area, there were 4 tsunami layers which were found as thin intercalation 
within the claystone layer of the Bentang Formation. Those paleotsunami deposits characterized by the 
occurrence of irregular/disturbed structure such as siltstone rip up, clay clasts, and flame structure occur in 
normal graded bedding sandstone layer. The grain-size distributions show bimodal and multimodal patterns, with 
mixing of marine microfossils from inner and middle neritic. The planktonic foraminiferal assemblage indicates 
that the age of the sediment comparable to N19 (equivalent to Late Miocene - Early Pliocene, at about 5.33 – 3.6 
Ma), suggested that these paleotsunami layers were deposited due to the Mio-Pliocene tectonic activity. All the 
paleotsunami deposits found in Study area are the first and oldest tsunami deposit recorded in Java even in 
Indonesia. With the discovery of the previously unexplored Late Miocene to Pliocene tsunami deposits found in 
the study area, the result of this study can be used as a reference for the identification of the Tertiary tsunami 
deposits present in other parts of Indonesia. 

Keywords: pleotsunami, late miocene to pliocene, Tegal Buleud, west Java, Indonesia 

1. Introduction 
The Indonesian Archipelago is located in a very active tectonic zone, at the boundary of three large plates of the 
world and nine other small plates that collide each other and form complex meeting paths of plates (Bird, 2003). 
The tectonic structure of the western part of Indonesia, or known as the Sunda Arc including Java Island, is 
formed by the collision between the moving northward Indo-Australian plate and the relatively idle Eurasian 
plate (Hamilton, 1979 and Hall, 1998). Active interactions between plates placed Indonesia as a region that is 
very vulnerable to earthquakes (Milsom et al., 1992). Sources of the earthquakes in Java that has been clearly 
identified are the active subduction zone at the south of the island (Figure 1). Epicenters of some major 
earthquakes were located under the ocean, therefore these earthquakes had a potential to induce tsunami.  

West Java is one of the regions that exemplify high tectonic activity, including earthquakes. Java tectonics is 
dominated by subduction to the north of the Australian Plate under the Eurasian Plate with an approximate 
movement of 6 cm/year with near normal direction to the trough, 100-200 km below the island of Java. In the 
south of Java, the seismic is known as Java Megathrust (Figure 1). Tectonic, volcanic and sedimentary activities 
that have taken place since the Late Cretaceous produced a series of lithological formations in West Java. The 
sedimentary rocks found in West Java, particularly of the southern part are summarized in the comparison of 
stratigraphic column some previous researchers (Figure 2). The outcrop of the shallow marine Bentang 
Formation in particular, is well-exposed in Tegal Buleud (Figure 1).  



mas.ccsenet

 

Figure 1. (
Irsyam et 

Figure 2

 

The litholo
crystal tuf
breccia, co
predomina
area. This 
There are 
the Bentan
deposited 
(1975) the
(1984) sug

t.org 

(Above) Map 
al., 2010), and

. Regional Stra

ogy of the low
ff, and pumice
onglomerate, 
ate, pumice br
formation is d
differences in 
ng Formation 
above the Bes

e Bentang For
ggested that th

showing the su
d as indicated b

atigraphy of So

wer sequence 
ous tuff with i
lapilli tuff an
eccia, and bla

deposited in th
interpretation
as the Bentan

ser Bed. The ag
rmation depos
he Bentang Fo

Modern

ubduction and 
by rectangle (b

in 

outhern West J
and Ma

of the Bentan
intercalation o

nd tuff breccia
ck sandstone o

he transition to 
s of the positio

ng Series, divid
ge of this serie

sited from the 
ormation is de

n Applied Scienc

81 

 

model of inter
below) is a ma
West Java. 

 

 

Java, redrawn 
artodjojo (1984

g Formation c
of globigerina 
a. The upper 
occurs in thin 
shallow marin

on of the Bent
ded into the U
es is estimated
Late Miocene

eposited durin

ce

rplate megathr
ap showing loc

after van Bem
4) 

consists of poo
claystone, silt
sequence con
layers especia

ne environmen
tang formation

Upper and Low
d at the Lower 
e to Pliocene.

ng the Upper L

V

 

rusts in Indone
cations of the p

 

mmelen (1949)

orly consolida
tstone, marly c
nsists of siltst
ally at souther
nt during the M
n. Van Bemme
wer Bentang S

Miocene. Acc
 On the other
Late Miocene 

Vol. 13, No. 12;

esia (modified 
paleotsunami s

, Sukamto (19

ated tuff sands
claystone, ande
tone and clays
rn part of the s
Miocene - Plio
elen (1949) ref
Series, conform
cording to Suk
r hand, Marto

and interfing

2019 

after 
tudy 

75) 

stone, 
esitic 
stone 
study 
cene. 

ferred 
mably 
kamto 
djojo 
ering 



mas.ccsenet.org Modern Applied Science Vol. 13, No. 12; 2019 

82 
 

with the Beser Formation. Unfortunately there is no absolute age has been determined for the sedimentary 
deposit of Bentang Formation in the study area.  

Research of paleotsunami in Indonesia had only been a limelight since the tsunami events hit the West coast of 
Aceh in 2004 and South coast of Java in 2006. Tsunami deposits in Java are well documented from modern and 
historical times (e.g. Newcomb & McCann, 1987, Yudhicara, et al., 2013, Rizal, et al., 2017), but they have 
rarely been described from the longer, more ancient, in the geological record. The focuses of this study are to 
determine the presence and to identify sedimentary characters of Mio - Pliocene tsunami deposits by means of 
observation, collection, and description all of paleotsunami deposit in Tegal Buleud area.  

The aim of this study is to identify and characterize any paleotsunami deposit found in the study area. Outcrop 
observation and sampling were carried along a former sand quarry, located next to Pelabuhan Ratu – Tegal 
Buleud main road (S 7o24”35.9’ and  E 106o42”02.2’). The shallow sediment exposed in this area was chosen 
as the focus of our study due to the indication that the depositions were affected by earthquake-driven tsunami 
activities. Favorable outcrop condition enabled us to analyze at various scales, from meter to cm, sedimentary 
structures and textures of tsunami deposits, and their lateral variations.  

In South Sukabumi, especially in the research area, paleotsunami research has never been carried out. The 
research results are the first data on paleotsunami so that it can be used as a reference in further tsunami research. 

1.1 Characteristics of Tsunami Deposits Based on Previous Studies 

Some sedimentary signatures were used to examine and separate tsunami deposit from other coastal deposits, as 
deposits of tsunami-related processes exhibit a multitude of physical, biological and geochemical features. 
Physical signatures of tsunami deposit can be distinguished by its colors, bedding contact (Srinivasalu et al. 2009, 
Srisutam & Wagner, 2010), sedimentary structure (Gelfenbaum & Jaffe 2003, Szczuciński et al., 2006, Babu et 
al., 2007, Bahlburg & Weiss 2007, Paris et al., 2007, Matsumoto et al. 2008, Srisutam & Wagner 2010), grain 
size and compositions (Babu et al., 2007, Paris et al., 2007),  as well as its fauna content (Dawson, 2007, 
Kortekaas & Dawson 2007, Donato et al., 2008, Sawai et al. 2009). 

Tsunami deposit suspects, based on their depositional position, are distinguished into onshore tsunami deposits 
(Switzer & Jones, 2008 and Engel & Brückner, 2011) and offshore tsunami deposit (Shanmugam 2006, 2012). 
An onshore tsunami deposit is characterized by a distinct contact between tsunami layer and underlying sediment, 
which commonly appears as an erosional or unconformable contact (Srinivasalu et al., 2009, and Srisutam & 
Wagner, 2010). The tsunami deposits are usually, but not always, light colored. In most cases the sediments are 
fining upward and the sand is normally graded, with more coarse grained sand near the base and fine grained 
sand at the top, overlaid by clay or silt layer with gradational contact (Gelfenbaum & Jaffe 2003, and Srisutam & 
Wagner 2010).  

In the offshore tsunami deposit, a disturbed or irregular layer caused by earthquake, known as liquefaction, 
formed in the lower part of the sequence (Bhattacharya & Bandyopadhyay, 1998, Engel & Brückner 2011, and 
Shanmugam, 2016). Basal tsunami units may contain loading structures termed truncated flame structures 
(Matsumoto et al., 2008). The disturbed layer is covered by a light colored fine to coarse-grained layer with 
reverse and normal graded bedding sedimentary structure, which also contains mud drape (Fujiwara & Kamataki, 
2007, and Sarkar et al., 2013). Another characteristic of tsunami deposit is rip-up clasts, which consists of 
intra-clasts or reworked material (Szczuciński et al., 2006, and Srisutam & Wagner 2010). 

As for modern example, tsunami deposit in Pangandaran from the 2006 event shows fining upward and landward 
of grain sizes within the deposit, in which overall upward fining occurred as two types, with an initial section of 
inverse grading followed by a section of normal graded bedding and density graded, with denser grains at the 
base. The two normally graded sections show no trends in density, while the inversely graded sections show high 
density sediment to the base, which represents traction carpet flows at the base of the tsunami.  Sharp boundary 
occurred between the tsunami deposit and the underlying soil, however evidence of tsunami-induced erosion 
were not found (Moore et al., 2011). 

Storm deposits, which often misinterpreted as tsunami deposit, or vice versa, typically are more than 30 cm thick, 
comprise multiple subhorizontal planar thin laminasets (hummocky cross stratification) that are normally or 
inversely graded. The storm deposit is characterized by hummocky cross stratification sedimentary structure and 
sometimes associated with herringbones sedimentary structure.  The storm deposit has a highly variable 
grain-size distribution, coarser and better sorted beds with a marked coarsening at its landward extent, and has a 
sharp, non-erosional lower contact associated with buried vegetation and soil (Tuttle et al., 2004, Morton et al., 
2007, Morton, 2009, Goff et al., 2004). Sediments structures such as stratified deposits corresponded with the 
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transport of sediment by rolling and bouncing along the bottom (foresets, climbing ripples, backsets) and 
multiple  and numerous thin (millimeters to a few centimeters) laminasets of alternating coarse and fine grain 
size indicative of high-frequency waves (Morton et al., 2007, Morton, 2009). Rip-up clasts and mud drapes 
rarely occur within storm deposits compared to tsunami deposits (Phantuwongraj & Choowong, 2012). 
Abundant shell fragments organized in laminae is also a characteristic of a storm origin (Morton et al., 2007, 
Kortekaas & Dawson, 2007). While tsunami deposits may have form onshore and offshore, storm deposits 
generally will only able to fill in the low places of antecedent topography, extend between 30 m and 300 m from 
the beach (Morton et al., 2007).  

A rapid change energy regime occurred during a tsunami event, from a high turbulence of water during run up 
then followed by a tranquil water (pre-backwash phase) and succeeded again by turbulence flow during 
backwash. This mechanism resulted in mixed grain-size distribution and a grain population with varying size 
range. This kind of distribution is reflected by multimodal grain-size distributions, characterized by at least two 
dominant modes (bimodal) ranging between fine and coarse-grained sand (Shi et al., 1995, Babu et al., 2007, 
Paris et al., 2007). The distribution is different from normal sedimentation or storm deposits, which have 
unimodal particle size distributions. Additionally, Kortekaas and Dawson (2007) and Sugawara et al. (2009) 
proposed that faunal content in tsunami deposit reflects a mixture of different bathymetry/environment. Pelagic 
and/or benthic species appear in shallow water environments and their tests may be crushed and broken form. 

2. Methods 
Stratigraphic trenches were made on the quarry wall in the area that potentially preserved paleotsunami deposits 
by clearing outcrop planes. Coordinates and layers bearing are measured on cleared trenches, and then 
sedimentary structures and textures were observed and documented. Paleotsunami suspect layers were identified 
based on the sedimentary structure and textures. Samples were taken manually from each recognized layer. Each 
sample was separated for microfossil content analysis and grain size. 

For grain-size analysis, a 100 gram samples for each paleotsunami suspect layer were dried and sieved by using 
a -4.5 ϕ to 4.5 ϕ diameter sieve in Sedimentology Laboratory, Institut Teknologi Bandung. The standard error for 
sieving must be less than 1%. The plotting of grain-size distribution curves is used to determine the modality of 
the grain-size distribution, which subsequently used to interpret the current system, occurred during the 
deposition of each layer. 

For each paleotsunami suspect layer, a ± 100 g sample were washed and observed using reflected-light 
microscope Nikon SMZ 1500 with 16X multiplies, in the Paleontology Laboratory, Institut Teknologi Bandung. 
Microfossil analysis based on planktonic foraminifera was examined to determine the age of the sediments based 
on the classification by Blow (1969) and (BouDagher-Fadel, 2012). The benthic foraminifera was used to 
identify depositional paleoenvironment/ bathymetry based on classification by Rauwenda et al. (1984) as well as 
Holbourn et al. (2013). The depositional paleoenvironment identification thereinafter used to determine whether 
faunal mixing occurred in the sediment (Kortekaas & Dawson, 2007, Sugawara et al., 2009).  

3. Result 
3.1 Stratigraphic Section of the Outcrops 

The marine sediment of Outcrop 1 and 2 (Figure 3 and 4) consists of compacted concoidal light grey to bluish 
carbonaceous claystones, and light to dark brown fine to coarse-grained tuffaceous sandstones. The grains of the 
sandstone are angular to sub-rounded, medium- sorted, matrix supported and less compacted than the claystones. 
The composition of fragment mainly is volcanic glass with a few quartz fragment, a few lithic and silica cement. 
Granule-sized lithic fragments supported by finer matrix are often found in the sandstone. Normal graded 
sandstones with irregular width of 3-10 cm are often intercalated between tuffaceous claystones and sandstones 
with sharp contact. 

The correlation between Outcrop 1 and Outcrop 2 is displayed in Figure 5. The lower interval of both sections in 
Outcrop 1 and 2 comprises of tuffaceous sandy-clayey siltstone. A thin sandstone layer (Layer 1), suspected as a 
paleotsunami layer, intercalated between the siltstone at the lower part of the interval in the Outcrop 1. The 
Layer 1 does not appear in the Outcrop 2, instead an interfingering contact occurs between the light grey 
tuffaceous siltstone with underlying dark gray clayey siltstone (Figure 4). Another thin layer of sandstone, 
suspected as paleotsunami Layer 2, occurs on the upper part of this interval.  

The middle interval of both outcrops consists of tuffaceous sandstone, fine-medium, light to reddish brown. At 
the top of sandstone in both section, found a thin layer of sandstone, which is suspected as paleotsunami Layer 3.  
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Table 1. (a). Based On Blow (1969), (b). Based On Boudagher-Fadel (2012). Age determination of the 
paleotsunami suspect layer 2 based on planktonic foraminifera taxa Light grey blocks indicate ranges of taxa, 
dark grey blocks indicate the age of the sediment (N19) 

a.  

Fossil Taxa N9-N16 N17 N18 N19 N20 N21-N23 

Orbulina universa - - - - - - 

Globigerinoides ruber     - - - - 
Sphaerodinella dehiscens 

dehiscens       - - - 

Globoquadrina dehiscens - - - -     
 
 
 

b. 

Fossil Taxa N9-N16 
N17 N18 N19 N20 

N21-N23
a b a b a b a b 

Orbulina universa - - - - - - - - - - 
Globigerinoides 

ruber - - - - - - - - - - 
Sphaeroidinella 

dehiscens dehiscens   - - - - - 
Globoquadrina 

dehiscens - - - - - - - - - - 
 

3.2 Paleotsunami Suspect Layers 

3.2.1 Layer 1 

The paleotsunami suspect Layer 1 occurs as a thin sandstone intercalation within the carbonaceous clayey 
siltstone layer. Irregular/disturbed structure such as siltstone rip up, clay clasts and flame structure occur in the 
normal graded bedding sandstone layer (Figure 7a). A coarsening shift from fine-grained clay at the base to the 
coarse-grained sandstone layer show a sharp contact occurs between the two layers.  

Two grain-size populations are observed from the paleotsunami suspect Layer 1, shows a bimodal distribution 
(Figure 7b). The high frequency of coarsening grain (mode 1) is likely due to the high energy current due to run 
off, followed by the decreasing number of coarse grain, and re-increasing of coarser grain frequency (mode 2) as 
a result of backwash current that brought back coarser particle from the landward. 

The fossil content identified from this layer (Figure 7c) are: Elphidium sp. from the lithoral-inner neritic 
environment (Rauwenda et al., 1984) and Vulvulina sp. from the middle neritic environment (Holbourn et al., 
2013).  
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4. Discussion 
Four paleotsunami suspect layers were identified from the Outcrop 1 and Outcrop 2 observed in the study area, 
in which both outcrops generally have similar sedimentary features. The age of the marine sediment is derived 
from the microfossil content of the Layer 2, concluded as the Late Miocene to Pliocene (5.54 – 4.08 Ma) based 
on Blow (1969) or Zanclean (5.33 – 3.60 Ma) based on BouDagher-Fadel (2012).  

The paleotsunami suspect Layers 1, 2 and 3 occur as thin sandstone intercalations within the carbonaceous 
clayey siltstone layers. These layers have irregular/disturbed structures such as siltstones rip up, clay clasts, and 
flame structure. Siltstone rip up and clay clasts indicate reworking in a high energy current occurred during the 
deposition of these layer. Flame structures suggest different densities/water contents between layers, which may 
indicate that earthquake happened while the sediments were not yet consolidated. However clastic dyke, which 
indicates liquefaction process during earthquakes was not observe in the outcrops. Sedimentary structures such 
as rip-up clast and flame structure are more indicative of tsunami deposits rather than storm deposit. The normal 
graded bedding occurred in these layers also opposed normally or inversely graded bedding associated in 
hummocky cross stratification or herringbones sedimentary structure occur in storm deposits.  

The more convincing evidence of tsunami deposit came from bimodal grain-size distributions (Layer 1, 2 and 3).  
The bi-modal/multimodal grain-size distribution here indicates due to changes in depositional energy, which 
occurred during the tsunami run off and backwash. This kind distribution preceded by a small amount of 
coarse-grain fractions that may be caused by a weaker run off, followed by a coarser-grain fraction, formed due 
to a higher energy backwash. While multimodal grain-size distribution occurs in Layer 4, there is a possibility 
that the effect of backwash is quite large compared to the incoming currents, which can be seen from the coarser 
grain domination. 

The microfossil content from paleotsunami Layers 1 and 4, which originated from two different 
bathymetry/environment: lithoral-inner neritic and middle neritic, indicates faunal mixing of different 
depositional environment. The faunal mixing from littoral-inner neritic and middle neritic environments 
amplifies the indication of tsunami rather than storm deposit. Storm wave-base typically affected maximum of 
15-40 m-deep. Thus, the storm wave will only agitated ad brought the fauna from the littoral and inner neritic 
layer and would not likely transport the middle neritic faunas.  

Different from tsunami deposits from Chile (Paskoff, 1991), Flores (Yeh et al., 1993) and NW Australia (Young 
& Bryant, 1992) that consists of coarser boulder fraction, the tsunami suspect layers that we found the study area 
consists only of finer grained fractions. Similar tsunami layers with fine-grained sediment character are also 
found in Thailand (Jean-Frank & Chanchai, 2011), Pacitan-Banyuwangi (Anugrah et al., 2015), Bali-Lombok 
(Aswan et al., 2017) and Cilacap (Rizal et al., 2017). Deposition of each fraction is very much determined by the 
condition of the beach morphology, distance and rocks that are passed by the water flow and the shape of the 
beach. The thin fine-grained sediment found in the study area may be due to the long distance from the beach or 
the shape of the ancient beach that caused a distal backwash process onshore that deposited by traction and 
suspension currents. Other characteristics such as coarser grained fractions, other fragments and bi-directional 
flow might be found in other area that located more proximal to the ancient beach.   

Tsunami and earthquake events recorded on the Late Miocene to Pliocene sediments in the research area are 
presumably triggered by Mio-Pliocene tectonic activity that occurs regionally throughout the world including in 
Java. This tectonic event is referred as the Mio-Pliocene Orogeny (van Bemmelen, 1949, Simandjuntak & 
Barber, 1996, Hall & Wilson, 2000). The tectonic event is in accordance to the volcanic activities around the 
area during the Late Miocene-Pleistocene (Suriaatmadja et al., 1991), which may supply the volcaniclastics in 
the sediment. This discovery considered as the first and oldest paleotsunami layers in Java and even in Indonesia.  

5. Conclusions 
The lithological units studied in Tegal Buleud consist of claystones that belongs to Late Miocene to Pliocene of 
Upper Bentang Formation. In the outcrop exposed in the study area were found four layers identified as 
paleotsunami deposits, which are interpreted as formed by tectonic events. 

Those paleotsunami deposits (Layers 1, 2, 3 and 4) characterized by the occurrence of irregular/disturbed 
structure such as siltstone rip up, clay clasts, and flame structure occur in normal graded bedding sandstone layer. 
The grain-size distributions show bimodal and multimodal patterns, with mixing of marine microfossils from 
inner and middle neritic (Layers 1 and 4). 

All the paleotsunami deposits found in Tegal Buleud are the first and oldest tsunami deposit recorded in Java 
even in Indonesia. With the discovery of the previously unexplored Late Miocene to Pliocene tsunami deposits 
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found in the research area, the result of this study can be used as a reference for the identification of the Tertiary 
tsunami deposits present in other parts of Indonesia. 

The result of this study is expected to be used as a reference for paleotsunami deposits formed during the Mio - 
Pliocene, and this area were uplifted due to the Plio-Pleistocene tectonic activity. Furthermore, the result can be 
used as an evidence that Java, as one of the most populated islands, has not been a safe, tsunami-free area since 
Pliocene until present. 
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