
Modern Applied Science; Vol. 13, No. 9; 2019 

ISSN 1913-1844   E-ISSN 1913-1852 

Published by Canadian Center of Science and Education 

43 

 

Experimental and Economical Analysis of an Autonomous Renewable 

Power Supply System for Water Desalination and Electric Generation 

A. M. Soliman1,2,3, Mohamed A. Sharaf Eldean3 & Imed Miraouia4 

1 Mechanical Engineering Department, College of Engineering, Jouf University, Sakaka, Saudi Arabia  

2 Mechanical Engineering Department, Faculty of Engineering, Suez University, Suez, Egypt 

3 Engineering Scince Department, Faculty of Petroleum and Mining Engineering, Suez University, Suez, Egypt 

4 Research Unit MEER, College of Sciences University of Gafsa, 2100 Gafsa, Tunisia 

Correspondence: A. M. Soliman, Mechanical Engineering Department, College of Engineering, Jouf University, 

Sakaka, Saudi Arabia. E-mail: amsoliman@ju.edu.sa  

 

Received: August 2, 2019          Accepted: August 21, 2019          Online Published: August 23, 2019 

doi:10.5539/mas.v13n9p43         URL: https://doi.org/10.5539/mas.v13n9p43 

 

Abstract 

Solar-Wind systems are growing as a vital option to power different types of membrane desalination processes. It 

is becoming very important to use renewable power sources because of zero emissions to the environment. In 

this work, solar photovoltaic (PV) system is used to power on the reverse osmosis (RO) desalination process. 

Meanwhile, Vertical Wind Turbine (VWT) system has been used as a recovery system during sun absence 

periods. Moreover, the possibilities to operate a hybrid system of PV-VWT combined with RO system has also 

investigated. The system is designed to desalinate a low rate of fresh water at a scale capacity of 0.1-1m3/day. 

The system is contained as a mobile unit which can be used to serve rural areas during safari and tourism travels 

in deserts with some features such as, compactness, stability, and ease of maintenance. The unit product cost 

(UPC, $/m3) is found in the range of 1.51$/m3. 

Keywords: photovoltaic system, vertical wind turbines, reverse osmosis, economic analysis, experimental setup 

1. Introduction 

The Middle East and North Africa regions (MENA) not only have the world’s lowest per capita availability of 

water resources but also the highest rate of reduction in these resources (A. Lamei, 2008). The major cause of the 

water budget deficit and groundwater depletion in the MENA area are anthropogenic drivers rather than climatic 

ones. Finally, we conclude that if current hydrologic, climatic and socio-economic trends continue, the nations 

with the lowest gross domestic product per capita, like Egypt, Yemen and Libya, will undergo the highest water 

deficit per capita, leading to a significant rise in food prices, potentially resulting in more socio-economic 

instabilities over the next three decades (Annamaria, 2018). Growing numbers of people in that particular region 

will face severe freshwater scarcity (A.Lilane, 2019). The desalination of seawater and brackish water has 

become an increasingly important as well as effective process against the shortage of freshwater resources in the 

whole world, especially in the Saharan and the MENA regions (H. Nouri, 2019). Fortunately, all MENA 

countries have an abundant renewable energy potential that enhances the application of solar and/or wind 

technologies for powering desalination units in order to overcome the water shortage problems.  

The production of fresh water using desalination technologies driven by renewable energy systems been thought 

to be a vital solution to the water scarcity in remote areas characterized by a lack of potable water and 

conventional energy sources like heat and electricity grid (Nafey AS, 2010). Among different desalination 

technologies, Reverse Osmosis (RO) is a modern process technology to purify water for a wide range of 

applications, including semiconductors, food processing, biotechnology, pharmaceuticals, power generation, 

seawater desalting, and municipal drinking water. Reverse Osmosis, commonly referred to as RO, is a process 

where you demineralize or deionize water by pushing it under pressure through a semi-permeable Reverse 

Osmosis Membrane. Osmosis is a naturally occurring phenomenon and one of the most important processes in 

nature. It is a process where a weaker saline solution will tend to migrate to a strong saline solution. The main 

feature of RO is that it requires no thermal energy but, rather, mechanical energy in the form of a high-pressure 

produced by the feed pump. In the last few years, RO seawater desalination technology has gone through a 
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remarkable transformation. The capacity of large RO plants has increased significantly. Systems with permeate 

capacity up to 300,000m3/d are currently being built (Wilf Mark, 2005). At the same time, renewable energy 

technologies are widely distributed during the past few decades especially with desalination processes. Most of 

these renewables been focused on solar electric power generation. For instance, Photovoltaic or/and wind 

energies are considered promising techniques while dealing with such desalinating processes. George 

Kyriakarakos (George Kyriakarakos, 2017), addressed the variable load energy management system based on 

Fuzzy Cognitive Maps (FCM) on the reverse osmosis desalination process. In order to assess variable load 

operation two case studies have been investigated through that simulation. For both case studies, initially a 

PV-battery system has sized through optimization for a desalination unit operating only at full load. Driss Zejli 

(Driss Zejli, 2011) studied another renewable application with thermal desalination process. A renewable hybrid 

system to produce domestic water was presented. It consists of a photovoltaic module, a wind turbine, 

mechanical vapor compression plant and a storage unit. One of the most important reasons of using RO instead 

of thermal distillation processes is the reliability and the ease of combining directly with renewable energy 

resources such as solar and wind energies. Solar and/or wind energies are rightfully deserved to be used by an 

RO desalination process. Most of solar applications combined with RO are established based on Photovoltaic 

(PV) and horizontal wind turbine (HWT) technologies.  

However, in comparison, thermal energy required is approximately of the range 4–12 kWh/m3 and electrical 

energy of the range 1.5–4 kWh/m3 (Upeksha Caldera, 2016). Thus, the total energy required is of the range 5.5–

16 kWh/m3 (Upeksha Caldera, 2016). The total energy required for membrane processes is of the range 0.5–4 

kWh/m3, so it has lower specific energy consumption than thermal processes (Upeksha Caldera, 2016). Sharaf et 

al. (Mohamed A. Sharaf, 2013) used REDS software library for the investigation of coupling Photovoltaic 

electrical power with reverse osmosis desalination plant in order to produce 3500 m3/d. The unit product cost 

was around 0.5305 $/m3 for 1131 kWe power (Mohamed A. Sharaf, 2013). Mohammed Laissaoui et al. 

(Laissaoui, 2018) studied the operation of large-scale reverse osmosis units in combination with different solar 

power plants, both, Concentrating Solar Power (CSP) and Photovoltaics (PV). The addressed configurations 

have been evaluated under variable load conditions. Some systems were also developed for the supply of fresh 

water to remote areas, and particularly to cover the needs of small villages or communities. Essam Mohamed et 

al (Essam Sh, 2008) investigated technically and economically a Photovoltaic system powered brackish water 

reverse osmosis desalination systems. This system was designed to produce an amount of 0.35 m3/d with a 

specific power consumption around 4.6 kWh/m3. The main reason for the water high production cost (15-20€/m3) 

was the need of solar batteries to achieve a constant pressure and flow rate for the membranes (Essam Sh, 2008).  

Helal et al (A.M. Helal, 2008) studied the economic feasibility of driving RO by PV within low specific power 

consumption. Three alternative configurations of an autonomous PV-RO unit for remote areas in the UAE were 

investigated. They also work studied the possibility by using a diesel generator for a day off periods. The PV-RO 

was designed for not more than 20 m3/day (in 10 hrs). However, they did not investigate the effect of diesel 

emissions on the environment. A. Cipollina et al (A. Cipollina, 2014) presented and analyzed the operation of 

selected renewable energy system desalination unit. Cipollina (A. Cipollina, 2014) work demonstrated a 

productivity in the range of 1-10m3/day. Based on material effect on PV-RO, M. Freire-Gormaly (Gormaly, 2018) 

presented an experimental investigation of the effect intermittent operation characteristic of renewable powered 

desalination systems (PV-RO desalination). Gormaly work showed a future work in order to develop robust 

design algorithms for renewable powered desalination systems. Manolakos et al (Manolakos, 2008) presented 

some technical characteristics as well as an economic comparison of PV-RO desalination systems. The PV 

system was consisted of 18 Arco-Solar mono-crystalline PV panels, with total peak power of 846 W. Their 

system has a capacity of 0.1 m3/h and the specific energy recovery of that system has been experimentally found 

to be in the range of 3.8–6 kWh/m3. Manolakos et al (Manolakos, 2008) estimated the cost by 7.77 €/m3. 

However, they did not investigate the large-scale production based on the PV power. Ahmed et al (Ahmad, 2002) 

studied a design of a PV powered small-scale reverse osmosis water desalination system. It was found that the 

cost of producing 1m3 of fresh water using the small PV powered RO water desalination systems is 

3.73$ (Manolakos, 2008). Tzen et al (E. Tzen, 1998) studied the design of an autonomous PV-RO system able to 

cover potable and other water needs of a rural community in Morocco. That study was built based on 0.5 m3/h 

powered by 7.5 kW of high-pressure pump power (SPC=15kWh/m3) (E. Tzen, 1998). Another work is provided 

for wind powered RO. Liu et al. (Liu, 2007) presented a wind-driven reverse osmosis system for aquaculture 

wastewater treatment. The freshwater from this study (Liu, 2007) can be used as the freshwater supply for fish 

culture. The economic analysis was not investigated in study of Liu et al (Liu, 2007). Operation of an 

experimental RO plant connected directly to a wind system without energy storage been studied by Pestana 

(Ignacio, 2004). The system was built to produce an amount of 3.6 m3/h based on 21 kW of power. Dehmas et al 
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(Djamila, 2011) studied the availability of using the wind power for seawater reverse osmosis (SWRO) 

desalination plant. An energy yield and economic analysis was performed on a hypothetical wind farm consisting 

of five wind turbines of type Bonus 2MWe.  

It was found that wind energy could successfully power a SWRO desalination plant. Lourdes-Garcia-Rodriguez 

et al. (L. García-Rodríguez, 2001) analyzed the influence of the main parameters of the cost of fresh water: 

climatic conditions, nominal power of the wind turbine, the salt concentration of seawater or brackish water, 

design arrangement, operating conditions, plant capacity, cost of RO modules and cost of wind turbines. 

Romero-Ternero et al. (V. Romero, 2005) quantified the unit cost of fresh water generated from representative 

wind-powered seawater RO system as well as the exergy efficiency of the process by means of thermo-economy. 

Moreover, the exergy-economic analysis of wind-driven seawater RO desalination was cost-effective for the 

representative wind power site with medium plant capacity and the unit cost of freshwater was 76c€/m3 (Mohee, 

2017). Actually, different plants (Wind+RO) capacities are ranged from 4-200kW of nominal power for about a 

range of 12-2500m3/day of desalted water.  

It is clear from the literature that the coupling with RO, Wind and PV is considered a promising solution. 

Moreover, there are many advantages of such combination concluded with: (a) direct connection permit for 

minimum energy loss, (b) ease of maintenance, (c) reliability and sustainability along the day of operation, (d) 

suitability for medium and low capacities, (e) the unit can also be used to remediate contaminated water from 

leaching of contaminated industrial soils such as the following literatures (Mohee, 2017). The novelty in this 

study is centralized around the design and construction of a new mobile unit for the production of 0.1-1m3/day of 

fresh water. Moreover, vertical wind turbine unit is investigated with the companion of PV and RO for the first 

time. The system is designed to serve during safari tourism journeys and desert travels across Saudi Arabia with 

some features such as, compactness, stability, and ease of maintenance and suitable for saline well water sources. 

The developed mobile unit is light in weight and not too heavy to transport. Moreover, it might be used in order 

to minimize the pollution associated with transporting. In future, the author’s intentions is to use this developed 

mobile unit for contaminated water purification processes. Different capacities of PV-VWT-RO systems are 

investigated and analyzed under the weather operating conditions of the location of operation (Lat: 29.953894, 

Lng: 40.197044: Elevation: 745m Jouf University, Saudi Arabia (www.worldweatheronline.com)). This article 

describes the process configuration for the proposed systems including an investigation of the design limits, the 

detailed construction of a mobile PV-VWT-RO desalination unit. Cost analysis of the mobile PV-VWT-RO 

desalination unit is also considered. Finally, an evaluation of how to apply this system for wide-scale adoption is 

performed. The system was run in a desert location area in Al-Jouf University, Sakaka, Saudi Arabia. 

2. System Description  

2.1 Expremental Setup 

The mobile system is designed based on the targeting of producing fresh water, which is suitable for rural areas 

and camping spots. Such goal needs some features such as compactness, mobility, and ease of use. On January 

5th, 2016, the proposed mobile unit which contacting all facilities is operated at the location of operation. The 

data has been recorded along two years of operation (2016-2017). The proposed system contains a mobile 

control room unit (MCR) for system monitoring, photovoltaic panels (up to 3m2), vertical wind turbine unit for 

auxiliaries and power recovery (0.3-0.5kWe), Reverse Osmosis (RO) system (0.1-1m3/day) for saline water 

purification unit (range of TDS: 500-5000), solar & wind chargers, inverter and Batteries, instruments (Wind 

speed, Pyranometer, Flow meters…). Figure 1 shows a schematic diagram of the proposed process. The expected 

result would be the development of autonomous RO desalination prototype based on solar PV-powered electrical 

generation distributed system of about 0.1-0.5kWe, more cost-effective and efficient than other solar power 

sources such as thermal systems (i.e., with real market possibilities). The system unit will be inserted into the 

mobile control room. The roof will hold the PV and the wind turbine systems. Reverse Osmosis, batteries, 

Inverter, computer lab, and air conditioning units will be inside the mobile control room (MCR). RO unit 

(membranes, valves, pipes, and high-pressure pump) will be inside the mobile Control Room (MCR) in order to 

prevent it from any unstable environmental conditions.  

Inlet feed stream and outlet brine stream will enter and exit the RO unit from the bottom of the MCR 

respectively. The fresh water product will come out from the rear of the MCR. It is expected to produce an 

amount of 0.1-1m3/day which is suitable for rural and small groups of publics or nomads. The MCR can be 

easily movable from region to another. Moreover, the PV field can easily be towed up and down while moving 

the MCR. Meanwhile; the wind turbine can easily be embedded in the MCR unit. Figure 2 shows the photograph 

of the proposed system at the location of operation. The total system weight is around 120kg. A schematic 
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2.1.1 The RO Part 

The selection of RO unit was decided based on the available power source, salinity range (water type) and 

needed water production rate. The selected RO is designed to produce an amount of 0.1-1m3/day as a production 

range in this work. The salinity range would be varied between 500-5000ppm. The targeted salinity of the fresh 

water would be in the range of 15-150ppm. RO can effectively remove non-organic salt, heavy metal ions, and 

revert saline water to life drinking water. Table 2 shows the design data for the selected RO module.  

2.1.2 The PV Part 

Photovoltaic is required for power input to the system. The PV module is expected to operate directly the RO 

along 8 hours a day. The system contains PV modules, electric Inverter unit (convert DC to AC), distribution 

cabinet, structure, and cables. Module power is 300 Watt/module with 36V. Batteries bank is fixed to the system 

in order to recover any power shortage during the operating hours. Table 2 shows the design and specification 

parameters for the PV module. 

2.1.3 The VWT Part 

A vertical-axis wind turbines (VAWT) is a type of wind turbine where the main rotor shaft is set transverse to the 

wind while the main components are located at the base of the turbine. This arrangement allows the generator 

and gearbox to be located close to the ground, facilitating service and repair.  Vertical wind turbine (VWT) is 

very important for sun off operation. The main advantage of using VWT is that it does not need any complicated 

directional control system to catch the wind. It can rotate at any direction according to the vertical fin shape. 

Table 2 shows the main specifications of the VWT. 

2.1.4 The Batteries & Inverter Parts 

Batteries of the current PV system are subjected to frequent charging and discharging process. Lead acid battery 

with deep discharge is used for the PV/VWT. The battery for the PV/VWT is to be designed to meet some 

characteristics such as low cost, high energy efficiency, long life time, low maintenance, good reliability and less 

self-discharge. Despite of the storage issues, battery is used in order to supply power at stable voltages by 

suppressing voltage fluctuations in PV systems and protecting loads from damage. Therefore, a batteries bank is 

added to run the system during the day off periods. Battery type of 80V is operated in the test with lifetime over 

5 years of operation. The inverter is used to invert DC current to AC. It is 36Volt with 10 years lifetime of 

operation. 

https://en.wikipedia.org/wiki/Wind_turbine
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3.2 Feed Salinity and Power Effects 

The performance of reverse osmosis unit (RO), under different operating conditions is studied in this part. The 
performance parameters that been measured are; flow rates, salinity ratios flow rates, specific power 
consumption, pressure pump power, and exergy streams. The analyses are taken based on the following 
assumptions of feed salinity is ranged between 500-3000ppm, productivity range was between 0.01 and 
0.2m3/day, recovery ratio was fixed at 35% and the pump efficiency was ranges between 79-85%. Figure 7 
shows the effect feed salinity on the product and brine salinities. The figure reveals that by increasing the inlet 
feed salinity, a normal increasing of the product and brine salinities is occurring. For example, at feed salinity 
equals to 2000mg/l (2g/m3), the productivity salinity will reach at 35mg/l (0.035g/m3) with brine salinity at 
3100mg/l. Feed salinity is considered a load on the membrane and the pumping system. Increasing the salt 
concentration will enlarge the concentration difference between the feed and permeate. It also increases the salt 
flux due to the higher concentration gradient inside the membrane. Meanwhile, this will lead to the increase of 
energy consumption due to the load on the pump referring to the pressure difference across the membranes. Its 
effect is noted on power consumption. Such effect would increase the area of the PV system. That behavior was 
clearly obvious on Figure 8 with respect to specific power consumption. It is shown by the figure analysis that 
by increasing the feed salinity (range=0.5-3g/m3) with respect, the specific power consumption (SPC, kWh/m3) 
would increase. Thence, increasing the load on batteries and PV/VWT units. For example, at feed salinity equal 
to 0.5g/m3, and recovery ratio (RR) equal to 30% the SPC was 1.35~1.4kWh/m3. While at feed salinity equal to 
3g/m3, and RR= 15%, the SPC is recorded as 4-4.5Wh/m3. Figure 9 shows the direct effect of feed salinity on 
feed and brine flow rates. Increasing the salinity contents would increase the mass flow rates of the system, 
hence, increasing the power load on the PV/VWT unit. It’s clear that the designer should put in consideration the 
salinity of the location of operation putting in mind the load on the PV and the VWT as a recovery unit. Figure 
10 shows the effect of power variation on the system productivity, brine blow-down and feed flow rates. 
Increasing the power rates is quite significant to effect on the system productivity. For instance, at power value 
of 0.07kW, the system will produce an amount of 1m3/day and will harvest an amount of 3.48m3/day of inlet 
feed. At low rates of power (0.02kW), the system productivity will be in the range of 0.5~0.6m3/day and the feed 
flow rate will be in the range values of 1.6~1.7m3/day. 

 

 

 

 

Figure 6. The recorded data of a typical day of August 2016 for solar radiation, W/m2 and 
ambient temperature, oC. 
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Figure 13 shows the power values that been recorded for the vertical wind turbine unit (VWT). Increasing the 
wind speed would increase the power generated from the turbine unit. At wind speed with 14 m/s, the turbine 
generated about 280W of power which is considered quite sufficient as an energy recovery unit suitable for 
batteries. Figure 14 shows the data results along one year as an example related to the variation of solar radiation, 
wind speed, and system productivity. Figure 14-a shows the variation of the loads along one year according to 
PV, VWT and system batteries. It has been noticed that the loads on PV/Batteries was much greater than it had 
on the VWT. Moreover; the summer time conceded larger effect on loads against the other seasons. The same 
behavior has been noticed on Figure 14-b related to the system running costs. Summer time shows a great effect 
with respect to membranes cost. The TWP is reduced in Figure 14-c as a normal reflection to the increase of 
system productivity during the summer time. The range of water price was recorded as 0.38 to 0.45. Furthermore, 
the specific power consumption was noticed higher in summer time by 1.5kWh/m3. However, it was still in 
normal values (<2-3.5kWh/m3) regardless the increase of system productivity during the summer time. Figure 15 
shows the data results along a typical day in summer time. Figure 15-a shows the load variation starting from 
morning along 24 hours. During the absence of solar radiation the VWT unit will recover the system supporting 
the batteries. Then at the beginning of first light, the PV will begin to charge the batteries and the system will run 
smoothly at nearly constant range of water production rate (~1m3/day). Figure 15-b shows the effect of 
environmental operating conditions on the effective area of the PV. The area would decrease by the increase of 
solar radiation. Figure 15-c shows the effect on total water price along one day. The figure shows the actual price 
of water based on the load variation and the change of environmental operating conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure13. The recorded power generation of the proposed VWT unit. 
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Figure 14. Data results along one year of operation: (a) Loads on PV and VWT, kW, (b) Costs, $, (c) TWP, $/m3, (d) SPC, 
kWh/m3.  
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3.4 Cost Analysis 

Cost analysis are shown in this section based on the initial cost of each purchased unit. The total cost is 
calculated then the unit product cost will be calculated. Table 3 represents the list of units with costs. For each 
unit, cost analysis is pin pointed as following: 
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 PV costs, Cpv=2 x 500$ 

 Battery costs, Cbat=2 x 600$ 

 Solar control charger, Cscc=250$ 

 Inverter cost, Ci=550$ 

 Wind turbine cost, CVWT=1100$ 

 Reverse osmosis unit cost, CRO=250$ 

 Mobile unit cost, CMU=1800$ 

 Total costs, Ctotal= Cpv+ Cbat+ Cscc+ Ci+ CVWT+ CRO+ CMU=6,150$ 

Calculate the amortization factor Af, 1/yr: 

𝐴𝑓 =
𝑖. (1 + 𝑖)20

(1 + 𝑖)20 − 1
… . . (1) 

Where, (i) is the interest rate and is fixed at 5%. Therefore; the amortization factor would equal to 0.0802.  

Calculating the annual fixed charges $/yr at amortization factor equal to 0.0802: 

AFC=Af x Ctotal= 6150 x 0.0802=493.49$/yr 

Calculating the unit product cost UPCt, $/m3, at maximum productivity equal to 1m3/day and load factor equal to 

0.9: 

𝑈𝑃𝐶𝑡 =
𝐴𝐹𝐶 = 493.49

0.9 × 𝑀𝑑 = 1 × 365
=
1.51$

𝑚3
… . . (2) 

Table 3. Cost analysis for all units. 

Unit: Cost, $: 

Photovoltaic modules 1000 

Batteries bank 1200 

Solar control charger device 250 

Inverter device 550 

Vertical wind turbine 1100 

Reverse Osmosis unit 250 

Mobile control unit 1800 

Total costs, $ 6150 

4. Conclusion 

This work is subjected to the matter of powering reverse osmosis (RO) desalination system by the use of 

renewable energy sources such as solar photovoltaic and/or wind energy. The RO found directly combined with 

PV site and/or VWT unit unlike the solar thermal power type. The novelty of the work is emerged from many 

sides, (a) system mobility, (b) small scale operation, and (c) the operation of vertical type wind turbine as a 

recovery unit. The system is constructed in Jouf University, Saudi Arabia under the meteorological operating 

conditions of Lat: 29.953894, Lng: 40.197044 (desert area). The main goal is to construct a system engineering 

in order to produce an amount of fresh water in the range of 0.1-1m3/day. Saline well water source is used with a 

salinity range of 500-5000ppm. Two PV modules (300Watts) are used to operate the RO during the day light. 

Moreover, VWT unit is used to operate the system during the night time and/or working as a recovery system for 

the batteries. VWT doesn’t need any controller for wind catching or any directional system. Batteries bank is 

used as an energy recovery unit according to the fluctuations of the environmental conditions. The system has 

many benefits concluded into the following: 

 Compactness and limited needs for ground area (total system weight=120kg). 

 Low energy requirements. The power wasn’t exceeded over 0.03-0.06kW. 

 No need for additional heating components. 

 Ease of operation and maintenance. 

 Suitability for small capacity of freshwater to meet requirements of small communities. 
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 No need for chemical pretreatment equipment. 

 So much suitable for desert safari travels. 

 Can serve in rural areas and exploratory trips across the desert. 

The results reveal that increasing the system productivity would increase the SPC, kWh/m3. Moreover, 

increasing the salinity ratios would also increase the load on the RO membranes. The system unit product cost 

was around 1.5$/m3 putting in considerations the membranes replacement on the long run. The PV-RO and 

VWT-RO are proven promising technologies to produce a sustainable fresh water putting in mind their positive 

environmental impacts. The mobile system is easy to be transferred to produce fresh water for remote areas. As a 

future work, such compact configuration could be widespread and be used for the removing water 

contaminations and purification processes. Optimization process will take its place in order to adopt a small 

system for the purpose of water desalination and purification process. 
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The Appendix: PV performance correlations 

A.1 Voltage: 

Linear model Poly23: x=Is, y=dT 

     f (x, y) = p00 + p10*x + p01*y + p20*x^2 + p11*x*y + p02*y^2 + p21*x^2*y + 

                     p12*x*y^2 + p03*y^3 

Coefficients (with 95% confidence bounds): 

       p00 =      -6.895 (-12.32, -1.47) 

       p10 =     -0.0027 (-0.01637, 0.01097) 

       p01 =      0.4221 (0.04713, 0.7971) 

       p20 =   4.782e-07 (-8.817e-06, 9.773e-06) 

       p11 =   0.0003865 (-2.896e-05, 0.0008019) 

       p02 =     0.02686 (0.01674, 0.03697) 

       p21 = -1.282e-07 (-3.516e-07, 9.512e-08) 

       p12 = -1.732e-06 (-5.524e-06, 2.061e-06) 

       p03 = -0.0003734 (-0.0004656, -0.0002811) 

Goodness of fit: 

  SSE: 108.5 

  R-square: 0.9938 

  Adjusted R-square: 0.9931 

  RMSE: 1.263 

A.2 Current: 

Linear model Poly13: x=Is, y=dT 

     f (x, y) = p00 + p10*x + p01*y + p11*x*y + p02*y^2 + p12*x*y^2 + p03*y^3 

Coefficients (with 95% confidence bounds): 

       p00 =       6.398 (4.089, 8.707) 

       p10 =    0.003908 (0.001545, 0.006272) 

       p01 =     -0.7002 (-0.9061, -0.4943) 

       p11 =   0.0002862 (0.0001318, 0.0004405) 

       p02 =      0.0233 (0.01759, 0.029) 

       p12 = -5.309e-06 (-7.447e-06, -3.17e-06) 

       p03 = -0.0002281 (-0.0002801, -0.0001761) 

 

Goodness of fit: 

  SSE: 35.56 

  R-square: 0.9418 

  Adjusted R-square: 0.9368 

  RMSE: 0.7127 

A.3 Power: 

Linear model Poly23: x=Is, y=dT 

     f (x, y) = p00 + p10*x + p01*y + p20*x^2 + p11*x*y + p02*y^2 + p21*x^2*y + 

                     p12*x*y^2 + p03*y^3 

Coefficients (with 95% confidence bounds): 
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       p00 =       214.6 (60.98, 368.2) 

       p10 =     -0.1451 (-0.532, 0.2419) 

       p01 =      -30.23 (-40.85, -19.61) 

       p20 = -9.131e-05 (-0.0003545, 0.0001719) 

       p11 =     0.02421 (0.01245, 0.03597) 

       p02 =       1.032 (0.7455, 1.318) 

       p21 =   1.775e-06 (-4.55e-06, 8.099e-06) 

       p12 = -0.0003471 (-0.0004545, -0.0002397) 

       p03 =    -0.01002 (-0.01263, -0.007409) 

 

Goodness of fit: 

  SSE: 8.699e+04 

  R-square: 0.8786 

  Adjusted R-square: 0.8643 

  RMSE: 35.77 
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