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Abstract 
When evaluating applications for proposed projects, agencies in the United States (U.S.) must consider mitigation options for the 
destruction of the aquatic environment such as wetlands, if no practicable alternative to the proposed action exists. Because 
attempts to create artificial wetlands as replacements for natural wetlands that were destroyed have had little success, particularly 
in the case of forested wetlands, mitigation options often include mitigation banks and conservation restrictions as permit 
requirements. In Florida, agencies issuing permits for projects involving groundwater alterations such as withdrawals from wells 
and mining, do not require an analysis of how on-site and off-site wetlands designated as mitigation, conservation or preservation 
for destroyed wetlands would be affected by fractures and other karst features that occur throughout the Floridan aquifer system 
(FAS). This study analyzed the underlying geological conditions in the FAS using lineaments as surface expressions of those 
conditions, in addition to indicators of preferential groundwater flow in an environmentally sensitive karst area of northeast 
Florida, including Baker and Clay Counties, where extensive mining has occurred in the recent past and more extensive mining 
is proposed in the immediate future. Established methods, such as spatial matching of scanned maps and remotely sensed images 
and control-point identification, were used for georectification of the analog maps. These techniques were applied to surface 
expressions of underlying fractures that were mapped in the early 1950s and 1970s, prior to extensive groundwater extractions, 
urbanization and mining in the region. The vegetation changes and reduced groundwater discharges from those alterations 
reduce the ability to identify fractures from post-development images. Geospatial analyses of lineament distribution revealed that 
the study area and surrounding counties included a dense network of lineaments, including through existing and proposed mines, 
mitigation banks and other conservation lands. Excavation, water use and operation of proposed mines associated with those 
fractures could result in irreversible adverse environmental impacts to those mitigation banks and other conservation lands linked 
by the network of fractures. To ensure sustainable developments and compliance with mitigation laws in this highly fractured 
area, adverse impacts to mitigation banks and other conservation lands from groundwater pumping and mining via fractures 
must be considered. 
Keywords: dolines, fractures, georectified lineaments, geospatial analysis, GIS, induced recharge, karst, sinkholes 
1. Introduction 
1.1 Mitigation Requirements and Current Approach to Project Evaluation and Mitigation 
Federal agencies must consider mitigation options when evaluating applications for proposed projects if no practicable 
alternative exists for the destruction of the aquatic environment, such as wetlands. A proposed project is contrary to the public 
interest if it fails to comply with the Clean Water Act (CWA) Section 404(b)(1) Guidelines. One of the public-interest factors 
considered in the Code of Federal Regulations (CFR) is mitigation, including avoiding, minimizing, rectifying, reducing, or 
compensating for resource losses (33 CFR §320.4(r)). The National Environmental Policy Act (NEPA) includes a broad 
definition of mitigation as (40 CFR §1508.20): 
(a) Avoiding the impact altogether by not taking a certain action or parts of an action; 
(b) Minimizing the impacts by limiting the degree or magnitude of the action and its implementation; 
(c) Rectifying the impact by repairing, rehabilitating, or restoring the affected environment; 
(d) Reducing or eliminating the impact over time by preservation and maintenance operations during the life of the action; and 
(e) Compensating for the impact by replacing or providing substitute resources or environments. 
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Federal regulations governing compensatory mitigation for impacts to wetlands, streams, and other waters of the U.S. permitted 
under the CWA were revised on March 31, 2008, in the Compensatory Mitigation Rule or the 2008 Mitigation Rule (33 CFR 
Parts 325 and 332 and 40 CFR Part 230), to address “no net loss” of wetlands. Florida law also addresses mitigation and 
mitigation banks. For example, Florida Statutes (F.S.) Chapter 373.4135 regulates mitigation banks and offsite regional 
mitigation and Chapter 373.4136 F.S. addresses establishment, operation and permitting of mitigation banks 
(http://www.leg.state.fl.us/statutes/). Both federal and state mitigation options in Florida frequently include mitigation banks and 
conservation restrictions placed on lands because attempts to create wetlands, particularly forested wetlands, to replace natural 
wetlands that were destroyed have had poor success (Turner, Redmond, & Zedler, 2001). Some requirements for obtaining a 
permit for a mitigation bank in Florida include reasonable assurance provided by the applicant that (373.4136(1) F.S.): 
(a) The proposed mitigation bank will improve ecological conditions of the regional watershed; 
(b) The proposed mitigation bank will provide viable and sustainable ecological and hydrological functions for the proposed 
mitigation service area; 
(c) The proposed mitigation bank will be effectively managed in perpetuity; 
(d) The proposed mitigation bank will not destroy areas with high ecological value; 
(e) The proposed mitigation bank will achieve mitigation success; 
(f) The proposed mitigation bank will be adjacent to lands that will not adversely affect the perpetual viability of the mitigation 
bank due to unsuitable land uses or conditions; 
Karst aquifers occur throughout the U.S., as depicted in the map prepared by the American Geosciences Institute 
(www.agiweb.org/environment/karstmap.pdf). The regional karst Floridan aquifer system (FAS) is one of the largest karst 
aquifer systems in the U.S., underlying the entire state of Florida and southeastern coastal plain portions of Alabama, Georgia 
and South Carolina (Krause & Randolph, 1989; Miller, 1986). Currently, agencies permitting projects in areas of karst aquifers in 
the U.S. involving groundwater alterations, such as withdrawals from wells and mining, do not include an analysis of how 
on-site and off-site wetlands designated as mitigation, conservation or preservation for destroyed wetlands will be affected by 
fractures and other karst features, such as sinkholes. Recent examples by federal agencies within the regional FAS include the 
Final Areawide Environmental Impact Statement (EIS) for proposed expansion of phosphate mining in west-central Florida 
(U.S. Army Corps of Engineers [USACE], 2013) and the draft and Final EIS for the proposed Levy County Nuclear Power 
Plant, Units 1 and 2 (U.S. Nuclear Regulatory Commission [USNRC], 2010; 2012). A recent example in the same regional karst 
aquifer system by state agencies includes the State of Florida, Division of Administrative Hearings (DOAH) April 11, 2013 
ruling on the 1,575.5-acre Highlands Ranch Mitigation Bank (http://www.doah.state.fl.us/ALJ/, Case No. 12-3219). This 
mitigation bank, also known as the Highlands Mitigation Bank, is located adjacent to the initial DuPont Trail Ridge Mine in Clay 
County, Florida. 
1.2 Evidence of Fractures in Aerial Photographs and Satellite Imagery and Influence on Preferential Groundwater Flow 
A detailed synopsis of the peer-reviewed published literature describing the use of aerial photographs and satellite imagery to 
identify extensions of subsurface fractures, including faults, is provided by Lines et al. (2012). The authors provide also an 
in-depth discussion of the influence of fractures, karst conduits and sinkholes on preferential groundwater flow, based on 
peer-reviewed published literature. Our use of terms treats sinkholes as synonymous with dolines and is consistent with the 
definitions provided in that 2012 publication for terms such as lineaments, fracture traces, and photolinears, with references to 
fractures as inclusive of faults and joints (fractures without movement).  
1.3 Case Study of the Flawed Approach to Mitigation in a Regional Karst Aquifer System 
Because the FAS is one of the largest regional karst aquifer systems in the U.S., this aquifer was selected as the focus for our case 
study. This regional karst aquifer system is the source of water, both directly and indirectly, for the majority of developments in 
Florida (Fernald & Purdum, 1998; Johnston & Miller, 1988; Miller, 1986) and consists of limestones that have been subjected to 
multiple karst cycles (Upchurch & Lawrence, 1984). Because of the karstic conditions of this aquifer system, the standard 
practice in investigations of foundation stability, sinkhole probability, and groundwater availability should involve delineation of 
photolinear features that may predispose affected areas to instability and high transmissivities (Lattman & Parizek, 1964; 
Littlefield, Culbreath, Upchurch, & Stewart, 1984; Parizek, 1976). For sinkhole analysis, Ogden (1984) recommended: (a) 
delineation from topographic maps and aerial photographs; (b) analysis of depth, width and elongation, including statistical 
comparison to fractures (joints and faults) and photo-lineament trends; (c) analysis of topography; (d) water-table monitoring; (e) 
identification of deformation for man-made structures, ponding of rainwater and vegetation stress; (f) geophysical analysis (e.g., 
resistivity, seismic reflection) of shallow features; and (g) identification of mining, impoundments, groundwater pumping and 
other water diversions. 
Our review of EIS and Environmental Assessments (EA) documents for proposed projects in Florida over the past 30 years 
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indicates that despite the standard practice and published procedures, and the fact that existing and proposed mines in Florida 
would include all of the factors described in (g) of Ogden (1984) that induce sinkholes, agencies routinely do not consider 
environmental impacts associated with preferential groundwater flow pathways in the karst aquifer system off-site, beyond the 
surface footprint of proposed projects, or even on the site. Instead, projects such as those described above, are permitted in 
Florida by local, district, state and federal governments without these investigations or evaluations of groundwater impacts or 
groundwater models that evaluate impacts to or from preferential groundwater flow via fractures and karst conduits, which are 
associated with modern and relict sinkholes (synonymous with paleosinks for our study), as described by Bacchus, Masour, 
Madden, Jordan, and Meng (2011), because these features are not represented accurately in a published database. Therefore, 
adverse impacts to on-site and off-site wetlands, mitigation areas and other conservations lands cannot be considered due to 
preferential groundwater flow pathways that result from water pirated from mining and groundwater withdrawals, including 
from neighboring cities, counties and states, as well as from adjacent watersheds and across groundwater divides. Adverse 
impacts from this pirated water can result from induced saltwater intrusion and induced recharge, which dewaters wetlands and 
other surface waters (Bacchus, 2000; Bacchus et al., 2011; Krause & Randolph, 1989; Lewelling, Tihansky, & Kindinger, 1998; 
Metz & Lewelling, 2009; Stewart & Stedje, 1990; Watson, Stedje, Barcelo, & Stewart, 1990). For example, although the 2013 
DOAH case in Florida addressed numerous procedural inadequacies in the use of the Highlands Ranch Mitigation Bank in Clay 
County to justify the requested mitigation credits, it failed to address the adverse impacts that mitigation bank has experienced 
and will experience due to the initial DuPont Trail Ridge Mine and other existing and proposed mining, in Clay and Baker 
Counties due to fractures and other karst features in that area. Specifically, the hearing did not address how the applicant for the 
Highlands Ranch Mitigation Bank could provide reasonable assurance of compliance with requirements (a)-(f) of 373.4136(1) 
F.S. due to the existing and proposed mining in Clay County and surrounding counties. Similarly, the EIS analyses for the 
proposed expansion of phosphate mining in west-central Florida and the proposed Levy nuclear plant units in Levy County 
failed to consider the adverse impact on mitigation areas that will occur through fractures and other karst features in the vicinity 
of those proposed projects. 
1.4 Objectives, Hypotheses and Implications 
The first objective of this investigation was to select an appropriate area for the case study in rural counties in Florida. Baker and 
Clay Counties and the surrounding vicinity in northeast Florida met these criteria. These counties included areas where extensive 
mining had occurred in the recent past, significant expansion of mining was proposed and numerous mitigation banks and other 
conservation and environmentally sensitive lands occurred in proximity to existing and proposed mining areas. Baker and Clay 
Counties also represented areas where adverse environmental impacts from preferential groundwater flow described above, and 
more fully below, were not being evaluated or otherwise addressed. The second objective was to conduct a geospatial analysis of 
linear features throughout the study area using lineaments previously mapped by Vernon (1951) and the Florida Department of 
Transportation (FDOT, 1973) in analog format and georectified using established methods described by Lines et al. (2012). The 
geospatial analysis, using the ArcGIS™ 10.1 geographic information system (GIS), included an evaluation of the frequency and 
distribution of these lineaments and previously reported sinkholes in proximity to existing and proposed mining, mitigation 
banks and other conservation and environmentally sensitive lands in the vicinity. The aim of this analysis was to describe the 
potential magnitude and extent of cumulative adverse environmental impacts from hydroperiod alterations and preferential 
groundwater flow pathways. Our alternative hypothesis, based on published literature described below, was that sinkholes would 
be associated with fractures and that fractures occur in the vicinity of the existing and proposed mining, mitigation banks and 
other conservation and environmentally sensitive lands. The theoretical and practical implications of this study were based on 
published literature described below and include identifying areas of potential adverse environmental impacts from preferential 
flow through fractures in the FAS that may occur many kilometers beyond the proposed project sites. These impacts and 
preferential flow are predicted to occur in response to groundwater extractions, excavations and other proposed actions that 
would alter natural hydroperiods and subsequently result in adverse impacts to wetlands and other surface waters, wildlife habitat 
and threatened and endangered species. Bacchus (2001) and Lines et al. (2012) provided examples of how adverse impacts 
result from hydroperiod alterations that constitute unpermitted taking of federally endangered and threatened species. The results 
of this study can be used as a primer to explain the crucial role of preferential groundwater flow pathways in predicting adverse 
environmental impacts and applied to other projects in the study area, with similar approaches applicable throughout Florida and 
the remaining FAS. 
2. The Study Area 
The study area, located in the peninsula of the regional Floridan aquifer system (FAS) in rural northeast Florida, U.S., includes 
Baker and Clay Counties and the surrounding vicinity. This area was selected because of the highly ranked wildlife habitat 
(Endries, Gilbert & Kautz, 2009) and numerous mitigation banks and other conservation areas in proximity to extensive past 
mining and significant proposed expansion of mining. The initial DuPont Trail Ridge Mine and Florida Rock Vulcan Mine in 
Clay County and expanded DuPont Trail Ridge Mine in Baker County are examples of the most extensive existing mining in the 
study area. Figure 1A shows the location of Baker and Clay Counties and approximate extent of the FAS that is not submerged 
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by the Gulf of Mexico and Atlantic Ocean. Figure 1B provides a more detailed view of the study area over an image accessed 
through the ESRI World Imagery service, showing locations of the proposed Old Castle mine, the initial and expanded DuPont 
Trail Ridge Mines (in Clay and Baker Counties respectively), the Florida Rock Vulcan Mine, mitigation banks and conservation 
lands. Mitigation banks identified by the St. Johns River Water Management District (SJRWMD) in the vicinity of the study area 
are provided in Table 1, with the mitigation bank adjacent to the initial DuPont Trail Ridge Mine in bold. A list of parks, state 
forests and other conservation areas in the study area vicinity are provided in Table 2, with the conservation areas in proximity to 
the initial DuPont Trail Ridge Mine in bold. The locations of these mitigation banks and conservation areas are shown in Figure 
2, with identification numbers and letters included from Tables 1 and 2, respectively. The U.S. Department of Commerce Census 
Bureau’s 2010 data indicate that the areas of Baker (http://quickfacts.census.gov/qfd/states/12/12003.html) and Clay 
(http://quickfacts.census.gov/qfd/states/12/12019.html) Counties, respectively, are 1515.73 square km (585.23 sq mi) and 
1565.28 sq km (604.36 sq mi), with a population density of 18 people per sq km (46 people per sq mi) and 122 people per sq km 
(316 people per sq mi). 

 
 

A
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Figure 1. A. Location of Baker and Clay Counties in northeast Florida and approximate extent of the FAS not submerged by the 
Gulf of Mexico and Atlantic Ocean and 

B. more detailed view showing locations of the proposed Old Castle mine, initial and expanded DuPont Trail Ridge Mines (Clay 
and Baker Counties respectively), Florida Rock Vulcan Mine, mitigation banks and conservation lands. 
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Table 1. Mitigation banks identified by the St. Johns River Water Management District in the study area vicinity as of December 
2013, with the mitigation bank adjacent to the initial DuPont Trail Ridge Mine shown in bold 

ID Mitigation Bank ID Mitigation Bank 
0 Loblolly Mitigation Bank Pipeline 22 Lower St. Johns Mitigation Bank 
1 Brick Road Mitigation Bank 23-24 Nochaway Mitigation Bank 
2 Lake Swamp Mitigation Bank 25 Colbert Cameron 
3 Northeast Florida Mitigation Bank 26 Northeast Florida Mitigation Bank 
4 North Florida Saltwater Marsh 27 Tupelo Mitigation Bank 
5 Sundew 28 Farmton North 
6 Loblolly Mitigation Preserve 29 Northeast Florida Mitigation Bank 
7 Tm Econ 30-32 Barberville Mitigation Bank 
8 Mary A Ranch 33 Farmton Mitigation Bank-West Bank 
9 NEF2 Northeast Florida 34 Farmton Mitigation Bank-South Bank 

10-11 Longleaf Mitigation Bank 35-36 NEFMB 
12 CGW 37 Thomas Creek/Three Rivers Mitigation Bank 

13-14 Lake Louisa & Green Swamp 38-41 Blackwater Creek 
15-16 FDOT Tosohatchee 42 Lake Monroe Mitigation Bank 

17 Longleaf Mitigation Pipeline 43 Fish Tail Swamp Mitigation Bank 
18 Longleaf Mitigation Bank 44 Port Orange Mitigation Bank 
19 Greens Creek Mitigation Bank 45 Highlands Mitigation Bank 
20 ECF-S East Central Fla. 46 Pellicer Flats 
21 Star 4 Mitigation Bank 47 Town Branch 

 
Table 2. Parks, state forests and other conservation areas in the study area vicinity as of December 2013, with conservation areas 
in proximity to the initial DuPont Trail Ridge Mine shown in bold. 
ID Counties Acres Name 
A Clay 177 Skinner-Smith Parcel 
B Alachua 975 Monteocha Creek Conservation Easement 
C Clay, Duval 24,033 Jennings State Forest 
D Clay 2,366 Mike Roess Gold Head Branch State Park 
E Clay 260 Moccasin Slough 
F Bradford 28 Keystone Air Park Tract 
G Clay, Duval 386 Branan Field Mitigation Park Wildlife and Environmental Area 
H Clay, Duval 5,366 Cecil Field Conservation Corridor 
I Alachua 242 Santa Fe River - AP&E 
J Clay 150 Camp Chowenwaw Park 
K Clay 2,683 Longbranch Crossing Conservation Easement 
L Clay 964 Black Creek Ravines Conservation Area 
M Clay 10,388 Bayard Conservation Area 
N Clay 73,076 Camp Blanding Military Reservation 
O Clay 900 Arahatchee Conservation Easement 
P Bradford 138 Edwards Bottomland 
Q Clay 408 Crosby Sanctuary 
R Clay 12,262 Belmore State Forest 
S Bradford, Union 16,200 Raiford Wildlife Management Area 
T Bradford, Clay, Putnam Union 613 Palatka-to-Lake Butler State Trail 
U Brad 1,468 Graham Conservation Area 
V Brad 167 New River Conservation Easement 
W Alachua, Bradford 7,368 Santa Fe Swamp Conservation Area 
X Clay 1,166 301 Land Investments Parcels 



www.ccsenet.org/jsd Journal of Sustainable Development Vol. 7, No. 4; 2014 

231 
 

 
Figure 2. Mitigation banks and conservation areas in the St. Johns River Water Management District boundaries 

 
3. Data and Methods 
3.1 Digital Data and Georectification 
Lineaments previously mapped in analog format by Vernon (1951) and FDOT (1973) in our northeast study area and 
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georectified using established methods described by Lines et al. (2012) were superimposed over various base maps for this 
analysis and to create the figures and tables provided below. Base maps included: (1) satellite images accessed through the ESRI 
World Imagery service and the Microsoft BING Maps service; (2) the raster file for the Integrated Wildlife Habitat Ranking 
System’s ranked habitat developed for the Florida Fish and Wildlife Conservation Commission (FFWCC) in 2009 (Endries, 
Gilbert, & Kautz, 2009); and (3) the extent of wetlands in the analysis and figures described below, obtained from the U.S. Fish 
and Wildlife Service (USFWS) National Wetlands Inventory (NWI). The file for the state-ranked habitat was obtained from 
http://myfwc.com/research/gis/data-maps/terrestrial/wildlife-habitat-ranking-system/. The NWI data were obtained from 
http://www.fws.gov/wetlands/Data/State-Downloads.html.  
Coordinates for modern sinkholes obtained from the database at the University of South Florida 
(http://fcit.usf.edu/florida/maps/galleries/sinkholes/), based on data gathered by the Florida Geological Survey (FGS) and the 
Florida Department of Environmental Protection (FDEP), were used to depict the locations of those sinkholes in our case study. 
Shapefiles from the SJRWMD provided the locations of the proposed and existing mines, groundwater supply wells authorized 
by SJRWMD consumptive use permits (CUPs), and mitigation banks. The locations of other conservation areas, such as those in 
the Camp Blanding Military Reservation that subsequently were mined by the initial DuPont Trail Ridge Mine in Clay County, 
were provided as shapefiles from the Florida Natural Areas Inventory (FNAI) and SJRWMD databases. 
3.2 Sampling and Analysis Procedures 
The study area includes linear features indicative of fractures (including faults) that were mapped previously. Rose diagrams 
similar to those generated by Norman (1976), Harnett and Barnett (1977) and Brook and Allison (1983) were created for spatial 
frequency analysis of lineaments. The angle distribution of linear features was analyzed over the study area for all geometrically 
rectified and vectorized lineaments mapped by Vernon (1951) and FDOT (1973) included in or extending to Baker and Clay 
Counties. A multi-cell grid covering the area of study was used with these selected lineaments for characterization of directional 
distribution for cumulative lengths of linear features over the region, as described in Lines et al. (2012). For each grid cell (cell 
size = 0.12º x 0.12º), the entire length of vectorized lineaments within or entering the cell was measured and the cumulative 
length of lineaments for individual 15º azimuth steps (north = 0º) was calculated and graphed. The angular distribution of 
cumulative lengths also was computed within Baker and Clay County boundaries. Rose diagrams were created based on 
descriptions of length-weighted rose diagrams provided by Prost (2002). Length-weighted rose diagrams were not based on 
lineaments clipped to cells or county boundaries because the objective was to show potential groundwater connectivity and total 
lineament length. Instead, total lengths were calculated including the parts of lineaments that extend beyond the two-county 
study area.  
Geographic Information Science (GISci) has been established for visualization and mapping of rock properties in regions with 
subtle topography (Belt & Paxton, 2005). ArcGIS Version 10.1 was used for the geospatial analysis of lineaments and sinkholes 
in the study area. All data layers, such as lineaments, sinkholes and county boundaries, were projected to a common, Robinson 
projection system, which has pseudocylindrical projection and minimal distortions within areas approximately 45º north and 
south of the equator. Our northeast Florida study area is located between 29º N and 30º 37’ N latitude. This projection system is 
known as a compromise projection that maintains all types of distortions at relatively low levels over most of the globe (Usery, 
Finn, & Mugnier, 2009; Dean, 2012). Lineament segments with minor distortions that were unable to be digitized as a straight 
line were adjusted using the “Straight Segment” tool of the ArcGIS “Editor” and “Advanced Editing.” After these preprocessing 
steps were completed, the geospatial analysis was conducted. The numbers of intersection points for all lineaments in Baker and 
Clay counties were calculated using the ArcGIS “Intersect” tool, choosing “Output Type” as “POINT”. Then, the lengths of all 
lineaments were calculated using ArcGIS “Calculate Geometry” in the attribute table. The shortest distance from each sinkhole 
to the nearest lineament was calculated using the ArcGIS “Near” tool, which determines the distance from each input feature to 
the nearest identified feature within a search radius.  
4. Results 
4.1 Proximity of Fractures to Existing and Proposed Mines, Mitigation Banks and Other Environmentally Sensitive Areas 
Figure 3 shows a GIS overlay of the extent of fractures mapped as lineaments by Vernon (1951, as black diagonal lines) and by 
the FDOT (1973, as red diagonal lines) in proximity to the proposed Old Castle Mine, the existing DuPont Trail Ridge Mine and 
Florida Rock Vulcan Mine, mitigation banks and parks, state forests and other conservation areas in the study area. 
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Figure 3. Locations of previously reported fractures (red and black diagonal lines), in proximity to the proposed Old Castle Mine, 
initial and expanded DuPont Trail Ridge Mines, Florida Rock Vulcan Mine, mitigation banks and parks, state forests and other 

conservation areas in the northeast Florida study area 
 

The base map for Figure 4 depicts the extent of wildlife habitat ranked from least important (1 – light gray) to most important (10 
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– red) based on the Integrated Wildlife Habitat Ranking System developed under the Florida Fish and Wildlife Conservation 
Commission (FFWCC) in 2009 (Endries, Gilbert, & Kautz, 2009). Overlying the state-ranked integrated wildlife habitat are the 
same fractures, parks, state forests and other conservation areas described in the previous figure. Figure 4A depicts the fractures 
mapped by Vernon (1951) as black diagonal lines and the fractures mapped by FDOT (1973) as red diagonal lines, with the 
white areas in the northeast Florida study area representing waterbodies (e.g., the St. Johns River and natural lakes). Figure 4B is 
an enlargement of the Clay County vicinity, the initial DuPont Trail Ridge Mine and groundwater supply (CUP) wells for that 
mine and the Florida Rock Vulcan Mine. The NWI wetlands (dark blue) are included over the state-ranked integrated wildlife 
habitat base map. Also included are the three modern sinkholes located in Clay County (light blue circles identified with large, 
bold A, B and C), south of the DuPont Trail Ridge Mine. Also represented in Figure 4B are the Conservation Lands with the 
same alpha codes provided in Table 2 shown in Figures 2 and 3 in small letters. Figure 4C is an enlargement of the Baker County 
vicinity, the proposed Old Castle mine site, DuPont Mine expansion and municipal groundwater supply (CUP) wells for 
Macclenny and Glen St. Mary. The NWI wetlands (dark blue) also are included in this figure over the state-ranked integrated 
wildlife habitat base map. 
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Figure 4. A. Locations of fractures (diagonal lines), existing DuPont Trail Ridge Mine and proposed Old Castle mine site, over 
state-ranked integrated wildlife habitat map in study area; 

B. Enlargement of the Clay County vicinity, mines, supply wells and sinkholes, with NWI wetlands; 
C. Enlargement of the Baker County vicinity, proposed and existing mines and municipal supply wells, with NWI wetlands 

 
The base map for Figure 5 is the extent of NWI wetlands in the study area, in blue and grey. The grey areas represent wetlands at 
a scale that is too small in Figure 5 to be shown in blue. Overlying the NWI wetlands are the same fractures, mines and proposed 
mine site described in previous figures. 
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Figure 5. Locations of previously reported fractures (red and black diagonal lines), over NWI wetlands (blue and grey shading), 

in proximity to existing mines and the proposed Old Castle Mine site 
 
4.2 Analyses of Fractures and Modern Sinkholes 
The length-weighted results for distribution density analyses of fractures mapped by Vernon (1951) and FDOT (1973) are shown 
in Figures 6A and B as 0.12º x 0.12º multi-cell rose diagrams for the study area, including the area of existing and proposed 
mines in Baker and Clay Counties and environmentally sensitive areas in the vicinity. Diagram petals for the multi-cell grids 
indicate distance in kilometers, ranging from 0 to 250 km (0 to 155 mi) for Vernon (1951, center = 0 km, outer circle = 250 km, 
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step = 50 km) and from 0 to 800 km (0 to 497 mi) for FDOT (1973, center = 0 km, outer circle = 800 km, step = 100 km) from 
the center of the diagram to the outer circle, respectively.  
Results for the length-weighted distribution density rose diagram analyses of fractures, mapped for the Baker County area, by 
Vernon (1951) and FDOT (1973), and Clay County area, by Vernon (1951) and FDOT (1973), respectively, are shown in 
Figures 7A through D. Diagram petals in Figure 7 indicate distance in kilometers, ranging from 0 to 300 km (0 to 186 mi) for 
Vernon (1951) and 0 to 1400 km (0 to 870 mi) for FDOT (1973) from the center of the diagram to the outer circle, respectively. 
The length step is 50 km (31 mi) for Vernon (1951) and 200 km (124 mi) for FDOT (1973). The frequency of fracture 
intersections, longest and shortest fractures, and mean fracture lengths for Baker and Clay Counties, Florida are summarized in 
Table 3. The number and lengths of fractures mapped by Vernon (1951) and by FDOT (1973) in Baker County and Clay County, 
respectively, are shown in Figures 8A and B. The state’s sinkhole database at the University of South Florida that includes only 
modern sinkholes mapped through 2008, reports no sinkholes located in Baker County and only three sinkholes located in Clay 
County. Table 4 provides the distances from those three sinkholes to the nearest fracture and nearest intersection of fractures (in 
km) mapped by Vernon (1951) and by FDOT (1973). Figure 4B shows the proximity of those three sinkholes (identified as A, B 
and C) to the nearest fracture and nearest intersection of fractures mapped by Vernon (1951, white diagonal lines), and by FDOT 
(1973, red diagonal lines). 

 

A 
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Figure 6. Length-weighted rose diagrams showing distribution density in 0.12º x 0.12º grid cells. throughout the study area for 

fractures mapped by: 
A. Vernon (1951, radii = 0 to 250 km) and B. FDOT (1973, radii = 0 to 800 km) 

B 
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other karst conduits that are pathways of preferential groundwater flow are not constrained by governmental boundaries such as 
county and state boundaries. 
In an attempt to evaluate areas that could be more susceptible to experiencing adverse environmental impacts from mining and 
other groundwater alterations, such as those described by Bacchus (2006) and Bacchus et al. (2003), ground reconnaissance was 
conducted for this study prior to the georectification of features mapped as lineaments in the study area and the mapping of 
modern sinkholes in the study area from the state’s sinkhole database. Some of the procedural steps recommended by Ogden 
(1984) for sinkhole analysis also were used as guidance in selecting areas for ground reconnaissance for adverse environmental 
impacts in the vicinity of the mine sites. Figure 9 shows the numbered Global Positioning System (GPS) locations of some of 
those areas of ground reconnaissance that were identified using U.S. Geological Survey (USGS) topographic maps and 
established hydroecological indicators of groundwater alterations, such as those described by Bacchus et al. (2003), and 
knowledge from other sites in Florida where adverse environmental impacts occurred from mining and other groundwater 
alterations. In all cases, adverse environmental impacts were identified at the ground reconnaissance locations where greater 
susceptibility was predicted. The locations of modern sinkholes are shown in Figure 9 as light blue circles, identified by large, 
bold A, B and C, south of the initial DuPont Trail Ridge Mine. Also included in Figure 9 are the same Conservation Lands 
shown in Figures 2 and 3, identified in small letters corresponding to the alpha codes provided in Table 2. Note the proximity of 
the numbered GPS locations to the locations of fractures mapped by Vernon (1951) and FDOT (1973). In some cases, the 
observed areas of adverse impacts were not accessible and a nearby location was marked using the GPS. Examples of those 
cases include GPS locations that are located at greater distances from the mapped fractures. Some GPS points of adverse 
environmental impacts were located at a considerable distance from a mapped fracture, but in the vicinity of relict sinkholes that 
represent natural lakes in the area, suggesting that additional fractures occur in those areas that were not mapped by Vernon 
(1951) or FDOT (1973). 
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Figure 9. Examples of locations where ground reconnaissance was conducted (yellow circles) prior to creation of georectified 

maps for the study area of fractures by Vernon (1951, white diagonal lines) and FDOT (1973, red diagonal lines) and prior to the 
mapping of modern sinkholes from the state’s database 

 
Figures 10, 11 and 12, provide examples of the adverse environmental impacts identified during the ground reconnaissance in 
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Gold Head Branch State Park, Clay County lakes with privately owned lake-front property and Jennings State Forest, 
respectively. Figure 10A shows one of the smaller natural sinkhole lakes in the state park, with the tree line representing the 
approximate historic water level. Figure 10B is an enlargement of “NO SWIMMING” sign from Figure 10A in the foreground 
and extensive dewatered lake bed in the back ground. In the foreground of Figure 10C, the state park sign depicts the historic 
water level of Johnson Lake, located approximately at the tree line. The dewatered lake bottom and tree line are shown in the 
background of Figure 10C. The boat launch referenced in the Johnson Lake sign is shown in the foreground of Figure 10D, with 
the dry lake bed and tree line approximating the historic water level of Johnson Lake sign in the background. Figure 10E 
provides a more extensive view of the dry lake bed in foreground behind Johnson Lake sign and a small area of remaining water 
in the distant background, with the extension of the tree line. 

 

A 
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Figure 10. Examples of adverse environmental impacts from hydroperiod alterations in Gold Head Branch State Park in: 

A. small natural sinkhole lake with B. enlargement of “No Swimming” sign near dewatered lake; 
C. dewatered Johnson Lake with sign depicting historic water level near the tree line; 

D. dry lake bed and boat launch referenced in the Johnson Lake sign and 
E. dry lake bed in foreground behind Johnson Lake sign, with small area of remaining water in the background 

E 

D 
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Figure 11A shows a private dock elevated above part of the dry lake bed of Brooklyn Lake (foreground), west of State Road 21. 
Figure 11B is an enlargement of that dock, with the tree line in the background representing the approximate historic water level 
of Brooklyn Lake. Figure 11C shows private docks elevated above a more extensive dewatered area of Brooklyn Lake, east of 
State Road 21, with the tree line in the background again representing the approximate historic water level of Brooklyn Lake. 
The dry lake bed is covered with numerous sandy trails of various widths, ranging from game trails and foot paths to those used 
by motorized vehicles. 

 

 

A 

B 
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Figure 11. Examples of adverse environmental impacts from hydroperiod alterations in Clay County lakes with privately owned 

lake-front property: 
A. private dock elevated above dry lake bed of Brooklyn Lake west of State Road 21; 

B. enlargement of that dock and tree line representing the approximate historic water level; and 
C. private docks elevated above dewatered Brooklyn Lake east of State Road 21 

 
Figure 12 shows a dewatered tributary (bottom right) in western Jennings State Forest, in the vicinity of the initial DuPont Trail 
Ridge Mine. Dead and declining trees, shown in the background of Figure 12, are concentrated near the tributary. Immediately 
behind co-author Bacchus in Figure 12 is the largest specimen of dogfennel (Eupatorium capillifolium) documented in her 40 
years of research conducted in Florida. The dogfennel is approximately 4 m (13 ft) in height. Dogfennel is one of the first 
invasive species to appear after natural hydroperiods are altered. The large size of the dogfennel and concentration of dead and 
declining trees in the vicinity of the tributary provide two forms of evidence that hydroperiod alterations of that area were 
initiated many years ago and are continuing, particularly based on the length of time required for trees subjected to chronic water 
stress from hydroperiod alterations to die. 

C
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Figure 12. Examples of adverse environmental impacts from hydroperiod alterations at dewatered tributary in Jennings State 
Forest 

 
5.2 The Relationship between Fractures and Sinkholes  
Large conductive fractures dominate fluid flow in the subsurface (Ortega, Marrett, & Laubach, 2006) and are important in 
controlling the orientation of solution channels and development of circulation patterns in ground water (Faulkner, 1973), thus 
influencing well productivity (Brook, 1985; Brook, Sun, & Carver, 1988). Sinkhole development over geologic time can occur 
along linear features and conduits of any scale (Littlefield, Culbreath, Upchurch, & Stewart, 1984). The distribution and shape of 
sinkholes in the FAS have been used to map fractures in the Ocala limestone (Brook & Allison, 1983). Brook and Sun (1982) 
illustrated how relict sinkholes, including depressional wetlands and open-water areas ranging in size from ponds to lakes, are 
aligned along fractures throughout the FAS. The non-random distribution of solution features is controlled by regional joint 
patterns and extends beyond the present-day shoreline, in the submarine platform of the Floridan aquifer, where the most 
pronounced deformation from solution follows the reef and back-reef edge of the Late Cretaceous-Paleocene carbonate platform 
and collapse and filling of submarine sinkholes is a process that continues today (Popenoe, Kohout, & Manheim, 1984). 
Therefore, the increased probability of subsidence such as sinkholes is associated with fractures (Brook & Sun, 1982; Littlefield, 
Culbreath, Upchurch, & Stewart, 1984). One of the procedural steps recommended for sinkhole analysis by Ogden (1984) is the 
use of photo-lineament trends, further emphasizing the functional relationship between fractures and sinkholes. Hall and 
Metcalfe (1977) used the remote sensing technique of fracture trace lineament analysis to assess the potential for sinkhole 
occurrences in the vicinity of multiple large-scale mining projects in west-central Florida. Casper, Byron, and Degner (1981) 
conducted a more extensive analysis of that area using aerial photography and Landsat orbital color-infrared imagery and 
concluded that many of the new sinkholes appeared to be located in proximity to mapped fracture-traces or lineaments and the 
intersections between those features. Increased probability of subsidence such as sinkholes is associated with fracture 
intersections (Brook & Sun, 1982; Littlefield, Culbreath, Upchurch, & Stewart, 1984) and new sinkholes are known to form 
from the loss of hydrostatic support following withdrawals of large quantities of water from the artesian Floridan aquifer 
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(Metcalfe & Hall, 1984). Therefore, frequency and distribution of fracture intersections are important considerations for insuring 
that proposed developments will be sustainable.  
The shortest distances from sinkholes to fractures and fracture intersections shown in Table 4 reveals that the modern sinkholes 
reported in the state database are more closely associated with the fractures and intersections mapped using satellite images 
(FDOT, 1973) than with aerial photographs (Vernon, 1951). This is consistent with the results from similar analyses of the 
proximity of modern sinkholes in Citrus and Levy Counties, where all modern sinkholes from the state database were located 
within 2.75 km (1.7 mi) of a fracture mapped by FDOT (1973). When the two data sets for fractures in Citrus and Levy Counties 
were combined, all modern sinkholes were located within 250 meters of a fracture (Lines et al., 2012). Although the state 
database reported no modern sinkholes for Baker County and only three for Clay County, our study identified 220 fracture 
intersections in Baker County and 610 in Clay County (Table 3) for the fractures mapped by Vernon (1951) and FDOT (1973). 
The number of fracture intersections in Baker County is similar to the number of fracture intersections for Citrus and Levy 
Counties, 210 and 200, respectively (Lines et al., 2012). The fact that the number of fracture intersections in Clay County is 
approximately three times the number of fracture intersections in Baker, Citrus and Levy Counties should suggest that mining 
and other projects that result in groundwater alterations would have a considerably greater potential for adverse environmental 
impacts. In fact, Figure 9 shows that fractures intersect two of the supply wells permitted for the initial DuPont Trail Ridge Mine 
and the remaining five supply wells for that mine are in proximity to fractures and fracture intersections. Those conditions would 
magnify the adverse groundwater impacts solely from the mining. 
The tendency for more sinkholes to be reported in highly urbanized areas may be because sinkholes are discovered more readily 
where populations are denser and the sinkholes affect more people or because urbanized areas actually create more sinkholes 
(Littlefield, Culbreath, Upchurch, & Stewart, 1984). As an example, no modern sinkholes were reported in one area of Florida 
until approximately 1981, after initiation of grading for a highway project and operations of a limestone mine began adjacent to 
the highway project in 1983, leading to the formation of sinkholes in the highway and swallets in the roadside ditches due to 
changes in the water table and flow gradient (Koch, 1984). Similarly, since 1900, approximately 4,000 human-induced sinkholes 
formed in Alabama, compared to an estimated 50 natural collapses. Induced sinkholes result from construction or decline in the 
water table primarily due to: (a) loss of buoyant support; (b) increase in the velocity of movement of ground water; (c) water 
table fluctuations at the base of unconsolidated deposits; and (d) induced recharge (Newton, 1977). The FAS extends through the 
coastal plain of Alabama (Krause & Randolph, 1989). Consequently, based on those findings, fewer sinkholes may have been 
reported for Baker and Clay Counties because of the rural nature of those counties and the formation of additional sinkholes may 
be induced in those counties in our northeast Florida study area by the proposed mining and groundwater supply wells.  
Another reason that no modern sinkholes were included in the state sinkhole database for Baker County and only three were 
included for Clay County may be that the state sinkhole database (http://fcit.usf.edu/florida/maps/) only includes sinkholes 
reported through 2008. Other sinkholes may have occurred in the study area since 2008. That database also does not include 
relict sinkholes, only modern sinkholes. Littlefield, Culbreath, Upchurch, and Stewart (1984) reported that linear features can be 
detected at all scales by the presence of ancient sinks, which are synonymous with relict sinkholes. Their study used USGS 
quadrangle maps to identify topography and closed depressions to identify 2,303 relict sinkholes in one county, more than an 
order of magnitude greater than the 138 modern sinkholes identified in that county. Use of remote imagery in that study included 
1:20,000 aerial photographs for location of fracture traces and 1:500,000 Landsat images for recognition of lineaments. 
Geophysical methods included horizontal electrical profiles, vertical electrical soundings, tri-potential profiles, and microgravity 
and triple-track gravity profiles in that study. 
Depressional wetlands, such as pond-cypress (Taxodium ascendens) wetlands, represent one type of ecosystem located in relict 
sinkholes. These cypress wetlands occur throughout the extent of the FAS, are the primary type of wetland throughout the 
proposed Levy nuclear plant site and surrounding vicinity and also occur in Baker County. Sinkhole lakes represent another 
relict-sinkhole ecosystem type characteristic of the FAS. A detailed description of sinkhole lakes in Florida is provided by FNAI 
and Florida Department of Natural Resources (1990). The dark, circular areas in the southern half of the ESRI World Imagery 
satellite image used as the base map in Figure 9 are sinkhole lakes. All three of the modern sinkholes reported for Clay County 
(Figure 9) are associated with sinkhole lakes (relict sinkholes). Also apparent from Figure 9 is the relative absence of fractures 
mapped by Vernon (1951) and FDOT (1973) in the vicinity of sinkhole A. A plausible explanation may be the extensive surface 
and vegetation alterations in that area that may have occurred as part of the Camp Blanding Military Reservation operations 
before the Vernon (1951) and FDOT (1973) maps were produced. Another important consideration is that in many cases, 
microfracture abundance is related directly to macrofracture abundance (Marrett, Ortega, & Kelsey, 1999; Ortega & Marrett, 
2000), but microfractures were not mapped by Vernon (1951) or FDOT (1973). No claims were made by Vernon (1951) or 
FDOT (1973) that the mapped fractures were the only fractures in those counties (Faulkner, 1973).  
Reporting only the number and location of sinkholes also ignores the fact that individual sinkholes coalesce with lateral increase 
in size (Brook & Allison, 1983). The locations of the three modern sinkholes reported in Clay County, in proximity to the 
sinkhole lakes (Figure 9), suggests that these modern sinkholes are coalescing with the relict sinkholes. This raises additional 
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concerns that the initial DuPont Trail Ridge Mine and its supply wells could be responsible for dewatering some of the sinkhole 
lakes in the surrounding area. In addition, mining and other projects that result in groundwater alterations, but do not create many 
new sinkholes, most likely are dewatering sinkhole lakes, depressional wetlands and streams in the vicinity. The relict sinkholes 
in Baker and Clay Counties were not mapped in our study. A comparison of modern and relict sinkholes in Baker and Clay 
Counties, however, should confirm that relict sinkholes are more abundant than modern sinkholes reported in the state database 
in those counties. 
The relationship between fractures and sinkholes can be seen more clearly in the vicinity of the phosphate mines in west-central 
Florida (Figure 13A-C). Figure 13C is an enlargement of Figure 13B in the location of the cluster of active, inactive and proposed 
phosphate mines. This area also includes a dense network of fractures that extend north, east, south and west for many kilometers 
beyond the boundaries of those mines, including fractures extending to and through the area of the recent sinkholes shown in 
Figures 13A and B. The multiple dark and green geometric signatures in the aerial imagery of Figure 13C are mined areas that 
previously were ground water, but now are exposed (daylighted) as the result of those mining operations. Six new sinkholes 
(Figure 13A, yellow circles), including a lethal sinkhole, opened in that vicinity while the USACE was evaluating the areawide 
direct, secondary and cumulative impacts of multiple existing and proposed phosphate mines. The hydrologic model created by 
CH2M Hill for the USACE to evaluate those impacts did not include modeled flow through those fractures (USACE, 2012; 
2013). All of those new sinkholes are located in Seffner (Hillsborough County), Florida, northwest of the area of extensive 
existing and proposed phosphate mines (Figure 13B and 13C). Table 5 includes the date each of the new sinkholes opened during 
February through April, 2013 and the coordinates and address of each sinkhole. All but the third sinkhole resulted in property 
damage, based on unpublished data from the Florida Geological Survey (FGS).  
 
Table 5. New sinkholes in Seffner (Hillsborough County), Florida associated with fractures mapped by Vernon (1951) and 
FDOT (1973) that extend through existing and proposed phosphate mine areas 

 
Sinkhole ID 

 
Date 

Coordinates 
          Longitude (W)               Latitude (N)

 
Address 

1 2/28/13 -82.281159 27.971181 240 Faith Way Drive 
2 3/4/13 -82.294728 27.988304 1204 Cedar Tree Lane 
3 3/9/13 -82.27896 27.99446 107 Cash Drive 
4 3/23/13 -82.26261 27.97771 1427 Lake Shore Ranch Dr 
5 3/26/13 -82.29674 27.99352 5315 Peach Ave 
6 4/11/13 -82.29566 27.99033 5218 Lime Avenue 

 
The first new sinkhole resulted in the death of Seffner resident, Jeff Bush, when he and the bedroom of his house were 
swallowed by that sinkhole while he was sleeping. That sinkhole was recorded by the FGS as 50-feet (15.2-m) deep and 50-feet 
wide. All of the sinkholes except the third sinkhole resulted in property damage. Photographs of the lethal sinkhole and the 
destruction it caused to homes and surroundings were provided by USA Today 
(http://www.usatoday.com/story/news/nation/2013/03/04/sinkhole-home-florida/1961997/). The first new sinkhole, which 
resulted in the death of Mr. Bush, is associated with a fracture mapped by FDOT (1973) that extends into and through the area of 
the phosphate mines reportedly evaluated in the final areawide EIS (Figure 13A-C). That fracture also extends through an 
existing sinkhole from the state database (blue circle) that is located in proximity to the lethal sinkhole and at an intersection with 
another fracture mapped by FDOT (1973). The second new sinkhole that opened in Seffner is located in proximity to another 
fracture mapped by FDOT (1973) that intersects the fracture associated with the sinkhole responsible for the death of Mr. Bush. 
New sinkholes 2, 5 and 6 are aligned in a linear pattern in proximity to an existing sinkhole from the state database. The linear 
alignment of those four sinkholes suggests they are associated with a fracture oriented northwest to southeast that was not 
mapped by Vernon (1951) or FDOT (1973). New sinkholes 3 and 4 are located northwest of another existing sinkhole from the 
state database. Those sinkholes are in proximity to the unmapped extension of a fracture to the southeast, mapped by Vernon 
(1951). The alignment of those sinkholes suggests that fracture extends to the northwest, through those sinkholes (Figure 13A).  
Popenoe, Kohout, & Manheim (1984) documented the extension of previously mapped fractures in areas of Florida beyond the 
present-day shoreline in the submarine platform of the Floridan aquifer, where dissolution of Eocene and Oligocene rocks follow 
fractures caused by deep collapse, and sinkholes propagate to the surface through the overlying Neogene section along these 
trends. Raabe & Bialkowska-Jelinska (2010) used hypothetical extensions of previously mapped fractures in their west-central 
Florida study area to discuss the potential environmental implications of those geological features. If the fracture aligned with the 
third new sinkhole and existing sinkhole from the state data base also is extended to the southwest, it would extend through the 
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cluster of phosphate mines included within the larger white square in Figure 13B. The larger white square shows the area of some 
of the active and inactive phosphate mines reportedly evaluated in the areawide EIS (USACE, 2013). The boundaries of 
Hillsborough, Polk, Manatee, Hardee, Highlands and Osceola Counties are shown in black in Figure 13B. The smaller white 
square in Figure 13B is the Seffner area where the six new sinkholes appeared. Although not shown in Figure 11B, some of the 
fractures that dissect the phosphate mining area extend to the coastline of the coastal counties. Therefore, diversion of ground 
water previously flowing to estuaries and other sensitive coastal areas could have occurred already as a result of groundwater 
alterations and specifically groundwater depletions caused by active and inactive phosphate mines. The final areawide EIS 
discussed the role of sinkholes and karst conduits in the aquifer, but did not provide an evaluation of adverse impacts of any of 
those sinkholes identified above, including the resulting death and extensive property destruction (USACE, 2013). The high 
connectivity represented by the dense fracture network we observed in the aquifer suggests that effects of water drawdown may 
be greater than the localized effects predicted by the EIS.  
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Figure 13. Modern sinkholes from state database (blue circles) associated with fractures mapped by Vernon (1951, yellow 

diagonal lines) and FDOT (1973, red diagonal lines) and 
A. six new sinkholes opening in 2013 (yellow circles) in vicinity of west-central Florida phosphate mining area; 

B. proximity of six new sinkholes to fractures extending through mining areas in Polk and Hardee Counties; 
C. enlargement of mining areas in Polk and Hardee Counties, with fractures and modern sinkholes 
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because the “ponds” are excavated into the surficial aquifer and ground water flows into those excavated “ponds” from 
surrounding areas to replace the water that is withdrawn by pumping and to replace water that is lost to evaporation. The surficial 
aquifer not only is the source of recharge for the FAS, natural lakes and streams, it is the primary source of water for the native 
vegetation, particularly forested areas. This loss of water from ponds and other mine pits excavated into the surficial aquifer is 
most critical to the environment when ambient temperatures are highest (e.g., summer), during seasonal periods of low rainfall 
and during periods of drought and represents non-mechanical dewatering of the aquifer system (Bacchus, 2006). These types of 
mining permits suggest that anthropogenic groundwater alterations, both alone and combined with periods of drought, are 
responsible for the pattern of adverse environmental impacts occurring in the study area.  
Following are definitions of drought: 

Drought - a relative term denoting a period during which rainfall is either totally absent or substantially 
lower than usual for the area in question, so that there is a resulting shortage of water for human use, 
agriculture, or natural vegetation and fauna. (Allaby, 2008) 
“Meteorological Drought 
Meteorological drought is defined usually on the basis of the degree of dryness (in comparison to some 
normal or average amount) and the duration of the dry period. Definitions of meteorological drought must 
be considered as region specific since the atmospheric conditions that result in deficiencies of precipitation 
are highly variable from region to region. For example, some definitions of meteorological drought identify 
periods of drought on the basis of the number of days with precipitation less than some specified threshold. 
This measure is only appropriate for regions characterized by a year-round precipitation regime such as a 
tropical rainforest, humid subtropical climate, or humid mid-latitude climate. Locations such as Manaus, 
Brazil; New Orleans, Louisiana (U.S.A.); and London, England, are examples. Other climatic regimes are 
characterized by a seasonal rainfall pattern, such as the central United States …. Other definitions may relate 
actual precipitation departures to average amounts on monthly, seasonal, or annual time scales.” (National 
Drought Mitigation Center, 2014) 
"Hydrological Drought 
Hydrological drought is associated with the effects of periods of precipitation (including snowfall) shortfalls 
on surface or subsurface water supply (i.e., streamflow, reservoir and lake levels, groundwater). The 
frequency and severity of hydrological drought is often defined on a watershed or river basin scale. 
Although all droughts originate with a deficiency of precipitation, hydrologists are more concerned with 
how this deficiency plays out through the hydrologic system. Hydrological droughts are usually out of phase 
with or lag the occurrence of meteorological and agricultural droughts. It takes longer for precipitation 
deficiencies to show up in components of the hydrological system such as soil moisture, streamflow, and 
groundwater and reservoir levels. As a result, these impacts are out of phase with impacts in other economic 
sectors. For example, a precipitation deficiency may result in a rapid depletion of soil moisture that is almost 
immediately discernible to agriculturalists, but the impact of this deficiency on reservoir levels may not 
affect hydroelectric power production or recreational uses for many months. Also, water in hydrologic 
storage systems (e.g., reservoirs, rivers) is often used for multiple and competing purposes (e.g., flood 
control, irrigation, recreation, navigation, hydropower, wildlife habitat), further complicating the sequence 
and quantification of impacts. Competition for water in these storage systems escalates during drought and 
conflicts between water users increase significantly.” (National Drought Mitigation Center, 2014) 

5.4 Adverse Impacts to Mitigation Banks and Other Conservation Areas from Hydroperiod Alterations 
The U.S. Clean Water Act (CWA) of 1972 (33 U.S.C. §1251 et seq.), summarized at 
http://www2.epa.gov/laws-regulations/summary-clean-water-act, requires that all direct, indirect and cumulative impacts of 
developments that would result in the discharge of material into wetlands, such as existing and proposed mining in Baker and 
Clay Counties be assessed. Cumulative impacts (effects) were defined by 40 CFR § 1508.7 as “the impact on the environment 
which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future 
actions regardless of what agency (Federal or non-Federal) or person undertakes such other actions.” Cumulative impacts of 
groundwater pumping have resulted in significant impacts to existing legal users (shallow wells) and property damage from 
sinkholes are well documented and resulted in several studies conducted in the vicinity of phosphate mining in west-central 
Florida, documenting approximately 760 dry wells and 140 sinkholes created within 10 miles (16 km) of the drawdown in that 
area (Peterson & Rumbaugh, III, 2012). Bacchus (2001), Bacchus et al. (2003) and Bacchus, Archibald, Britton, and Haines 
(2005) provided examples of the types of cumulative adverse environmental effects from hydroperiod alterations, like those that 
would occur from the proposed mines in our northeast Florida study area. Lines et al. (2012) included the definition of 
hydroperiod, more detailed discussions and photographs of environmental damage from cumulative impacts of hydroperiod 
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alterations that also are relevant to the northeast Florida study area, with emphasis on adverse impacts to wildlife habitat such as 
wetlands throughout the FAS, including habitat critical for the survival and recovery of threatened and endangered species. 
Those impacts also were addressed by Bacchus (1998; 2006) and include destructive fires and premature decline and death of 
trees from hydroperiod alterations. Impacts such as bark beetle infestations and fungal infections have been shown to occur in the 
absence of, or to precede destructive wildfires that further injure or destroy stem, crown, or root tissues in areas where the natural 
defenses of trees have been compromised by hydroperiod alterations (Bacchus, 2007; Bacchus et al., 2003; Bacchus, Archibald, 
Britton, & Haines, 2005). Authors who have considered bark beetle infestations (Dixon, Corneil, Wilkinson, & Foltz, 1984; 
McHugh, Kolb, & Wilson, 2003; Menges & Deyrup, 200l) and fungal infections (Otrosina, Bannwart, & Roncadori, 1999; 
Otrosina, Hess, Zamoch, Perry, & Jones, 1997) as responses to fire, or second-order fire effects resulting in post-fire tree decline 
and mortality have not evaluated hydroperiod alterations as the triggering mechanism for destructive fire in their research. These 
adverse impacts also include disruption of the natural hydroperiod during the period from mating to emergence of frogs, which 
can eliminate an entire year of reproduction for that link in the food chain (Moler & Franz, 1987). This emphasizes the fact that 
the lifecycles of wetland plants and animals are adapted to fluctuating water levels and if the duration, extent, or seasonality of 
those natural fluctuations is altered, those fluctuations can be fatal for an entire generation or all future generations.  
Surficial-aquifer excavations, such as those that occurred with the DuPont Trail Ridge Mines and Florida Rock Vulcan Mine 
would occur with the proposed Old Castle mine, result in the following categories of alterations of the natural hydroperiod: (a) 
nonmechanical (passive) groundwater withdrawals, (b) physical displacement of water in the surficial aquifer and (c) capture and 
impoundment of overland flow (Bacchus, 2006). Nonmechanical dewatering occurs from mines, stormwater ponds and other 
excavations into the surficial aquifer due to evaporative loss following conversion of groundwater areas to surface waters, and 
results in the greatest environmental harm, including chronic water stress, during normal dry seasons and periods of abnormally 
low rainfall. Swancar, Lee, and O’Hare (2000) provided a description of how groundwater flow in the FAS from the surrounding 
basin plays an important role in maintaining surfacewater levels when net precipitation is negative (less than evaporative loss) 
over the long term. Physical displacement of ground water occurs because ground water in surrounding areas flows into the large 
void space created in the surficial aquifer after excavated material is removed. Subsequently there will be a new, lower 
equilibrium for the water table that will result in less ground water available to surrounding areas. Capture and impoundment of 
water that previously would have flowed to down-gradient wetlands, streams or coastal areas results from berms and raised dikes 
generally required in mining projects (Bacchus, 2006). Adverse environmental impacts from hydroperiod alterations, such as 
oxidation of organic soils and destructive wildfires, cannot be reversed after mining has occurred or even pumping that is 
reduced or halted (Bacchus, 2006; Southwest Florida Water Management District, 1996; Stewart & Stedje, 1990; Watson, Stedje, 
Barcelo, & Stewart, 1990). Based on the preceding descriptions of how hydrologic alterations permeate beyond the point of 
origin through fractures and sinkholes, both modern and relict, adverse environmental impacts to off-site mitigation banks, parks, 
state and national forests and other conservation areas should be expected to occur throughout the FAS. 
5.5 Evaluation Alternatives 
The U. S. Council on Environmental Quality, Executive Office (1997) of the President published a report in January 1997 
entitled, “Considering Cumulative Effects Under The National Environmental Policy Act” (Cumulative Effects Report), to 
address the “incremental loss of wetlands under the national permit to dredge and fill and from land subsidence” that may last for 
many years beyond the life of the action that caused the effects (e.g., acid mine drainage, radioactive waste contamination, 
species extinctions). Lines et al. (2012) included a list and discussion of the eight types of cumulative effects from Table 1-3 of 
the National Environmental Policy Act (NEPA) Cumulative Effects Report to ensure sustainable development. The evaluation 
procedures described in the Cumulative Effects Report can be applied to all proposed projects to reduce adverse impacts to 
mitigation and conservation areas, even if permits from federal agencies are not required. Subsidence susceptibility models of 
future sinkhole development in the FAS suggested that the most important measures of susceptibility to future sinkhole 
development were the number of sinkholes and number of fractures in a cell, followed by the number of fracture intersections 
and length of fractures in a cell, suggesting that sinkhole and bedrock fracture data can be used to develop relatively accurate 
ground subsidence susceptibility maps in the FAS and similar karst areas (Brook & Allison, 1983). Procedures described by 
Ogden (1984) should be considered. Geophysical profiling methods using appropriate electrode spacing are effective in locating 
the center of a fracture zone (Stewart & Wood, 1984). Because fractures and associated dissolution features can be major 
subsurface channels for groundwater flow, physical and chemical tracers can be used to characterize subsurface conditions. 
Physical tracers include water temperature differences, such as those used in the thermal infrared evaluation in the study area by 
Raabe and Bialkowska-Jelinska (2010). More common tracing agents are contaminants, such as those described by Bacchus and 
Barile (2005) and those added to water at specific locations in an attempt to identify discharge points and velocity. Non-toxic 
water-soluble fluorescent dyes are an example of such a tracer. 
Kincaid, Davies, Werner, and DeHan (2012) used fluorescent dyes to determine peak tracer travel times and associated 
minimum groundwater velocities at eight stations associated with the City of Tallahassee’s municipal sewage effluent spray field 
(Southeast Farm Wastewater Reuse Facility) in Leon County, Florida. For those eight stations, the velocities were "maximum 
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recorded flow rate: 998 ft/day; average recorded flow rate: 688 ft/day." Five of the eight stations were located approximately 11 
miles (17.7 km), straight-line distances, from the dye-injection locations. Those estimates were considered as minimum 
velocities because they assume a straight-line flow path. This tracer study led to the conclusion that nitrate-contaminated ground 
water from Tallahassee’s municipal sewage effluent spray field flows predominantly southwestward to Wakulla Spring, in the 
Wakulla County state park, “at a rate of between 671 and 977 feet per day,” with overflow from the primary aquifer conduit also 
flowing into Indian, Sally Ward and McBride Slough springs. This supports the findings of Bacchus and Barile (2005) that 
treated sewage effluent is the primary source of nitrogen pollution fueling the growth of alien, invasive and nuisance vegetation 
in Wakulla Springs. In that dye tracer study, 12 of the 406 samples (three percent) collected from the St. Marks River Rise also 
contained fluorescent compounds that could be attributed to the injected tracers, compared to approximately 64 percent of 
samples collected from each of the Wakulla area discharges (Kincaid, Davies, Werner, & DeHan, 2012). The appearance of 
fluorescent compounds associated with the St. Marks River, southeast of the sprayfield, was not similar to the flow responses to 
southwest sites, suggesting the need for additional research to confirm flow to the southeast from the sprayfield (Todd Kincaid, 
pers. com., December 31, 2013). That dye-tracer study did not consider flow through fractures, which could account for 
southwest flow at different velocities from southwest flow via sinuous dissolution conduits linked to Wakulla, Indian, Sally Ward 
and McBride Slough springs. 
Compared to alternatives generally implemented, if any site analysis is included during the permitting process, some consider 
one well-designed tracer test, properly done and correctly interpreted, as worth 100 computer simulations (Quinlan, 1991). For 
example, Renken et al. (2005) used tracers to calibrate models used in south Florida by regulatory agencies to evaluate the 
impacts of groundwater flow and potential contamination of municipal supply wells from additional mining proposed in the 
vicinity of those supply wells. Tracers used in that calibration even revealed groundwater flow occurring in the vicinity of these 
mine pits that was orders of magnitude greater than predicted by the models developed by the regulatory agencies. Subsequently 
the conceptualization of groundwater flow in that area was revised, based on the groundwater tracer data (Renken et al., 2008).  
We recommend the use of these approaches by permitting and regulatory agencies to evaluate and predict the magnitude 
and extent of impacts on ground water and surface waters in the FAS for proposed projects involving federal review or the 
existing and proposed Baker and Clay County projects addressed in our study area. If any evaluation of hydroperiod alteration is 
attempted, that evaluation typically includes the use of borehole (well) data and MODFLOW models that assume porous-media 
flow to characterize groundwater flow in Florida’s karstic carbonate FAS. The inadequacies of this approach, including the 
extremely low probability (typically 0.01-0.02) that those boreholes will intersect major subsurface channels, are addressed by 
Quinlan (1991), Worthington (2003; 2009) and Worthington, Smart, and Ruland (2002). 
6. Conclusions  
As with the related study in Citrus and Levy Counties (Lines et al., 2012), this study also reinforces the importance of evaluating 
historic geospatial information on lineaments indicative of fractures and associated sinkholes that may predispose affected areas 
to instability and high transmissivities when planning developments. This type of evaluation is important particularly for projects 
such as the existing and proposed mines described in this study that are known to alter natural hydroperiods and water quality 
that are essential for the survival and recovery of wildlife and wildlife habitat, including habitat in mitigation banks and other 
conservation areas. The network of fractures throughout the northeast Florida study area link existing and proposed mine 
projects to mitigation banks, parks, state forests and other conservation areas, suggesting that the zone of impact due to 
cumulative adverse environmental impacts from these proposed projects will have significant adverse environmental impacts on 
those mitigation banks, parks, state forests and other conservation areas. Thus, more detailed analysis of the off-site impacts of 
these types of proposed developments should be conducted using geophysical methods such as horizontal electrical profiles, 
vertical electrical soundings, tri-potential profiles, and microgravity and triple-track gravity profiles, in addition to tracer studies to 
determine groundwater flow pathways and velocities. 
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