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Abstract 

The aim of this study was to predict the three climatologically data of daily maximum temperature (Tmax), daily 
minimum temperature (Tmin) and daily total precipitation (Ptot) at the Hamilton airport (HA), Ontario, Canada. 
To serve the stated objective, the observed Tmax, Tmin and Ptot data from the years of 1960 to 2005 at the 
Hamilton and Toronto airport, Ontario, Canada were utilized. The dataset of Hamilton airport from 1960 to 1984 
were then fitted with Time Series (TS) regression model to predict the Tmax, Tmin and Ptot for the years of 
1985 to 2005 at the Hamilton airport, Ontario, Canada. Additionally, the changes in the climatologically data 
averaged over one- and 10-year period were also investigated. The results showed that the TS model was best 
suited in generating the daily maximum temperature and daily minimum temperature, whereas it was not capable 
of evaluating the daily total precipitation at the Hamilton airport. Finally, a detailed statistical analysis was 
performed to support the findings. 

Keywords: climatologically data, daily maximum temperature, daily minimum temperature, daily total 
precipitation, time series, statistical analysis 

1. Introduction  

The climate of a place is the description of the long-term pattern of weather in a particular area (USGCRP, 2009). 
More precisely, it is the average weather of climatologically data, such as averages of temperature, precipitation, 
humidity, wind velocity, sunshine, and other phenomena such as frost, fog, and hail storms, for a particular 
region in a period of usually over 30-years (Ahrens, 2011). A day-to-day variation of any factor that is 
characteristic of the climate of a particular place is also considered. Although the climate assumes a long-term 
consistency and stability in these patterns, climate is nevertheless a changeable phenomenon (Hengeveld et al., 
2005). 

The historical record shows that both natural and human factors change Earth’s climate (Gore, 2007; Letcher, 
2009, EPA, 2014). Before the Industrial Revolution in the 1700s, changes in climate resulted slowly over a wide 
range of time scales, and they were primarily due to the natural causes of volcanic eruptions, and changes in solar 
activity and Earth’s orbit (Hile, 2009; EPA, 2014). Since the Industrial Era of 1700s, the humans had influenced an 
increasing effect on climate, in particularly by adding billions of tons of heat-trapping greenhouse gases (mainly 
water vapour, carbon dioxide, methane, nitrous oxide and ozone) to the atmosphere (Moomaw, 2002; Hile, 2009; 
EPA, 2014). Most of the observed warming since the mid-20th century is due to human-caused greenhouse gas 
emissions (Gore, 2006; Hile, 2009; Ahrens, 2011; EPA, 2014). Recently, Gore (2014) added that nninety million 
tons of CO2 and other gasses are pumped out every day making the planet hotter, which would equate the 
man-made pollution to 4,00,000 Hiroshima-scale atomic bombs. 

A number of studies showed that the average temperatures have climbed 1.4 degrees Fahrenheit (0.8 degree 
Celsius) around the world since 1880, much of this in recent decades (Hile, 2009; Kegley & Raymond, 2012). 
Australian average temperatures are projected to rise by 0.6 to 1.5 ºC by 2030, and if the global greenhouse gas 
emissions continue to grow at rates consistent with past trends, warming is projected to be in the range of 2.2 to 5.0 
ºC by 2070 (CSIRO, 2010). The 20th century's last two decades were the hottest in 400 years and possibly the 
warmest for several millennia, according to a number of climate studies (Khan, 2009; Marsa, 2013). The oceans 
absorb 85% of the excess heat trapped by the atmosphere resulting the raise in the temperature of ocean water 
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(Cazenave & Llovel, 2010; Levitus et al., 2009). Thus, raising sea level is one of the most visible effects of 
climate change, and the report found that sea levels are increasing more rapidly than in previous decades 
(Hansen, 2007; Gore, 2006; Ahrens, 2011; Hensen et al., 2010). Global average sea level rose roughly eight 
inches from 1880 - 2009 (Church & White, 2011; Church et al., 2011). If current warming patterns continue, 
arctic summers could be ice-free by 2040, and sea levels could rise as much as 23 inches by 2100 (NRDC, 2014). 
Additionally, changing climate has shifted monsoon patterns, which triggers the intense tropical cyclones along 
the western coast of the U.S., Atlantic Canada and Mexico (IPCC, 2013). In Canada, the ramifications have 
already begun across the country, and scientists have predicted that the symptoms could grow worse with each 
passing decade (IPCC, 2013). 

The researchers use computer models to better understand the issues of the climate system and project future 
climate changes. A few number of previous investigations had dealt with the prediction models for the 
climatologically data. Though the climatologically data is typically measured at successive time intervals, the 
previous studies were lacked of Time Series analysis, where ordering is most important (Box et al., 2008; Young, 
2011), to predict the future values based on previously observed data. 

Time Series (TS) analysis is a special type of regression models to estimate the relationships among dependent 
and independent variables (Box et al., 2008; Cryer & Chan 2008). This tool is widely used for modeling and 
analyzing variables for prediction and forecasting purposes in various fields, namely economics, finance, biology, 
and engineering for more than 200 year (Ghafoori & Islam, 2013). In this technique, the memory effect is 
measured by the autocorrelation function (ACF) or serial correlation coefficient (ρk) (Cryer & Chan, 2008; 
Young, 2011). 

2. Research Significance 

This study enhances the findings of the past studies by: (a) incorporating three climatologically data of daily 
maximum temperature (Tmax), daily minimum temperature (Tmin) and daily total precipitation (Ptot) having a 
wide variation in individual values at the Hamilton airport for the years of 1960 to 2005; (b) performing time 
series (TS) regression analysis to predict each of the aboven mentioned climatologically data for the years of 1986 
to 2005; and finally, (c) comparing the predicted Tmax, Tmin and Ptot at the Hamilton airport with the results 
obtained by the experimental procedures. Additionally, the variation in the Tmax, Tmin and Ptot averaged over 
10-year period was also studied. 

3. Methodology 

A total of 16,802 sets of observations (Tmax, Tmin and Ptot) from the Hamilton and Toronto airports were 
utilized for this study. Some missing observations were also present in the both database. Table 1 shows the 
number of missing observations at the Hamilton airport and Toronto airport. It was stated that precipitation with 
very low amount (<0.2mm) was also treated as no rain. The missing observations of daily total precipitation for 
both airports are high in numbers. 

 

Table 1. Number of missing observations  

Name Tmax Tmin Ptot 

Hamilton airport(HA) 153 224 2233 
Toronto airport(TA) 154 230 1995 
Both TA and HA 13 16 604 
 

The missing observations of climatologically data at both the Hamilton airport and Toronto airport were 
determined in the following procedures: 

1) Observations missing at the same day at the both airports were determined using the interpolation.  

2) Observations missing only at the Hamilton Airport were determined using the regression equations and the 
corresponding value at the Toronto airport.  

3) Observations missing at the Toronto Airport were also determined using the regression equation and the 
corresponding value at the Hamilton Airport. 

In order to determine the missing observations at the Hamilton airport or Toronto airport, the observations of 
Tmax, Tmin and Ptot were sorted by month, and a monthly regression equation was determined after omitting 
each missing record. The missing Tmax, Tmin and Ptot data were filled up with the three regression equations as 
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shown in Equations 1, 2, and 3, respectively.  

(Tmax)HAM= a +b* (Tmax)TOR              (1) 

(Tmin)HAM= a +b* (Tmin)TOR              (2) 

Where: a is the intercept of the regression line; b is the slope of the regression line; a and b are the r
egression coefficients 

(Ptot)HAM= a * (Ptot)TOR               (3) 

Where: a is the regression coefficient (slope of the regression line) 

Exploratory data analysis was conducted for the Hamilton airport. Especially, the histogram, box plot and 
density plot of daily maximum temperature, daily minimum temperature and daily total precipitation at the 
Hamilton airport was constructed. The autocorrelation function (ACF) and partial autocorrelation function 
(PACF) analysis were conducted to identify the autoregressive (AR) models for generating the Tmax, Tmin and 
Ptot data at the Hamilton airport. The analysis of the residual plots was performed for all these three cases. 

The daily maximum temperature, the daily minimum temperature, and the daily total precipitation at the 
Hamilton airport averaged over one year were calculated, and the change in the climatologically data over the 
year was also observed. The variation in the yearly averaged Tmax, Tmin and Ptot over the years did not show 
any definite pattern. In order to overcome this phenomenon, the Tmax, Tmin and Ptot averaged over 10-year 
period were determined.  

4. Results and Discussions 

4.1 Retrieve Missing Observations 

The statistical parameters (the coefficients of a and b, Prob(t) of a and b, p-value, R2 and R2adj) of the linear 
regression models for the Tmax, Tmin and Ptot are shown in Tables 2-4, respectively. Tables 2 and Table 3 
shows that the R2 values varied from 0.606 (June) to 0.900(February) with an average of 0.760 for the daily 
maximum temperature, and from 0.563 (July) to 0.877 (March) with an average of 0.769 for the daily minimum 
temperature, respectively. Additionally, the Prob(t) values for all regression coefficients for the Tmax and Tmin 
regression models were in close proximity to 0.0000, which illustrates that the parameters were significant and 
the less likely that the actual parameter value could be zero. Additionally, another reliable parameter for multiple 
regression models R2

adj values for both models were shown to be very close to the R2 values. In the case of Ptot, 
the proposed regression model did not show a good correlation with the dependent and independent variables, 
and only 60% of the data explained by the dependent variables. 

 

Table 2. Statistical parameters of linear regression model for Tmax (Eq. 1) 

Month 
Regression Values Prob(t) of 

R2 R2adj p-value 
a b a b 

January -0.69993 0.98912 2.07e-05 <2.0e-16 0.7097 0.7090 <2.2e-16 
February -0.67174 1.03465 3.78e-14 <2.0e-16 0.8999 0.8996 <2.2e-16 

March -0.49953 1.12381 9.17e-05 <2.0e-16 0.8499 0.8496 <2.2e-16 

April -0.51985 1.21440 0.16e-00 <2.0e-16 0.7299 0.7293 <2.2e-16 

May 2.54295 0.99242 9.81e-16 <2.0e-16 0.6454 0.6446 <2.2e-16 

June 5.63325 0.8372 8.24e-14 <2.0e-16 0.6063 0.6053 <2.2e-16 

July 6.22819 0.81142 <2.0e-16 <2.0e-16 0.6515 0.6508 <2.2e-16 

August 4.63820 0.8738 2.47e-10 <2.0e-16 0.6964 0.6956 <2.2e-16 

September -0.08544 1.05960 0.86e-00 <2.0e-16 0.8277 0.8273 <2.2e-16 

October -0.60642 1.12503 0.10e-00 <2.0e-16 0.8200 0.8196 <2.2e-16 

November -1.15899 1.12402 6.95e-08 <2.0e-16 0.8182 0.8178 <2.2e-16 

December -0.80432 1.09064 3.07e-16 <2.0e-16 0.8677 0.8674 <2.2e-16 
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Table 3. Statistical parameters of linear regression model for Tmin (Eq. 2) 

Month 
Regression Values Prob(t) of 

R2 R2adj p-value 
a b a b 

January -2.40778 0.99625 <2.0e-16 <2.0e-16 0.8638 0.8634 <2.2e-16 
February -2.62498 0.97916 <2.0e-16 <2.0e-16 0.8607 0.8604 <2.2e-16 

March -1.58858 1.07790 <2.0e-16 <2.0e-16 0.8769 0.8766 <2.2e-16 

April -1.77250 1.15319 <2.0e-16 <2.0e-16 0.7521 0.7516 <2.2e-16 

May -2.38829 1.26323 2.3e-13 <2.0e-16 0.6733 0.6726 <2.2e-16 

June -0.27351 0.99109 0.62e-00 <2.0e-16 0.5710 0.5700 <2.2e-16 

July 0.76781 0.87975 0.20e-00 <2.0e-16 0.5629 0.5619 <2.2e-16 

August -2.05664 1.00126 1.6e-04 <2.0e-16 0.6892 0.6884 <2.2e-16 

September -3.45112 1.09761 <2.0e-16 <2.0e-16 0.8502 0.8498 <2.2e-16 

October -2.62824 1.07248 <2.0e-16 <2.0e-16 0.8393 0.8389 <2.2e-16 

November -2.20415 1.06339 <2.0e-16 <2.0e-16 0.8338 0.8334 <2.2e-16 

December -2.28595 0.99274 <2.0e-16 <2.0e-16 0.8506 0.8503 <2.2e-16 

 

Table 4. Statistical parameters of linear regression model for Ptot (Eq. 3) 

Month Regression Value (a) Prob(t) of a R2 R2adj p-value 

January 0.8943 <2.0e-16 0.5474 0.5462 <2.2e-16 
February 0.90270 <2.0e-16 0.7497 0.7490 <2.2e-16 

March 0.93746 <2.0e-16 0.7075 0.7068 <2.2e-16 

April 0.95459 <2.0e-16 0.6799 0.6791 <2.2e-16 

May 0.67739 <2.0e-16 0.5784 0.5774 <2.2e-16 

June 0.61398 <2.0e-16 0.4373 0.4358 <2.2e-16 

July 0.67324 <2.0e-16 0.4737 0.4725 <2.2e-16 

August 0.51751 <2.0e-16 0.2812 0.2795 <2.2e-16 

September 0.81218 <2.0e-16 0.6130 0.6122 <2.2e-16 

October 1.00938 <2.0e-16 0.7277 0.7272 <2.2e-16 

November 0.89430 <2.0e-16 0.7277 0.7270 <2.2e-16 

December 0.88091 <2.0e-16 0.6380 0.6372 <2.2e-16 

 

4.2 Exploratory Data Analysis 

Figures 1-3 show the histogram, box plot and density plot of daily maximum temperature, daily minimum 
temperature and daily total precipitation at the Hamilton airport, respectively. Another parameter of the 
exploratory data analysis of qq-plots for the Tmax, Tmin and Ptot is presented in Figure 4. As can be seen from 
Figures 1 and 2, the daily maximum and daily minimum temperature data follow nearly normal distribution, and 
no outliers were shown in the database. However, in the case of daily total precipitation data, the observations 
were not normally distributed (nearly skewed to right). Additionally, the box plot (Figure 2(b)) and qq-plot 
(Figure 4(a)) of Ptot indicated that the data contained outliers. 

4.3 Time Series Analysis 

Figures 5-7 shows the ACF and PACF of the observed Tax, Tmin and Ptot data for the years of 1960 to 1984 at 
the Hamilton airport. As can be shown from Figures 5 and 6, the autocorrelation function (ACF) for the Tmax 
and Tmin indicated a strong serial correlation at all lags of data, and the data were auto correlated. However, in 
the case of Ptot, as shown in Figure 7, the ACF values for more than AR(1) lie within the 95% confidence level, 
which showed an indication of having no correlation after the lag 1. Results obtained from the Partial 
Autocorrelation Function (PACF) demonstrated that AR(1) model is the best candidate to represent the observed 
data for Tmax, Tmin and Ptot.  
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Figure 6. ACF and PACF of the observed Tmin at the Hamilton airport 

 

 
Figure 7. ACF and PACF of the observed Ptot at the Hamilton airport 

 

The first order Markov model [AR(1) model], shown in Equation 4, would be the best model to generate the 21 
years (1985-2005) of data for the Tmax, Tmin and Ptot at the Hamilton airport. Using the values of sample 
statistics for the Tmax, Tmin and Ptot, Equations 5-7 represent the AR(1) models for the Tmax, Tmin and Ptot at 
the Hamilton airport. The predicted Tmax, Tmin and Ptot at the Hamilton airport were generated for the years of 
1985 to 2005. The observed vs. predicted values of Tmax, Tmin and Ptot at Hamilton airport for the years of 
1985 to 2005 are shown in Figure 8.  

Xt = µx + ρx(1) (xt-1- µx) + tt αx [1- ρ2
x(1)]0.5                          (4) 

Where: μx, σx, ρx(1) are determined by corresponding sample statistics, and tt is chosen  randomly from a 
N(0,1) distribution 

(Xt)Tmax= 11.5889 + 0.929 (xt-1- 11.5889) + tt 10.3456 [1- (0.929)2]0.5        (5) 

(Xt)Tmin = 2.78014 + 0.928 (xt-1- 2.78014) + tt 10.1026 [1- (0.928)2]0.5       (6) 

(Xt)Ptot = 2.15827 + 0.080 (xt-1- 2.15827) + tt 5.5129 [1- (0.929)2]0.5          (7) 

 

 

 

 

 

 

 

 

 

 

 

 



www.ccsenet.org/jsd Journal of Sustainable Development Vol. 7, No. 4; 2014 

78 
 

a) b) 

c) 
Figure 8. The observed vs. predicted Tmax, Tmin and Ptot at Hamilton airport 

 

As can be shown from Figures 8(a) and 8(b), a good correlation with R2 values of 0.936 and 0.825 existed 
between the observed and predicted Tmax and Tmin at the Hamilton airport, respectively. This implied that 
more than 94% and 83% of the variability of dependent variable (Y) was explained by the models. Additionally, 
both models produced the least amount of scattered data, which indicated less error in the analytical results. 
However, the model for predicting Ptot produced a huge amount of scattered data reusting in a little or no 
correlation with R2 of 0.0981 existed between the observed and predicted Ptot at the Hamilton airport, as shown 
in Figure 8(c).  

Figure 9 show the residual plots of the Tmax, Tmin and Ptot at the Hamilton airport. As can be shown in Figures 
9(a) and Figure 9(b), there is a lack of any trends for the Tmax and Tmin at the Hamilton airport and the data are 
presented around the zero line. This indicated that the models are valid for predicting the Tmax and Tmin at the 
Hamilton airport. Since the majority of the data lies below the zero line, it can be added that the model could 
overestimate the results of Tmax and Tmin. In the case of the Ptot, Figure 9(c) demonstrated that the residuals 
did not follow any trend, and they were not presented around the zero line, rather they stayed below the zero line. 
That indicated that the AR(1) model generated the overestimation of the daily total precipitation as compared to 
that recorded at the Hamilton airport. The residual plots of AR(1) model for the Tmax, Tmin and Ptot for the 
years of 1985 to 2005 at the Hamilton airport was shown in Figure 10. The findings obtained from Figure 10 
were shown to identical with those illustrated by Figure 9(c).  
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5. Conclusions 

The results of the study showed that daily maximum temperature (Tmax) and daily minimum temperature (Tmin) 
at the Hamilton Airport can accurately be predicted from the values obtained at the nearly city (Toronto), 
whereas the daily precipitation at the Hamilton airport cannot accurately determined from the observed Ptot at 
the nearly city. Time series of auto correlation having AR(1) model is the best candidate to represent the 
observed data for Tmax, Tmin and Ptot at the Hamilton airport for the years of 1960 to 1985. A good correlation 
with R2 values of 0.936 and 0.825 existed between the observed and predicted Tmax and Tmin at the Hamilton 
airport for the years of 1985 to 2005, respectively, whereas a little or no correlation with R2 of 0.0981 existed 
between the observed and predicted Ptot at the Hamilton airport. The residual plots of AR(1) model for the Tmax, 
Tmin and Ptot from 1985 to 2005 also showed the identical findings. The correlation statistics of Tmax and 
Tmin was greater than 92%, whereas that of for the Ptot was very low (less than 5%). Additionally, the NASH 
model index for the both Tmax and Tmin (= 0.80) was much greater than that of the Ptot (=0). These illustrates 
the findings of the AR(1) model was best suited in generating the Tmax and Tmin data at the Hamilton airport, 
whereas it was nearly unable to predict the Ptot. The 10-year averaged of the Tmax and Tmin at the Hamilton 
airport increased gradually over time, and they raised by 0.80°C and 0.66°C from 1960 to 2005, respectively. On 
the other hand, the 10-year averaged Ptot over time did not show any pattern. 
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