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Abstract 

Proper stewardship of our environment necessitates biodiversity preservation and the wise use of resources. 
Species that may be pests, such as some algae, may also be used innovatively to mitigate their ecological impact. 
In this study, we extracted polysaccharide mixtures from three algae-Undaria, Laminaria, and Ulva-under three 
sets of conditions. The nine extracts contained different polysaccharide compositions and varying carboxylic 
acid contents. The extracts were converted into their respective algal gels by polyion complex formation with 
chitosan. The gels were examined for their ability to remove Cu(II) ions from aqueous solutions by ion 
exchange. The removal efficiency was dependent on the algae extraction conditions, which affected the 
polysaccharide content of the extracts. Among the gels, those derived from the alkaline extractions of Undaria 
and Laminaria exhibited higher Cu(II) removal efficiencies than from the other extracts. Gels prepared from 
extracts with higher uronic acid contents exhibited better removal Cu(II) efficiencies. We expected that an 
extract’s carboxylic acid content would be proportional to its removal efficiency, because the acidic groups in 
the polysaccharide bind to the divalent heavy metal ions. However, this proportionality was not observed: 
extracts that included sulfated polysaccharides were less efficient at ion removal, despite their carboxylic acid 
content. This can be explained by the structural differences in the adsorption sites between alginate and those of 
the sulfated polysaccharide. Thus, an environmental deficit was converted into a potential economic benefit in 
the removal of heavy metals from water. 

Keywords: algae, polysaccharide, extraction conditions, removal efficiency, bivalent copper, biodiversity 

1. Introduction 

1.1 Aichi Biodiversity Targets 

The importance of ecosystems and biodiversity is being increasingly appreciated in terms of their economic 
benefits (Bishop et al., 2010). Intelligent use of biodiverse resources is important for sustainable development 
because ecosystem services (such as provisioning, regulating, supporting, and cultural) are supported by 
biodiversity. Scientific approaches to sustainable development have been reported in various fields such as 
nature conservation (Alvarez & Larkin, 2010), plastics recycling (Chen et al., 2006), research (Wu et al., 2009), 
and education on the sustainable use of bioresources (Kanno et al., 2011). At the 10th Conference of the Parties 
of the Convention on Biological Diversity (CBD-COP10) held in Nagoya, Japan, delegates from more than 100 
countries agreed on a new strategic plan, known as the “Aichi Biodiversity Targets” (Secretary of the 
Convention on Biological Diversity, 2010). This plan comprises a shared vision, a mission, strategic goals, and 
20 ambitious yet achievable goals. A study on the utilization of species that are both problematic and potential 
resources is one possible way to achieve strategic goal B of the Aichi Targets, the reduction of direct pressures 
on biodiversity and promotion of sustainable use. 
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Scheme 1. Extraction of algal polysaccharide mixtures 

 

As a typical heavy metal, we examined Cu(II) ions for removal; many materials have been reported with respect 
to Cu(II) removal and the mechanism has been described in detail (Awual et al., 2013, 2014). To determine the 
extraction conditions preferred for water treatment-i.e., the successful removal of Cu(II) ions by a gelled algal 
extract-we extracted polysaccharide mixtures obtained from a trio of algae species under three sets of extraction 
conditions, producing nine different extracts (Scheme 1). We investigated the relationship between the algal 
polysaccharide extraction conditions and the efficiency of heavy metal ion removal from aqueous media. 

 

 
Figure 2. Representative structures of algal acidic polysaccharides 

 

2. Method 

2.1 Materials 

All reagents were purchased from Wako Pure Chemical Industries, Ltd. Ulva pertusa was collected at the Wajiro 
tideland in Fukuoka prefecture in October, 2012. The samples were rinsed with seawater followed by pure water, 
and were subsequently dried in vacuo. Dried samples of Undaria pinnatifida and Laminaria japonica, collected 
in Fukuoka and Hokkaido, respectively, were commercially available. The protein content of the polysaccharide 
mixtures were assessed using the Biuret reaction. Infrared spectra were measured using an IRPrestige-21 
Fourier-transform infrared spectrophotometer (Shimadzu). Absorption spectra were measured using a V-550 
UV-vis spectrophotometer (JASCO). Atomic absorption spectra were obtained using a Z-2300 polarized Zeeman 
atomic absorption spectrophotometer (Hitachi). 

2.2 Extraction of Polysaccharide Mixtures 

2.2.1 Hot-water Extraction 

Ground, dried algae (1 g) in pure water (50 mL) was boiled for 5 h. The residue was filtered through non-woven 
fabric, and the filtrate was centrifuged at 5,000 rpm for 10 min to remove residual algae. The supernatant was 
dialyzed against pure water and the resulting solution was freeze-dried to afford the polysaccharide mixture. 
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2.2.2 Acid-base Extraction 

Ground, dried algae (1 g) in 0.05 M H2SO4 (50 mL) was stirred at 20 °C for 24 h. The residue was filtered 
through non-woven fabric, and the filtrate was centrifuged at 5,000 rpm for 10 min to remove residual algae. The 
supernatant was dialyzed against pure water and the resulting solution was freeze-dried to afford the 
polysaccharide mixture. 

2.2.3 Alkaline Extraction 

Ground, dried algae (1 g) in 0.05 M H2SO4 (50 mL) was stirred at 20 °C for 24 h. The residue was centrifuged at 
5,000 rpm for 10 min to remove residual algae. The precipitate was collected, added into water (50 mL), and the 
pH was adjusted to 10 by adding sat. Na2CO3. The reaction mixture was stirred at 20 °C for 24 h. The residue 
was filtered through non-woven fabric and then centrifuged at 5,000 rpm for 10 min to remove residual algae. 
The supernatant was dialyzed against pure water, and the resulting solution was freeze-dried to afford the 
polysaccharide mixture. 

2.3 Carboxylic Acid Content in the Polysaccharide Mixtures 

The carboxylic acid content in the polysaccharide mixtures was measured via the carbazole-sulfuric acid method 
using D-glucuronic acid as a standard (Holzman et al., 1947). 

2.4 Preparation of Algal Extract Gel 

At 80°C, an aqueous solution of an algal polysaccharide mixture (1.5 wt%, 5 mL) was added into a solution of 
chitosan (1 mL, 1.5 wt% in 5% acetic acid) to form a hydrogel. The gel was reacted with glutaraldehyde (1 mL, 
2.5% in water) at 80 °C for 30 min. The obtained hydrogel was thrice stored for 3 h in water (100 mL) to remove 
low molecular weight salts in the gel. The algal extract gel was then freeze-dried. 

2.5 Removal of Cu(II) by the Algal Extract Gel 

The freeze-dried gel (0.05 g) was swelled in 0.01 M CuCl2 (5 mL) 20 °C for 7 d. Atomic absorption spectra of 
the Cu ions in the supernatant were obtained, and the copper concentration was determined against a CuCl2 
calibration curve. 

3. Results and Discussion 

3.1 Chemical Constituents of Polysaccharide Mixtures 

Each extract was examined by the Biuret reaction (Sovago et al., 2012), and did not contain any detectable 
proteins (data not shown), suggesting that all anionic groups in the extracts are derived from the polysaccharides. 
Infrared spectra revealed characteristic peaks for the constituents in the mixtures, which typically included 
sulfated, uronic acid-containing, or neutral polysaccharide structures (Figure 3). The absorptions were attributed 
as follows: 850 cm-1 for the C–O–S bending vibration of a sulfate group in the axial position; 1250 cm-1 for the 
S=O stretching vibration of the sulfate group; 1400 and 1650 cm-1 for the C=O group of uronic acid; and 3300 
cm-1 for the OH groups. The infrared results suggested that Undaria afforded no sulfated polysaccharides under 
any of the three extraction conditions. Laminaria afforded a sulfated polysaccharide by the acid-base and 
hot-water extraction methods, but sulfate groups were not detected from the alkaline extraction samples. The 
infrared spectra of all the Undaria and Laminaria extracts revealed absorptions for the carboxylic acids of uronic 
acid at 1400 and 1650 cm-1. Alginate, fucoidan, and neutral polysaccharides could be extracted from Undaria 
and Laminaria. The infrared spectra suggested that all the Undaria extracts and the alkaline Laminaria extract 
contained alginate as an ion exchanger. In contrast, Ulva afforded sulfated polysaccharides under all extraction 
conditions. Both the hot-water and acidic extracts of Laminaria and all of the Ulva extracts contained the uronic 
acid polymers as well as the sulfated polysaccharide. 
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Figure 3. FT-IR spectra of the nine extracts 

Hot-water extraction: solid gray line; Acid-base extraction: solid black line; Alkaline extraction: dotted black 
line. 

 

3.2 Preparation of Algal Extract Gels 

The mixed polysaccharide solutions that were extracted from the algae were solidified by mixing with chitosan. 
This formed a hydrogel that consisted of polyion complexes between the acidic groups of the extracted 
polysaccharides and the amino groups of chitosan. The chitosan amino groups in the polyion complexes were 
crosslinked using glutaraldehyde to form interpenetrating polymer networks (IPNs) (Scheme 2). Although 
dissolution of acidic polysaccharides from the polyion complexes into the supernatant was observed before 
glutaraldehyde crosslinking, free acidic polysaccharides eluted from the IPNs were not observed by the 
carbazole-sulfuric acid method. The extracted polysaccharides, i.e., sulfated polysaccharide, uronic 
polysaccharide, and neutral polysaccharide, seemed to be immobilized in the chitosan network, in the manner 
shown in Scheme 2, because the glutaraldehyde crosslinking reaction did not crosslink either ulvan or alginate. 

 

 
Scheme 2. Formation of an interpenetrating polymer network structure of a hydrogel by glutaraldehyde 

crosslinking 

 

3.3 Removal of Cu(II) by the Algal Extract Gel 

Figure 4 shows the relationship between the carboxylic acid content of an extract and its rate of Cu(II) removal 
by its respective gel. In the figure, diamonds indicate an algal extract gel from an extract having no sulfated 
polysaccharides. The crosses show algal extract gels from extracts with sulfated polysaccharides. The various 
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extraction conditions resulted in different carboxylic acid contents; however, the carboxylic acid content of an 
extract was not proportional to the Cu(II) removal rate by its respective gel. Among the various gels, those which 
were prepared from the alkaline extracts of Undaria and Laminaria possessed higher Cu(II) removal efficiencies 
than the other gels. 

These results suggested that the gels prepared from extracts having higher uronic acid content tended to exhibit 
higher heavy metal ion removal efficiencies from aqueous media, whereas the gels derived from extracts with 
sulfated polysaccharides tended to exhibit lower removal efficiencies. We expected that the carboxylic acid 
content of the extract would be proportional to the heavy metal removal efficiency in aqueous media, because 
the acids chelate the divalent heavy metal ions. However, such proportionality was not observed. 

 

 
Figure 4. Relationship between the carboxylic acid content of the extract and the removal rate of Cu(II) 

(diamonds: extracts with sulfated polysaccharides; crosses: extracts with sulfated polysaccharides) 

 

 
Figure 5. Egg box model for alginate-divalent cation complex 

 

As illustrated by Stengel et al. (2011), many diverse compounds are present within the algal taxonomic group. 
For example, the Phaeophyceae contain alginate but the Chlorophyta do not. Although the structures of the 
polysaccharides are different, both Phaeophyceae and Chlorophyta have uronic, sulfated, and neutral 
polysaccharides. As described by Ray and Lahaye (1995), there are three main types of polysaccharide families 
in Ulva. These include hemicellulosic polysaccharides consisting of glucuronans and glucoxylans. Another is the 
major polysaccharide, ulvan, which consists of sulfated saccharide, uronic acid, and neutral saccharide 
components. Fucoidan, a sulfated polysaccharide of the Phaeophyceae, also comprises sulfated saccharide, 
uronic acid, and neutral saccharides. In contrast, alginate consists of only uronic acids. The distances between 
the acidic groups of fucoidan are longer than those of alginate. Divalent cations can bind to alginate by ion 
exchange. The binding of alginate to divalent cations was described via the "egg box" model as shown in Figure 
5 (Grant et al., 1973). Divalent ions are chelated in binding sites located between two l-guluronate-rich 
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sequences. The egg box structure has not been found in fucoidan and ulvan. Therefore, the structures of the 
adsorption sites in alginate and the sulfated polysaccharide are different. Thus, algal extract gels from extracts 
with higher uronic acid contents tend to exhibit higher heavy metal ion removal efficiencies from aqueous media 
compared to the gels from sulfated polysaccharide-laden extracts. 

4. Conclusion 

Biodiversity loss is effected by habitat encroachment, climate change, overexploitation, invasive alien species, 
and pollution and nutrient loading. In the latter case, Chlorophyta ulva forms green tides which spoil the 
enjoyment of coastal scenery and thus decreases ecosystem services. Undaria pinnatifida has been nominated as 
one of the world's worst invasive alien species. Huge amounts of residual Laminaria are disposed of every year. 
The utilization of algae that are both resources and environmental nuisances is a way to achieve Strategic Goal B 
of the Aichi Targets from the Convention on Biological Diversity: to reduce the direct pressures on biodiversity 
and promote sustainable use.  

In this paper, we showed that easily prepared gels of algae extracts were able to achieve good rates of removal of 
Cu(II) ions from water. We suggested that an extract with a higher uronic acid content and without sulfated 
polysaccharides produces an algal gel that affords higher Cu(II) ion removal rates. The demonstrated utility of 
these extracts highlights their promise as potential, sustainable water treatment agents. Further investigations will 
be required to examine the possible reuses of the Cu(II) ion-adsorbed algal extract gels. 
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