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Abstract 

Jilin Province, as a large agricultural province, has abundant reserve of biomass resources. At the same time Jilin 
Province is currently suffering from energy shortage. Besides, consumption of conventional fossil fuels has 
resulted in the exacerbation of global warming and air pollution. Biomass energy as a renewable and substitutive 
energy, can mitigate the energy crisis and global warming, and improve environmental quality once it is fully 
utilized. This paper estimated the supply potential of biomass energy and integrated LCA and environmental cost 
analysis to make evaluation on biomass utilization taking biomass power generation system as example. 
Acquirable and utilizable amount of biomass energy in Jilin Province is equivalent to 21.26 tce, which can be 
accounted for 25.6% of total energy consumption in Jilin Province in 2011. Among all biomass energy, 59.1% 
comes from straw and agricultural residues, followed by 33.8% from livestock manure. According to the LCA 
results, total environmental impact of biomass power generation system is 0.721, much smaller than 25.321 of 
thermal power generation system. General cost of biomass power generation is higher, however its 
environmental cost is much lower than thermal power generation system (396 yuan/104kWh < 1819 
yuan/104kWh). The results showed that biomass utilization has better environmental advantages and has the 
potential for the mitigation of energy crisis in Jilin Province. 

Keywords: biomass energy, supply potential, biomass power generation, LCA, environmental cost 

1. Introduction 

With the increasingly depletion of conventional and non-renewable energy sources, research on biomass energy, 
which is a kind of renewable, abundant and environmentally friendly substitutive energy has been a hot issue 
around the world. Biomass energy is a kind of energy form that converts from solar energy to chemical energy 
through photosynthesis of green plants directly or indirectly and stored inside biomass (Wang & Ai, 2006).  

Jilin Province, located in the northeast of China, is important industrial base and commodity grain base of China. 
Along with the acceleration of industrialization and urbanization, energy consumption of Jilin Province is 
increasing rapidly. Shortage of primary energy, low energy self-sufficiency rate and unreasonable energy 
structure are urgent problems for Jilin Province to solve. Besides, consumption of conventional fossil fuels has 
resulted in the exacerbation of global warming and air pollution. Reserve of primary energy of Jilin Province 
only accounts for 0.3% of China and its energy self-sufficiency rate is less than 50% (Zhao, 2011). Energy 
consumption is increasing continuously and there is large disparity between energy production and consumption. 
Figure 1 shows energy production and energy consumption of Jilin Province from 2000 to 2010. In 2010, 
conventional fossil energy accounted for 94.1% of the total energy consumption and new and renewable energy 
only accounted for 5.9%. Figure 2 shows the consumption ratio of different kinds of energy. 
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biomass energy compared with conventional energy taking biomass power generation system in Jilin Province as 
example.  

2. Materials and Methods 

2.1 Quantitative Estimation of Biomass Energy Potential 

There are different indexes for the availability evaluation of biomass energy and the amount calculation of 
organic biomass resources in corresponding to different criterion (Li, Ren, & Zhuang, 2001). Here three 
definitions including physical reserve, acquirable and utilizable amount, and equivalent of standard energy are 
introduced (Liu & Shen, 2007). The amount of major biomass resources is evaluated step by step according to 
these three definitions. 

2.1.1 Physical Reserve 

Physical reserve is the total amount of theoretically physical production of major biomass resources from four 
sources including straw and agricultural residues, firewood and forestry residues, livestock manure and 
municipal waste.  

(1) Straw and agricultural residues 

Straw and other agricultural residues mainly come from food crops, cotton, hemp and sugar. Straw-grain ratio 
method is widely adopted to calculate the amount of crop straw. Straw-grain ratio is the ratio of the amount of 
stems above the ground and the amount of economic yield of crops. The yield of straw can be calculated by:  

i

n

1i

i rQcCR 
                                        (1) 

CR: physical amount of straw, Qci: yield of Crop i, ri: straw-grain ratio of Crop i. Straw-grain ratios of different 
crops are shown in Table 1 (Liu, Na, & Wang, 2010; Bi, 2010).  

 

Table 1. Straw-grain ratio of different crops  

Crops Rice Wheat Corn Sorghum Soybean Sunflower Hemp 

Ratio 1 1.3 1.32 1.6 1.16 2.8 2 

 

(2) Firewood and forestry residues 

Forestry biomass resources mainly derive from clearing, cutting and processing residues of forestry production, 
firewood forests and forest tending and thinning. The amount of forestry biomass resources can be calculated 
either with index as area of forests, firewood coefficient and production of per unit area (Yuan, Wu, & Huang, 
2002) or by respectively calculating the amount of firewood forests, residues of forestry production and other 
forestry biomass (Research Group of Chinese Forest Bio-energy [RGCFB], 2006). This article mainly calculates 
the amount of forestry residues, firewood forests, forest tending and thinning and the adjacent small trees by: 

i

n

1i

i rQfFR 


                                      (2) 

FR: physical amount of forestry biomass, Qfi: amount of Forestry biomass i, ri: conversion coefficient. Some 
related conversion coefficients are shown in Table 2 (Yuan et al., 2002; RGCFB, 2006; Shi, 2008). 

 

Table 2. Conversion coefficients of different forestry biomass 

Forestry 
biomass 

Cutting 
residues 

Processing 
residues 

Firewood 
forests 

Forest tending 
and thinning 

Adjacent 
small trees 

Coefficient 
40% of the 

cutting 
amount 

40% of the log 
amount 

100% 100% 100% 

Weight 
conversion 

1.17 t/m3 0.9 t/m3 
50 

m3/hm2,1.17 
t/m3 

8 m3/hm2,0.9 
t/m3 

2 kg/per 
plant 
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(3) Livestock manure 

The amount of manure is related to species, breeds, genders, growing season and so on (Ding, 2000). Here the 
livestock is assumed as mature and the breeding cycle is assumed as fixed. The amount of manure can be 
calculated with daily yields and breeding cycle by: 

i

n

1i

iii

n

1i

i MQdmdQdD  


                             (3) 

D: physical amount of manure, Qdi: the number of Livestock i, di: daily yield of dry manure of Livestock manure 
i, mi: breeding cycle, Mi: manure yield of Livestock i within the whole breeding cycle. Breeding cycle and 
manure yield of different livestock and poultry are shown in table 3 (Liu & Shen, 2007; Ding, 2000; Wang, 1998; 
Peng & Wang, 2004). 

 

Table 3. Breeding cycles and manure yields of different livestock and poultry               Unit: day and kg 

Livestock Hogs Herds hogs Cattle Cows Sheep Horse Jennets Poultry 

Breeding cycle 300 365 365 365 365 365 365 55 

Manure yields 1050 1460 8200 21900 632 5237 3092 4.5 

 

(4) Municipal waste 

Municipal waste consists of municipal solid waste and municipal waste water. Municipal solid waste can be 
divided into organic waste and inorganic waste according to the composition. The organic waste can be utilized 
as biomass resources. Municipal waste water is divided into domestic sewage and industrial wastewater, both 
can be treated to produce biogas. The amount of total municipal waste can be calculated by: 

21 rQWrSWMW                                   (4) 

SW: the amount of municipal solid waste, r1: the percentage of organic waste from municipal solid waste, Qw: 
the amount of waste water, r2: the percentage of COD in waste water.  

2.1.2 Acquirable and Utilizable Amount 

Physical reserve of biomass resources is the amount representing the theoretically richest developing potential 
(LIU & SHEN, 2007). Not all the reserve can be acquired and utilized to produce energy. There is availability 
coefficient and utilization coefficient of biomass resources for energy generation. The acquirable and utilizable 
amount refers to the amount of biomass resources that can be acquired and utilized to produce energy under 
theoretical conditions. It can be calculated from the amount of physical reserve.  

iii

n

1i

i rQc'CR  


                                  (5) 

CR’: acquirable and utilizable amount of straw, λi: availability coefficient of Crop i. δi: utilization coefficient. 
Acquirable and utilizable amount of forestry residues (FR’), livestock manure (D’) and municipal waste (MW’) 
can be calculated with corresponding λi and δi. Availability coefficient of all kinds of biomass resources is the 
collection ratio and determined according to local conditions and the average value will be adopted. The ratio of 
straw amount utilized as household fuel and discarded or combusted can be considered as energy production and 
is determined as 80%. About 1/3 of forestry residues and livestock manure can be utilized to produce energy. 
About 60% of municipal solid waste can be utilized through combustion and compost. About 50% of municipal 
waste water can be utilized to produce biogas. Table 4 concludes the availability coefficient and utilization 
coefficient of different biomass resources (Liu & Shen, 2007; Liu et al., 2010; RGCFB, 2006; Yuan, Wu & Ma, 
2005; National Development and Reform Commission-Energy Research Institute [NDRCERI], 2010; Milbrandt, 
2005).  
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Table 4. Availability coefficient and utilization coefficient of different biomass resources (λi and δi) 

Types Straw 
Forestry 
residues 

Livestock 
manure 

Municipal solid 
waste 

Municipal waste 
water 

Availability 
coefficient(λi) 

90% 40% 60% 40% 100%
*
 

Utilization 
coefficient (δi) 

80% 1/3 1/3 60% 50% 

*The data of the amount of municipal waste water collected from statistical year book can be considered as the 
acquirable amount, therefore the availability coefficient is determined as 100%. 

 

2.1.3 Equivalent of Standard Energy 

When put into unified and practical studies, biomass energy is usually accounted to the equivalent of standard 
energy, which is generally standard coal equivalent. In terms of the calculation of straw standard energy (ECR), 
conversion coefficient ηi is introduced into the calculation as: 

iiii

n

1i

i rQcECR  


                              (6) 

As for the calculation of forestry residues standard energy equivalent (EFR), livestock manure standard energy 
equivalent (ED) and municipal waste standard energy equivalent (EMW), corresponding ηi should be introduced. 
When waste water is converted to standard energy equivalent, it is firstly converted to biogas (0.907 m3 biogas 
can be generated from 1 kg COD) (Milbrandt, 2005). Table 5 concludes conversion coefficient of different types 
of biomass resources (Liu & Shen, 2007).  

 

Table 5. Conversion coefficient of standard energy of different biomass resources(ηi) Unit: biogas, kgce/m3; 
others, kgce/kg 

Types of livestock and poultry Coefficient 

Rice straw 0.429 

Wheat straw 0.500 

Corn straw 0.529 

Sorghum straw 0.050 

Soybean straw 0.543 

Sunflower straw 0.529 

Hemp straw 0.500 

Firewood 0.571 

Hog manure 0.429 

Cattle manure 0.471 

Poultry manure 0.643 

Horse, sheep and jennet manure 0.529 

Municipal solid waste 0.143 

Biogas 0.857 

 

2.2 Life Cycle Environmental Impact Assessment of Biomass Power Generation System 

Life Cycle Assessment (LCA) is a tool used to assess the impacts on environment brought by products or 
conduct during the life cycle. LCA can identify and quantify the utilization of energy and materials and the 
emission of wastes; assess the impact extent of the utilization and emission and strive to seek the chance to 
improve the environmental quality (Liu & Wang, 2008).  
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This part is a case study that associates LCA and cost analysis to make comprehensive evaluation on biomass 
utilization taking a biomass power generation system in Jilin Province as example. 

2.2.1 Introduction of Biomass Power Generation System 

(1) Introduction of the study object 

Songyuan City is a new petrochemical city located in the west of Jilin Province. It is large commodity grain base 
and oil base of China whose yield of corn is 4 million ton, accounting for 1/4 of Jilin Province’s total yield. The 
government deployed the overall route of straw power generation to construct Datang Songyuan biomass power 
generation project in Songyuan City to develop and promote biomass utilization.  

The study object of this research is 15MW (2 sets) straw direct-fired power generation system, whose annual 
electricity generation time is 6000 h and rated annual generating capacity is 1.8×108 kWh. Environmental 
impacts brought by 10000 kWh of power generation will be calculated and analyzed, which means the functional 
unit of the system is 10000 kWh. Main processes of the system include feedstock collection, straw combustion, 
water recycling and purification, and power generation.  

(2) Sources of straw 

There are 0.76 million hm2 of farmlands in Songyuan City. Total yield of corn in normal year is 5 million ton. 
Within the scope of 25 km radius, yield of corn straw is 0.691 million t/a, of which 65% is discarded. Calculated 
by this proportion, corn straw that can be used as fuel for power generation is 0.449 million t/a.  

 

Table 6. Straw consumption of the plant 

Boiler Consumption per hour (t/h) Consumption per day (t/d) Consumption per year (106t/a)

1×75t/h 17.0 374.0 0.102 

2×75t/h 34.0 748.0 0.204 

 

Table 6 shows straw consumption of the plant. Fuel demand of the plant is 0.204 million t/a. So the supply 
amount can satisfy the fuel demand of the power generation system. 

2.2.2 Assessment Scope and Boundary Demarcation  

When determining the assessment boundary, some points should be considered: (1) In order to form a closed 
loop system, the coal, oil, electricity, steel and water consumed during construction period of the plant are not 
involved into the boundary; (2) Because biomass power generation system is a new system that has not reached 
the scrapping age, equipment recovery unit is not considered. (Liu, 2010) Based on the assumptions above, 
biomass power generation system can be divided into three parts: (1) Agricultural production period; (2) 
Transportation period; (3) Plant operational period. Figure 3 shows the life cycle boundary and frame of the 
power generation system. 

 

Figure 3. Life cycle boundary and frame of the power generation system 
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2.2.3 Inventory Analysis 

Inventory analysis is to quantify and assess the processes of energy and resources consumption and 
environmental release during life cycle of the system. The raw materials and energy consumed is determined as 
input inventory and the substances (including waste gases, waste water and solid waste etc.) emitted into 
environment from all processes of the system is determined as output inventory. 

(1) Agricultural production period 

Emissions from agricultural production has three sources: (1) Pollutant emission from mechanical use; (2) 
Pollutant emission from fertilizer use; (3) Emission of nitrogen fertilizer loss due to inefficient use of fertilizers. 
In life cycle inventory analysis, there should be distribution of energy flow and pollutant emission for the system 
that has various kinds of output. During planting process of corn, straw is by-product. According to the 
economic value, energy consumption and pollutant emission of corn straw account for 10% of the whole energy 
flow and pollutant emission of the planting process of corn. Calculated by this proportion, emission amount of 
pollutants from corn straw consumed by the plant in one year can be obtained and shown in Table 7 (Liang, 
Chen, & Gao, 2009).  

 

Table 7. Emission amount of pollutants during agricultural production period                      Unit: t/a 

Pollutants CO2 CO CH4 N2O NOx Dust SO2 

Emission amount 13916.88 33.72 10.98 4.96 63.51 0.18 125.62 

 

(2) Transportation period 

The transportation radius is within 25km. 9 collection stations will be established around the power generation 
plant. Because the binding of straw is mostly done manually, consumption of this period is mainly fuel 
consumption of transportation tools. Pollutant emission is mainly from exhaust of diesel vehicles. According to 
the distances between collection stations and the plant, average transportation radius can be determined as 25 km 
and the transportation tool is determined as agricultural diesel vehicle whose load is 5 ton. Emission amount of 
pollutants during transportation period can be calculated with diesel consumption and emission coefficient. The 
results are shown in Table 8 (Hu, 2006). 

 

Table 8. Emission amount of pollutants during feedstock transportation period 

Pollutants CO Dust NOx SOx CO2 CH4 N2O

Emission coefficient (g/GJ) 435.651 16.337 762.390 93.665 73623.755 5.870 2.929

Emission amount(t/a) 21.87 0.82 38.27 4.70 3695.91 0.29 0.15

 

(3) Plant operational period 

During plant operational period, diesel is the major combustion accelerant and electricity is consumed. Pollutants 
including waste gases, waste water and solid waste are from the following production links: 
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Table 9. Pollutant generation links of plant operation 

Types of pollutants Source 
Major 

pollutants 
Discharge 

pattern 
Disposition 

Waste 
gases 

Boiler gases 
Straw 

combustion 
SO2, NOx, 
HCL, dust 

Continuous Atmosphere 

Waste 
water 

Recycling 
sewage 

Circular 
cooling system

Salts, COD Continuous Direct reuse 

Acid-alkali 
waste water 

Chemical 
treatment 

pH, COD Discontinuous
Municipal pipe 
after treatment 

Boiler sewage Boiler cleaning pH, salts, SS Discontinuous
Circular system 
after treatment 

Industrial 
waste water 

Pump cooling Oil, SS Continuous 
Circular system 
after treatment 

Solid 
waste 

Straw ashes Boiler Solid waste Discontinuous
Fertilizer 

production 

 

Table 10. Types and emission amount of the waste gases during plant operational period 

Emission index SO2 NOx Dust HCL 

Concentration (mg/m3) 226.225 400 23.135 52 

Amount (t/a) 250.614 443.124 25.629 57 

 

Types of waste gases and emission amount are shown in Table 10. Waste water from all discharge links is either 
reused or discharged into municipal pipe network after treatment. The discharge concentration can reach the 
standard and has little impact on environment. So when calculating environmental impact potential, water 
environmental impacts can be neglected. Wangsheng Fertilizer Company will purchase all the straw ashes to 
produce organic fertilizers. So all the ashes will be reused and their environmental impacts can be neglected.  

(4) Inventory summary 

Considering the close carbon cycle, here is a crucial premise that the amount of CO2 generated during plant 
operational period is equivalent to that absorbed by corn during growing process (Zhang, 2002). What brings 
impacts to environment is mainly air pollutants. According to the annual emission amount of pollutants and the 
annual amount of electricity generation, emission amount of pollutants of 1 functional unit can be calculated as 
is shown in Table 11. 

 

Table 11. Inventory of life cycle emission of biomass power generation system per functional unit  Unit: 
kg/104kWh 

Pollutants 
Agricultural production 

period 
Transportation 

period 
Plant operational 

period 
Total 

amount 

CO2 773.160 205.328 0.000 978.488 

CO 1.873 1.215 0.000 3.088 

CH4 0.610 0.016 0.000 0.626 

N2O 0.276 0.008 0.000 0.284 

NOx 3.528 1.826 24.618 29.972 

Dust 0.010 0.046 1.479 1.535 

SO2 6.979 0.261 13.923 21.163 
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2.2.4 Calculation of Environmental Impact Potential 

This part will quantify environmental impacts brought by energy consumption and pollutant emission of the 
power generation system to lay the foundation of evaluation and improvement of the system. According to the 
life cycle inventory, five environmental impacts caused by the pollutant emission including Global Warming, 
Acidification, Photochemical Ozone Creation, Health Toxicity and Solid Waste will be analyzed.  

(1) Environmental impact potential 

Environmental impact potential refers to the sum of all the impacts of similar pollutant emission within the 
system. Similar pollutants can be converted to reference’s environmental impact potential with equivalent 
coefficient. Calculation formula of environmental impact potential is: 

   ]n)m(EFn)m(Q[n)m(EP)m(EP                        (7) 

EP(m): Environmental impact potential m, EP(m)n: Environmental impact potential m of Pollutant n, Q(m)n: 
emission amount of Pollutant n, EF(m)n: coefficient of Environmental impact potential m of Pollutant n. 

(2) Standardization 

Standardization of data is to make environmental impact potential dimensionless. The standardized data can 
intuitively and exactly reflect the environmental impacts of the biomass power generation system. This article 
chooses the environmental impact potential per capita of the whole society in 1990 as the norm of the 
standardization. According to the concept of standard human equivalent (the environmental impact potential 
caused by per capita annually) established by Yang Jianxin (Yang, Xu, & Wang, 2002), the unit of normalized 
environmental impact potential is standard human equivalent (PEChina, 1990). The calculation formula is: 

)m(ER/)m(EP)m(NP                                   (8) 

NP(m): Standardized environmental impact potential m, EP(m): Environmental impact potential m of the system, 
ER(m): standardization norm. Standardization norm of environmental impacts is shown in Table 12. 

 

Table 12. Standardization norm of environmental impacts 

Environmental impact potential Standardization norm 

Global Warming Potential (GWP) 8700 kgCO2eq 

Acidification Potential (AP) 36 kgSO2eq 

Photochemical Ozone Creation Potential (POCP) 0.65 kgC2H4eq 

Health Toxicity Potential (HTP) 18 kg 

Solid Waste Potential (SWP) 18 kg 

 

(3) Weighted assessment 

Standardization cannot compare the relative seriousness of different environmental impacts. It is necessary to 
make the sequence of the seriousness of different environmental impact potential by endowing different weights 
to the extent of environmental damage. The calculation formula is: 

)m(NP)m(WF)m(WP                                  (9) 

WP(m): Weighted environmental impact potential m, WF(m): weight of Environmental impact potential m, 
NP(m): Standardized environmental impact potential m. 

This paper mainly analyzes five environmental impacts and adopts Analytic Hierarchy Process (AHP) to analyze 
the relative importance of the five environmental impacts to determine the weights of them. The judging matrix 
of nine-scale analysis is adopted as is shown in Table 13.  
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Table 13. The judging matrix of nine-scale analysis 

aij 
Global 

Warming 
Acidification

Photochemical 
Ozone Creation 

Health 
Toxicity 

Solid 
Waste 

Global Warming 1 3 6 5 4 

Acidification 1/3 1 5 3 3 

Photochemical 
Ozone Creation 

1/6 1/5 1 1/4 1/2 

Health Toxicity 1/5 1/3 4 1 2 

Solid Waste 1/4 1/3 2 1/2 1 

According to the judging matrix,  





m

1k

kjijij a/aq                                     (10) 





m

1j

iji q                                       (11) 





m

1k

kii /w                                      (12) 





m

1i i

i
max w

)AW(

m

1                                  (13) 

The weight vector is W=(w1,w2, …,wm)T= (0.48, 0.25, 0.05, 0.13, 0.09)T. The largest eigenvalue is λmax = 5.222.  

1m

m
CI max







                                    (14) 

The Consistency Index, CI can be calculated as 0.056. The Random index, RI is 1.13 according to random index 
table. The Consistency Rate, CR=CI/RI=0.0459<0.1 (according to average random consistent index, when m>=3, 
CR<0.1, consistency can meet the requirement), so the consistency can be accepted. 

2.3 Life Cycle Cost Analysis 

In order to stress the environmental advantages of biomass power generation system, this article calculates the 
external environmental cost of biomass power generation system and involves it into life cycle cost analysis.  

(1) General cost analysis 

General cost mainly consists of the consumption cost of raw materials and energy, operational cost, 
transportation cost, investment cost, depreciation cost and tax cost. Table 14 shows the economic evaluation of 
biomass power generation system. 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.ccsenet.org/jsd Journal of Sustainable Development Vol. 6, No. 6; 2013 

147 
 

Table 14. Economic evaluation of biomass power generation system 

Items Unit Value 

Total investment 103 yuan 288,730 

Static investment 103 yuan 255,300 

Dynamic investment 103 yuan 266,670 

Operation years years 20 

Operation time h/a 6,000 

Total electricity generation GWh 211 

Price of corn straw yuan/t 250 

Quantity of corn straw 103 t 204 

Fuel cost 103 yuan 51,000 

Labor cost 103 yuan 4,000 

Maintenance cost 103 yuan 6,000 

Materials cost 103 yuan 12,000 

Management cost 103 yuan 1,500 

Depreciation cost 103 yuan 15,000 

 

(2) Environmental cost analysis 

External environmental cost of biomass power generation system refers to the value converts from the impacts 
caused by pollutants during the whole life cycle. The conversion is according to current environmental costs of 
all kinds of pollutants. Taking reference of the Pollution Charge Standard (PSC) of China and the Environmental 
Value Standard of the USA (U.S.EVS) (Huang, 2008), the standard measurement of environmental value of 
different pollutants can be shown in Table 15.  

 

Table 15. Standard measurement of environmental value                                  Unit: yuan/kg 

Pollutant CO2 CO NOx SO2 PM10

Environmental value 0.023 1 8 6 2.2 

 

The calculation formula is: 

  )n(EV)n(QLCEC                                (15) 

LCEC: Life cycle environmental cost, Q(n): emission amount of Pollutant n, EV(n): Environmental value of 
Pollutant n. 

3. Results and Discussion 

3.1 Results of Biomass Energy Potential in Jilin Province 

With the calculation analysis and data summary (collected from Statistical Yearbook of Jilin Province 2011), 
results of physical reserves, acquirable and utilizable amount and equivalent of standard energy are obtained and 
shown in Table 16. 
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Table 17. Results of life cycle environmental impact potential 

Environmental 
impact 
potential 

Pollutants 
Equivalent 
coefficient

Agricultural 
production 
period 

Transportation 
period 

Plant 
operational 
period 

In total 

GWP 

(kgCO2eq) 

CO2 1 

880.334 210.828 0.000 1091.162
CO 2 

CH4 25 

N2O 320 

AP 

(kgSO2eq) 

NOx 0.7 
9.449 1.539 31.155 42.143 

SO2 1 

POCP 

(kgC2H4eq) 

CO 0.03 
0.060 0.037 0.000 0.097 

CH4 0.007 

HTP 

(kg) 

CO 0.012 

11.149 1.752 35.909 48.811 NOx 0.78 

SO2 1.2 

SWP 

(kg) 
Smoke&dust 1 0.010 0.046 1.479 1.535 

 

Table 18. Standardized results of life cycle environmental impact potential 

Environmental 
impact 

potential 

Agricultural 
production 

period 

Transportation 
period 

Plant 
operational 

period 

In 
total 

GWP 0.101 0.024 0.000 0.125 

AP 0.262 0.043 0.865 1.171 

POCP 0.092 0.057 0.000 0.149 

HTP 0.619 0.097 1.995 2.712 

SWP 0.001 0.003 0.082 0.085 

 

Table 19. Weighted assessment results of life cycle environmental impact potential 

Environmental 
impact 

potential 
Weight 

Agricultural 
production 

period 

Transportation 
period 

Plant 
operational 

period 

Weighted 
results 

GWP 0.48 0.049 0.012 0.000 0.060 

AP 0.25 0.066 0.011 0.216 0.293 

POCP 0.05 0.005 0.003 0.000 0.007 

HTP 0.13 0.081 0.013 0.259 0.353 

SWP 0.09 0.000 0.000 0.007 0.008 

In total 1 0.199 0.038 0.483 0.721 
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Table 22. Cost structure of biomass power generation system                          Unit: yuan/104kWh 

Costs Value 

Fuel cost 2420 

Labor cost 190 

Maintenance cost 280 

Materials cost 570 

Management cost 70 

Depreciation cost 710 

Cost per 104kWh  4240 

 

Cost structure of biomass power generation system shows that its general cost is 4240 yuan/104kWh. Average 
general cost of thermal power generation system is 3250 yuan/104kWh (Chinese Energy, 2012). Compared with 
thermal power generation system, the cost of biomass power generation system is higher. And among all the 
costs, fuel cost accounts for more than 50%. Several reasons are responsible for the high cost of biomass power 
generation system: (1) Higher investment in advanced equipments; (2) Lower electricity generation efficiency 
and high demand of fuels; (3) Higher transportation cost of fuels due to corn straw’s large volume.  

3.3.2 Environmental Cost Analysis 

 

Table 23. Environmental cost account of biomass power generation system 

Pollutants 
Environmental 
value(yuan/kg) 

Emission 
amount(kg/104kWh) 

Environmental 
cost(yuan/104kWh) 

CO2 0.023 978.488 22.5 

CO 1 3.088 3.1 

NOx 8 29.972 239.8 

SO2 6 21.163 127.0 

PM10 2.2 1.535 3.4 

In total   395.7 

 

Table 24. Environmental cost account of thermal power generation system 

Pollutants 
Environmental 
value(yuan/kg) 

Emission 
amount(kg/104kWh) 

Environmental 
cost(yuan/104kWh) 

CO2 0.023 10700 246.1 

CO 1 15.5 15.5 

NOx 8 64.6 516.8 

SO2 6 99.3 595.8 

PM10 2.2 202 444.4 

In total   1818.6 

 

The results show that environmental cost of biomass power generation system is 395.7 yuan/104kWh and 
environmental cost of thermal power generation system is 1818.6 yuan/104kWh, which is much larger. Due to 
high amount of pollutants emission in transportation process of coal and the emission of high concentrations of 
SO2 and NOx in operational process of plant, thermal power generation system produces more serious impacts to 
environment that generates higher environmental cost.  
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