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Abstract 

Smallholder maize production in Zambia has been characterized by low productivity despite concerted efforts at 
improving the situation as is evident in budgetary allocations to programmes such as the Farmer Input Support 
Programme (FISP). The study assessed if there was a change in total factor productivity (TFP) in smallholder 
maize production in Southern Province of Zambia between the 2010/11 and 2013/14 agricultural seasons. Using 
a balanced panel of 778 smallholder farmers, a Stochastic Frontier Analysis was used to estimate the Malmquist 
Productivity Index (MPI) in measuring the productivity change in maize production. The change in TFP was 
further decomposed into its components, efficiency change (EC) and technical change (TC) so as to understand 
more on the change in productivity. It was found that over the period of study, the mean EC was 0.8734, 
implying that technical efficiency (TE) had declined by 12.7 % with the mean TFP of 0.9401, indicating that 
over the study period TFP had fallen by 5.99 %. The results further showed that the age of the farmer, education 
of the farmer, household size, membership to a farmer organization, ownership of cattle, access to credit, and 
drought stress were significant (ρ<0.05) factors in explaining TFP. In light of the findings, some 
recommendations were made for policy including the need to facilitate farmers’ access to credit, sensitize 
farmers on the benefits of belonging to farmer organizations, on ownership of livestock such as cattle and for 
massive investment in irrigation infrastructure. 

Keywords: total factor productivity, efficiency change, technical change, Malmquist Productivity Index, 
smallholder maize farmers, Southern Zambia 

1. Introduction  

Agriculture is one of the most important sectors for most developing countries when it comes to poverty 
alleviation. This stems from the fact that in most developing countries, the majority of the poor are engaged in 
agriculture and so growth in the sector is often associated with relatively large reduction in poverty (Timmer, 
2005). In Zambia, the agricultural sector contributes 13 to 20% of the Gross Domestic Product (GDP) and also 
accounts for about 70% of the total labour force (CSO, 2012). However, poverty reduction efforts are hampered 
by low producitivity in the sector especially that of maize. There is need for studies that give an understanding 
on how productivity [as measured through total factor productivity (TFP)] evolves over time along with its 
determinants to gain insights on how to improve the sector. 

Maize is by far the most widely grown crop in Zambia as it is the country’s staple and principal food security 
crop. The over 1.1 million smallholder farmers grow most (80%) of the maize despite being resource poor 
(Tembo and Sitko, 2013). Apart from being the major source of household food security in Zambia, maize 
accounts for 41% of the value of farm income including the value of production and sales (Jayne et al., 2010).  

Over the past several decades, improving productivity in maize production has been one of the major goals of the 
Zambian government (Xu et al., 2009). For instance, in its recognition of the need to improve productivity in 
maize production as well as to assure national food security and increased incomes to various stakeholders, 
government introduced the Fertilizer Support Programme (FSP) in 2002. In 2009, FSP was renamed and 
reformed as the Farmer Input Support Programme [FISP] (Jayne et al., 2010). One of the implicit aims of the 
programme has been that with the majority of resource poor small-scale farmers accessing subsidized inputs, the 
adoption of improved maize seed and fertilizer would increase and in turn, result in increased productivity. 
Besides their benefits in addressing the problem of soil degradation, Conservation Agriculture (CA) practices are 
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being promoted and advocated for by both government and non-governmental organizations (NGOs) because 
they are also associated with efficient use of resources and improved productivity (Jayne et al., 2010). 

The national maize yield average of 2.2 tons/ha is, however, extremely low as compared to that of other 
countries in the sub-Saharan African (SSA) region. Most of the small-scale producers are very far from realizing 
the potential maize yield of 5 tons/ha for open pollinated varieties and 10 tons/ha for hybrids (MACO et al., 
2008).Given that other inputs such as fertilizer are not accounted for in the computation of yield as a measure of 
productivity, there is every reason to believe that that productivity (2.2 tons/ha) could even be lower if all 
resources used in maize production are considered. There is still potential for increased maize yields of 
smallholder producers in Zambia to match those of other countries in SSA. In fact, South Africa’s maize yields 
are reported to be about twice as high as Zambia’s (Tembo and Sitko, 2013). 

To sustain increased food production, an insight into all possible sources of agricultural production growth is 
required. An understanding of TFP change in smallholder maize production and its decomposition into various 
components could be the key in boosting agricultural productivity growth in maize. In Zambia, for most crops 
including maize, the productivity indicators often employed are Partial Factor Productivity (PFP) measures, such 
as yield (output per unit area of land). When used to measure increase in production that results from improved 
productivity, a PFP measure such as yield could be misleading. This is partly because changes in yield do not 
correlate as well with changes in production as TFP measures do (see Benin, 2016). Conversely, a TFP measure, 
such as the Malmquist Productivity Index (MPI), is amenable to decomposition into finer indicators like 
efficiency change (EC) and technical change (TC) (Coelli et al., 2005; Ogundele and Okoruwa, 2014; Benin, 
2016). Since TFP measures lend themselves to decomposition into component indices, more insight into possible 
drivers of TFP itself could be grasped (Benin, 2016). 

Studies on productivity and production of maize have been conducted in Zambia (Kimhi, 2003; Zulu et al., 2007; 
Jayne et al., 2010; Chiona, 2011; Chiona et al., 2014; Ng’ombe, 2017). Most of these studies have used 
cross-sectional data which have inherent limitations, including the inability to control for unobserved 
heterogeneity across study units. This could be a potential source of bias in estimates (Hill et al., 2011). However, 
with panel data that is not the case (Hsiao, 2003; Baltagi, 2005). Moreover, as Baltagi (2005) points out, besides 
giving more data points on the study units, panel data can better model TE, and indeed, EC, than cross-sectional 
data. This study therefore contributes to the existing literature by using panel data to assess TFP change and its 
determinants in smallholder maize production in Southern Province of Zambia. 

The rest of the paper is organized as follows; Section 2 looks at the methodology. Results and discussions are 
presented in Section 3 and then Section 4 gives the conclusion and policy implications. 

2. Methodology 

2.1 Measuring TFP Change, EC and TC 

Literature points to various techniques used in measuring TFP change. The Tornqvist Index and the MPI are 
among the prominent indices used for measuring TFP change. With the Tornqvist Index, TFP change can be 
measured but it cannot be decomposed into its various components as the index is premised on the assumption 
that production is always on the frontier (Fare et al., 1994). However, with the MPI, and assuming the existence 
of inefficiencies in production, it is possible to measure TFP change that is attributable to both EC and TC. The 
MPI is simply the relative measure of the ratio of the observed output to the maximum output possible in one 
period (t+1), to the ratio of the observed output to the corresponding maximum output possible in another period 
(t), given the vector of inputs in the respective periods (Coelli et al., 2005). Aside from making it possible to 
measure TFP change without data on input and output prices, the MPI allows for the decomposition of the TFP 
change into its various components such as EC and TC (Coelli et al., 2005; Headey et al., 2010; Benin, 2016). 
These features of the MPI especially make it more attractive as an index for measuring TFP change over other 
techniques such as the Tornqvist Index in situations where data constraints and sometimes non-availability or 
unreliability of data on input and output prices could possibly pose challenges. Moreover, with the MPI, it is 
unnecessary to make behavioural assumptions such as cost minimization or profit maximization (Coelli et al., 
2005). 

In the present study, the output-oriented MPI was used to measure TFP change and its components. Besides their 
application in the definition of various index numbers, distance functions provide the conceptual basis for 
describing technology in such a way as to facilitate the measurement of efficiency and productivity. With 
distance functions, a multi-input, multi-output production technology can be described without necessarily 
specifying the behavioural objective of firms (see Coelli et al., 2005). In order to specify MPI using output 
distance functions, the existing technology has to be defined. It may be useful to regard a general distance 
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function as being evaluated relative to the frontier of the ‘true’, but unknown underlying technology. 

Where the technology is defined as  

( , ) inf{ : ( / , ) }D x y y x Tθ θ= ∈                                (1) 

Where the technology is defined as ܶ = ,ݔ)} :(ݕ ݕ and {ݕ	݁ܿݑ݀݋ݎ݌	݊ܽܿ	ݔ ∈ ܴାெ is the vector of outputs, and ݔ ∈ ܴାெ is the vector of inputs. Since the ultimate goal is measuring change in productivity, time has to be 
incorporated too. Based on the definition by Caves et al. (1982), Fare et al. (1994), and Coelli et al.(2005), the 
MPI can be expressed as follows: 
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with period ݐ as the reference technology. Similarly, MPI can be defined based on period ݐ + 1 technology as: 
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Equation (2) and Equation (3) show that the estimation of the MPI between any two periods depends on the 
choice of the technology employed. To avoid the effect of an arbitrarily chosen reference technology, we have to 
change between the two data points relative to a common technology (Caves et al., 1982; Coelli et al., 2005). 
Thus, the MPI is defined as the geometric mean of two indices based on period ݐ and ݐ + 1 technologies as 
shown in Equation (4): 
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Given observed quantities of inputs and outputs, the value of ܯ௢ can be computed. Computed values of ܯ௢ > ௢ܯ  ,1 < 1 and ܯ௢ = 1, indicate that between periods ݐ and period ݐ + 1, TFP increased, decreased and remained 
constant, respectively. Equation (5) gives an equivalent way of expressing Equation (4). 
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In Equation (5), the ratio outside the brackets measures the change in the output-oriented Farrell (1957) technical 
efficiency (TE) between period ݐ and period ݐ + 1. The geometric mean of the two ratios inside the brackets 
captures the shift in technology between the two periods as evaluated at ݔ௧ and ݔ௧ାଵ, that is, TC. 

2.2 Conceptual Framework 

In the present study, TFP meant the measure of productivity that accounts for all the inputs used in the 
production process. For a typical smallholder maize farmer in Zambia, the conventional inputs used are maize 
seed, land, fertilizer and labour. While some farmers might use all these inputs in producing maize, others might 
not apply fertilizer for some reasons such as financial constraints. Similarly, some farmers might use low 
yielding local or recycled maize seed instead of the recommended high yielding varieties [HYV] (improved seed 
varieties) due to financial constraints or even unavailability of HYV seed on the market. An increase in TFP over 
time means increased productivity. This in turn implies increased maize production without increased levels of 
inputs. Some literature refer to TFP as a measure of Solow residual growth because it measures that part of 
output growth not accounted for by changes in conventional factors of production or inputs (Headey et al., 2010; 
Benin et al., 2015). However, since it implicitly assumes that all producers operate on the frontier, the Solow 
residual growth is as a result of technological change1 only, that is, farmers adopting better techniques of 
producing maize (see Fare et al., 1994; Headey et al., 2010). In this study, it has been assumed that not all the 
farmers produce on the frontier, thus allowing for inefficiencies; and so increased maize production can 
potentially come from improved TE over time.  

The study followed Farrell (1957) definition of technical efficiency as the ratio of the observed output to the 
maximum potential output possible given the existing technology. Thus, in this study by EC is meant the change 
of technical efficiency over time. Over time, a farmer’s TE could improve (movement towards the frontier), 
deteriorate (movement away from the frontier) or stay constant.  

In the study, TFP2 was defined as the ratio of the maize output to the aggregate of all inputs used in producing 
the maize by any particular smallholder farmer. 



jsd.ccsenet.org Journal of Sustainable Development Vol. 11, No. 6; 2018 

173 
 

As shown in Figure 1, TFP can change as result of EC and/or TC. Thus, socio-economic and institutional factors 
that affect EC and/or TC could ultimately affect TFP. Thus, policy makers can make use of this to raise TFP and 
so bring about increased maize production and growth in the long run, without necessarily increasing resources. 
Figure 1 further shows that increased production of maize is also possible through increased use of resources 
such as area of land. However, compared to increased maize production that results from a rise in TFP, that 
which is from increased use of resources is unsustainable. 

 

Figure 1. Possible relationships among various variable affecting TFP 

Source: Authors 

 

As already pointed out, it should be expected that any factors that affect either EC or TC will ultimately affect 
TFP. Thus, the determinants of TFP may vary. To the extent that the age, years of education of a farmer, 
household size can affect TE, so they will be expected to ultimately affect TFP.  

2.3 Data Analysis 

2.3.1 Stochastic Frontier Analysis 

The translog production function was used to estimate the output distance functions. According to Battese (1992), 
the stochastic production function for panel data can be expressed as ݕ௜௧ = ;	௜௧ݔ)݂ ௜௧ݒ)݌ݔ݁(ߚ −  (௜௧ݑ
                                    ݅ = 1,2, … , ܰ	and ݐ = 1,2, … , ܶ                          (6) 
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Where ݕ௜௧ is the output of the ݅௧௛ farm in the ݐ௧௛ time period; ݔ௜௧ is a vector of inputs used in the production 
process, β is a vector of parameters to be estimated; ݒ௜௧ are the error terms assumed to be identically and 
independently distributed (iid) and follow a normal distribution, ܰ(0,  ௜௧ are also assumed to beݒ ௩ଶ). Theߪ
uncorrelated with the regressors. The ݑ௜௧ are the technical inefficiencies. To allow for time-varying technical 
inefficiency, the following model, the following model, as proposed by Battese and Coelli (1992) was adapted: 

௜௧ݑ														                                     = ݐ)ߟ]݌ݔ݁	 −  ௜                           (7)ݑ[(ܶ

Where η is the parameter to be estimated. For values of ߟ > ߟ ,0 < 0	 and ߟ = 0 the implication is that TE 
improves, deteriorates, and is invariant, respectively, over time. The ݐ is the ݐ௧௛ period of production; ܶ is the 
terminal period of production, ݑ௜ are the non-negative random variables associated with technical inefficiencies 
of production and assumed to be iid with a mean of 0 and a variance ߪ௨ଶ that is, ݑ௜~݅݅݀ܰା(0,  ௨ଶ). In short, in theߪ
study, the ݑ௜  were assumed to follow a half-normal distribution, as opposed to the commonly used 
truncated-normal distribution. According to Battese (1992), the most widely used assumption of the 
truncated-normal form of ݑ௜ is more appropriate in cases where it is believed that the technical inefficiencies 
among firms are relatively high. Compared with other crops, maize is the most widely grown crop by the 
majority smallholder farmers and with which many farmers are most familiar. Hence, the assumption of 
half-normally distributed inefficiency effects was considered plausible in the study. A notable shortcoming of the 
model in Equation (2) is that technical efficiency is only allowed to vary monotonically over time, that is, simply 
knowing the rank ordering of two or more farmers in one period means that one could tell their rank ordering in 
subsequent periods (Kwon and Lee, 2004; Coelli et al., 2005). There are other models that can allow for 
non-monotonic variation in technical efficiencies among firms as suggested by other authors (Kumbhakar, 1990). 
However, as Kwon and Lee (2004) point out, besides entailing the estimation of many parameters, some of these 
more general and flexible models have not been estimated empirically. Given that the present study used panel 
data spanning a relatively short period of time (2010/11 and 2013/14 seasons), it was plausible to adapt the 
inefficiency model given by Equation (2). 

The parameter, ߛ, measures the proportion of the composite error term in Equation (6) which is due to farmers’ 
inefficiencies. The parameter ߛ can be expressed as: 

                                         

2

2 2( )
u

u v

σγ
σ σ

=
+                                    

(8) 

From Equation (8), it follows that ߛ must lie between zero and 1 inclusive. If ߛ = 0, this implies the 
non-existence of technical inefficiencies, whereas if ߛ = 1 implies the non-existence of random noise. To 
calculate an index of TFP between period ݐ (the base period) and period ݐ + 1 (the present period), EC and TC 
have to be measured. Following Coelli et al. (2005), the technical efficiency of production for the ݅௧௛ firm at the ݐ௧௛ year can be measured using Equation (9) as: 
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The change in technical efficiency for the ݅௧௛ firm (EC) is calculated as: 
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Where ܶܧ௜,௧ାଵ = ,௧ାଵݔ)଴௧ାଵܦ ௜௧ܧܶ ௧ାଵ) andݕ = ,௧ݔ)଴௧ܦ  ௧) are the technical efficiencies of the ݅௧௛ firm calculatedݕ
using the period ݐ + 1 and period ݐ output distance functions, respectively. Similarly, the TC index between the 
periods ݐ  and ݐ + 1  for the ݅௧௛  firm can be calculated from the estimated parameters of the stochastic 
production frontier model. Technical change can be calculated as the geometric mean of the technical change 
magnitudes (TCMs) for the periods ݐ and ݐ + 1 for any individual farm (Fuentes et al., 2001; Coelli et al., 
2005). 
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The TFP index can then be obtained as the product of the EC and TC indices, that is, ܶܨ ௜ܲ௧ = ௜௧ܥܧ ×  ௜௧. Theܥܶ
TFP indices thus generated were regressed on the determinants of total factor productivity as posited by literature 
and empirical studies (Alam et al., 2011) as in Equation (12). 																																																																																												݈݊ܶܨ ௜ܲ௧ = ௜௧߮ݔ +  ௜௧                              (12)ߝ
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Where TFP, as already stated, is total factor productivity; ݔ௜௧	 is a vector of socio-economic, institutional and 
environmental factors that explain change in TFP; ߮ is a vector of parameters to be estimated and ߝ௜௧ are the 
stochastic error terms assumed to be ~݅݅݀ܰ(0,  .(ଶߪ
2.4 The Empirical Model 

To obtain the parametric decomposition of TFP, a functional form of the production function has to be specified. 
The parameter estimates thus obtained are then used in assembling the components of TFP, namely, EC and TC 
(Headey et al., 2010). For the best results, the functional form has to be flexible and relatively easy to compute. 
The translog functional form adequately meets the aforementioned properties. Thus, the present study adopted 
the translog production function as it has been extensively used in frontier studies (Fuentes et al., 2001; Kwon 
and Lee, 2004). In particular, the study adapted the translog model employed by Kwon and Lee (2004) as 
follows: 

(௜௧ݐݑ݌ݐݑܱ)݈݊    = ଴ߙ + (௜௧݀݊ܽܮ)ଵ݈݊ߙ 	+ ଶ݈݊(ܵ݁݁݀௜௧)ߙ	 	+ (௜௧ݐݎ݁ܨ)ଷ݈݊ߙ	 (௜௧ܾܽܮ)ସ݈݊ߙ	+	 	+ 	ݐ௧ߠ	 +	ଵଶ  ଶ[(௜௧݀݊ܽܮ)݈݊]ଵଵߜ

                 +		ଵଶ ଶଶ[݈݊(ܵ݁݁݀௜௧)]ଶߜ 	+ ଵଶ ଶ[(௜௧ݐݎ݁ܨ)݈݊]ଷଷߜ 	+ 	ଵଶ ଶ[(௜௧ܾܽܮ)݈݊]ସସߜ + ଵଶ (௜௧ܾܽܮ)݈݊(௜௧݀݊ܽܮ)ଵସ݈݊ߚ	+			(௜௧݀݁݁ܵ)݈݊(௜௧݀݊ܽܮ)ଵଶ݈݊ߚ		+																																							             ଶݐ௧௧ߠ 		+	߱ଵ݈݊(݀݊ܽܮ௜௧)ݐ		(13)                 	+	ߚଶଷ݈݊(ܵ݁݁݀௜௧)݈݊(ݐݎ݁ܨ௜௧) (௜௧ܾܽܮ)݈݊ଶସ݈݊(ܵ݁݁݀௜௧)ߚ		+	 	+ ߱ଶ݈݊(ܵ݁݁݀௜௧)ݐ	+ 	ߚଷସ݈݊(ݐݎ݁ܨ௜௧)݈݊(ܾܽܮ௜௧)		+	߱ଷ݈݊(ݐݎ݁ܨ௜௧)ݐ	 + ߱ସ݈݊(ܾܽܮ௜௧)ݐ	 
Whether ܱݐݑ݌ݐݑ௜௧ are the kilogrammes (kg) of maize harvested by the ݅௧௛ farmer in the ݐ௧௛ period; Similarly, ݀݊ܽܮ௜௧ , ܵ݁݁݀௜௧, ݐݎ݁ܨ௜௧, ܾܽܮ௜௧, are, respectively, the hectares (ha) of land used, the kg of seed planted, the kg of 
fertilizer, and the man-days of labour used by the ݅௧௛ farmer in the ݐ௧௛ period; ݐ is the period varying from 1 = (2010/11)  to 2 = (2013/14) ௜ߙ ; , ∀௜= 0,… ,4;  ∀௜= 1,… ,4 ,௜ߠ ; ;௧௧ߠ ,௜௝ߚ ∀௜= 1,… ,3  and ∀௝= 2,… ,4;  and ߱௜, ∀௜= 1,… ,4 are the parameters to be estimated; ݒ௜௧ is the idiosyncratic error term of the ݅௧௛ farmer in the ݐ௧௛ period; ݑ௜௧	is the technical inefficiency of the ݅௧௛ farmer in the ݐ௧௛ period. Furthermore, as stated earlier, ݒ௜௧~݅݅݀ܰ(0,   .(௩ଶߪ

Then employing equations (2), (4), (5) and (6), TE, EC, and TC were calculated. In particular, the TEs for the 
two seasons (2010/11 and 2013/14) were determined in FRONTIER 4.1 Software and Excel was then used to 
compute the EC indices using Equation (10). Using data for the 2010/11 and the 2013/14 seasons, TCM for each 
of the two seasons was calculated. The TC was calculated as the geometric mean of the TCMs thus obtained. 
Then using Excel, the EC and TC indices were multiplied to obtain the TFP indices.  

2.5 Determinants of TFP 

The Pooled Ordinary Least Squares (POLS) was used to model the determinants of TFP. Using ܶܨ ௜ܲ௧ = ௜௧ܥܧ ܨܶ) ௜௧, the index of productivityܥܶ× ௜ܲ௧) was regressed on the determinants of productivity as posited by theory 
and empirical literature. For this purpose, STATA was used. For easy interpretation, the log-lin specification was 
used as follows: ln(TFP୧୲) = φ଴ 	+ φଵage୧୲ 	+ φଶeduc୧୲ 	+ φଷhhsize୧୲ 	+ φସplotsize୧୲ + φହplotsize୧୲ଶ 	+ φ଺farmgrp୧୲ 	+	φ଻credit୧୲ 	+ 	φ଼cattle୧୲ 	+ 	φଽox − drawn_plough୧୲ 	+	φଵ଴drought୧୲ 	+ 	ε୧୲           (14) 

Where ݈݊(ܶܨ ௜ܲ௧) is the logarithm of the TFP index for the ݅௧௛ farmer in the ݐ௧௛ period; ߮௜ are the parameters 
to be estimated while ߝ௜௧ are the idiosyncratic error terms assumed to be ~݅݅݀ܰ(0,  ଶ). And tests were made toߪ
determine the specification of the production function as well as the structure of production and the sources of 
productivity change. 

2.5.1 Likelihood Ratio Tests 

The likelihood ratio (LR) test is used for testing which of two given specifications; one as specified by the null 
hypothesis, or another as specified by the alternative hypothesis, is the appropriate. The likelihood ratio test is 
given in Equation (15).  

ܴܮ                                   = ோܮ݈݊}2− 	−  ௎}                                 (15)ܮ݈݊	

Where LR is the likelihood ratio statistic to be computed; ݈݊ܮோ and ݈݊ܮ௎ are the values of the log-likelihood 
functions for the restricted and unrestricted models, respectively. The test statistic follows a Chi-square (ݔଶ) 
distribution. If the value of the LR-test statistic is greater than the critical value at the α-level of significance, the 
null hypothesis in favour of the restricted model is rejected (Hill et al., 2011). By employing the LR-test, the 
following null hypotheses were tested on the model specification and structure of production as well as the 
sources of productivity change (Alam et al., 2011).  
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:଴ܪ ௟௠ߚ = ௡௡ߜ = ߱௞ = 0; the Cobb-Douglas functional form, as opposed to the translog functional form better fits 
the production data.  ܪ଴: ߛ = 0; there are no inefficiencies among smallholder maize farmers in Southern Province. ܪ଴: ߤ = 0; the inefficiency term follows a half-normal distribution. ܪ଴:߱௞ = ௧ߠ = 0; this null hypothesis postulates the non-existence of technical change. 

2.6 Data Sources and Study Area 

The study was done in the Southern Province, one of the leading producers of maize in Zambia. Southern 
Province is covered by both the agro-ecological zones I and IIa, in the southern and the northern regions, 
respectively. Agro-ecological zone I covers the valley region which are prone to droughts and normally receive 
annual rainfall of below 800 mm. Agro-ecological zone IIa covers the plateau area and receives rainfall amounts 
of between 800 and 1,000 mm per year (Chapoto et al., 2016). The province has a population of 1,589,926 with 
the majority (85%) being rural. It has a farmer population of over 180,000 making up about 11.3% of the total 
population of the province (CSO, 2012). For many years, Southern Province has been the leading producer and 
bread-basket of maize in Zambia. However, in recent years it has been alternating the top position with Central 
and Eastern Province. 

2.6.1 Sources of Data 

The study used secondary data to come up with a panel dataset between the 2010/11 and the 2013/14 agricultural 
seasons. The data were collected through the Rural Agricultural Livelihoods Surveys (RALS) administered by 
the Indaba Agricultural Policy Research Institute (IAPRI) in collaboration with the Central Statistical Office 
(CSO) and the Ministry of Agriculture and Livestock (MAL). The first and second waves of the survey were 
conducted in 2012 and 2015, respectively. The survey attempted as much as possible to track the same sample of 
rural households in all the 10 provinces nationwide so as to ensure a statistically valid and comprehensive means 
of assessing trends in various variables. Using probability proportional to the size of the sampling scheme, the 
RALS drew a sample of 442 Standard Enumeration Areas (SEAs). The size of the SEA was dependent on the 
number of households located within that SEA on the sampling frame in accordance with the Zambia 2010 
Census of Population. All the households in each sample SEA were listed and each household was categorised 
into 3 groups based on a specific formula. A random number of 20 households were then selected. In cases where 
the 3 categories had adequate numbers of households (10 or more) listed, the distribution of the sample 
households was such that Category C was allocated 10 households, Category B, 5 households and Category A, 5 
households. 

For this particular study, a balanced panel dataset of 778 farm households was used. It is noteworthy that the data 
set originally had 966 farm households as at the first wave in 2012. However, due to attrition on the follow-up 
survey of 2015 for reasons including refusal to respond, non-contact, shifting from the SEA and dissolution of 
some households, the sample size reduced to 778 households. 

3. Results and Discussions 

3.1 Descriptive Statistics 

Table 1 gives some descriptive statistics for the variables used in the analysis. The mean age of the household 
head was about 48 years with a range of 20 to 100 years. 

On average, the household head had spent 6.6 years in formal education, implying that most of the farmers had 
been up to primary school. The average household size was 7.4 persons. This household size incorporated all 
household members including children less than 12 years of age. However, in the analysis, only members of the 
farm family household who were at least 12 years old were included to proxy household size for the labour 
endowment. It should be noted that only household members who were at least 12 years old would contribute 
towards labour used in production. The average household size for the active members was 4.2 persons. 
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Table 1. Descriptive statistics for the study variables 

     

Variable Mean Std. deviation Min Max 

Age (years)  

Education (years) 

Household size (persons) 

Plot size (ha)  

Plot size2 (ha2)  

Output (kg)  

Land (ha)  

Seed (kg)  

Fertiliser (kg)  

Labour (man-days) 

 

Gender (Male=1; Female=0)   

 

Farmer organization (Yes=1, No=0)       

 

Access to credit (Yes=1, No=0)    

 

Cattle ownership (Yes=1, No=0)   

 

Ox-drawn plough (Yes=1, No=0)   

 

Drought (Yes=1, No=0)  

47.7 

6.63 

7.40 

1.27 

3.45 

4,520.07 

2.42 

52.9 

347.8 

91.1 

 

1,289 

(82.84%)

935 

(60.09%)

186 

(11.95%)

892 

(57.33%)

1,091 

(70.12%)

935 

(15.30%)

14.44 

3.62 

3.24 

1.35 

10.44 

5,546.13 

2.23 

49.1 

521.9 

45.8 

 

 

 

20 

0 

1 

0.0000972 

0.0000945 

82.5 

0.12 

2.34 

0.00 

15.00 

 

 

100 

18 

25 

15 

225 

35,592.50 

19.00 

440.80 

7,600.00 

450.00 

 

 

 

Observations           1,556    

 

The average plot size of land harvested of maize over the period was 1.27 ha. Plot size was used to proxy farm 
size. Output was the quantity of maize grain harvested by the farm households in kg. The average output was 
4,520.70 kg of maize, with a minimum and maximum of 82.5 and 35,592.50 kg, respectively. Incidentally, the 
overall variation in output was 5,546.13 kg. It is worth noting that the overall variation in output was positive 
implying that there might have been an increase in maize output between 2010/11 to 2013/14. This tends to tie in 
with the report by GRZ (2016) showing that in the period under review, national maize production had increased 
by about 330,291 tons. The average amount of land allocated to maize production was 2.42 ha, a statistic which 
supports the fact that most of the farmers were small-scale (with land holding less than 5 ha). On average, 52.2 
kg of maize seed was planted over the period of study. 

Table 1 further shows that, on average, the farmers applied 348 kg of fertilizer over the two agricultural seasons. 
The average number of man-days of labour allocated to maize production over the two seasons was 91.1 
man-days/season. Table 1 also includes six (6) dummy variables on the socio-demographic, environmental and 
institutional factors that explain TFP. Of the total 1,556 observations over the study period, the majority farmers 
were male (82.8%). About 60.9% of the observations show that farmers had membership to some farmer 
organization. Only 11.9% of the 1,556 observations had households which accessed credit. On average, 57.3% of 
the 1,556 observations showed ownership of cattle. About 70% of the observations had reported ownership of an 
ox-drawn plough. Table 1 further shows that 15.3% of the observations had households that reported having 
experienced drought stress during the period under review. 
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3.2 Model Specification Tests 

Table 2 shows results of the hypothesis tests for the appropriateness of the translog distance function over the 
Cobb-Douglas production function. The first hypothesis concerns the appropriate functional form of the output 
distance function to represent the production frontier. For this purpose, the LR-test statistic of 125.95, which is 
greater than the critical value of 23.68, rules out the appropriateness of the Cobb-Douglas function (ܪ଴: ௟௠ߚ ௡௡ߜ= = ߱௞ = 0) in preference to the less restrictive translog output distance function. 

The second specification test was about the appropriateness of including the inefficiency error term in the model 
as opposed to only the standard error term, so as to have the composite error term. The null hypothesis (ܪ଴: ߛ = 0) was rejected as the LR-test statistic of 71.26 was greater than the critical value of

1

2 3.84χ = .  

 

Table 2. Model specification tests 

      

Null hypothesis LR-test DF Critical value Decision Conclusion ܪ଴: ௟௠ߚ = ௡௡ߜ = ߱௞ = 0 

� k,l,m and n ܪ଴: ߛ = :଴ܪ       0 ߤ = 0  

:଴ܪ    ߟ = ଴:߱௞ܪ   0 = ௧ߠ = 0 

� k and t 

125.95 

 

71.26 

3.19 

 

5.80 

2.39 

14 

 

1 

1 

 

1 

4 

ଵସଶݔ = 23.68 

ଵଶݔ  = ଵଶݔ 3.84 = 3.84 

ଵଶݔ  = ସଶݔ 3.84 = 9.49 

Reject H0 

 

Reject H0 

Accept H0 

 

Reject H0 

Accept H0 

 

Translog is appropriate 

 

Inefficiencies exist 

Inefficiencies follow a half-normal 

distribution 

Inefficiencies are time-varying 

No technical change 

      

 Source: Authors’ analysis using RALS data, 2012 and 2015 

 

The third model specification test was on the appropriateness of the distribution of the inefficiency error term ௜ܷ௧. The LR-test statistic of 3.19, which is less than the critical value of ݔଵଶ = 3.84 indicates that the null 

hypothesis should be rejected. Thus, the half-normal, as opposed to the truncated-normal distribution, better 

models the distribution of the inefficiency error component. 

The fourth hypothesis test of time-invariant inefficiency effects was rejected as the LR-test statistic of 5.80 was 

greater than the critical value of ݔଵଶ = 3.84 as is shown in Table 2. This implies that TE was varying over the 

study period. This in turn means that the null hypothesis stating that there is no efficiency change in smallholder 

maize production between the 2010/11 and 2013/14 seasons was rejected.              

The other null hypothesis, ܪ଴:߱௞ = ௧ߠ = 0, testing whether there was TC in smallholder maize production in 

Southern Province over the study period could not be rejected. As is shown in Table 2, the LR-test statistic of 

2.39 is less than the critical value of ݔସଶ = 9.49, and so the null hypothesis could not be rejected. 
3.3 Estimation Results of the Translog Distance Function 

Table 3 shows the estimated Maximum Likelihood coefficients of the stochastic translog distance function. Based 
on the estimates of the components of the error term, technical inefficiency is correctly specified. The value of ߛ = 0.589 indicates that inefficiency accounts for about 58% of the total variation in maize production, and it is 
significantly different from zero at the 1% level. This result corroborates the LR-test statistic of 71.26 in Table 2 
and justifies the inclusion of the inefficiency error component in the composite error term of the translog 
production function.  
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Table 3. Estimation results4 of the translog distance function 

      

Variables Parameter Coefficient Std. error t-value p-value

Constant 

ln(Land) 

ln(Seed) 

ln(Fert) 

ln(Lab) 

ln(Land)ln(Seed) 

ln(Land)ln(Fert) 

ln(Land)ln(Lab) 

ln(Seed)ln(Fert) 

ln(Seed)ln(Lab) 

ln(Fert)ln(Lab) 

0.5(lnLand)2 

0.5(lnSeed)2 

0.5(lnFert)2 

0.5(lnLab)2 

ln(Land)t 

ln(Seed)t 

ln(Fert)t 

ln(Lab)t 

t 

Gamma 

Sigma-squared 

Eta 

Likelihood function 

LR-test of the one sided error 

 

  ݂݈݈  ߟ  ଶߪ  ߛ  ௧ߠ  ସସ  ߱ଵ  ߱ଶ  ߱ଷ  ߱ସߜ  ଷଷߜ  ଶଶߜ  ଵଵߜ  ଷସߚ  ଶସߚ  ଶଷߚ  ଵସߚ  ଵଷߚ  ଵଶߚ  ସߙ  ଷߙ  ଶߙ  ଵߙ  ଴ߙ

1.277 

-2.490*** 

3.799*** 

-0.175 

-0.317 

0.730*** 

-0.0462 

0.1004 

-0.0095 

-0.0828 

-0.00565 

-0.5416** 

-0.889*** 

0.132*** 

0.1194 

0.0108 

-0.0259 

-0.0129 

0.079 

-0.279 

0.589*** 

0.819*** 

-0.341** 

-1,582.67 

71.26        

2.826  

1.108  

1.184  

0.108 

0.675 

0.273 

0.0286 

0.160 

0.0298 

0.166 

0.0149 

0.269 

0.316 

0.0123 

0.1193 

0.152 

0.156  

0.0132 

0.0684 

0.547 

0.0448 

0.0742 

0.145 

0.45 

-2.25 

3.21 

-1.62 

-0.47 

2.67 

-1.62 

0.63 

-0.32 

-0.49 

-0.38 

-2.01 

-2.81 

10.73 

1.00 

0.07 

-0.17 

-0.98 

1.15 

-0.51 

13.15 

11.04 

-2.35 

 

0.652 

0.021 

0.001 

0.110 

0.638 

0.008 

0.110 

0.501 

0.741 

0.632 

0.701 

0.045 

0.005 

0.000 

0.290 

0.951 

0.869 

0.334 

0.245 

0.615 

0.000 

0.000 

0.019 

 

  Note:      *** Significant at 1% level; **Significant at 5% level; *Significant at 10% level 

 

Table 3 also gives a value of η = -0.341 which is statistically significant at the 5% level. The statistically 
significant value of η denotes the presence of time-varying inefficiency effects in the model, while the negative 
sign indicates the deterioration of inefficiency over time. In other words, this implies that in the period under 
review, technical efficiency was decreasing over time, a result which is later confirmed by the calculated EC 
index. 

The results show that there is a significant negative relationship between maize output and land. This negative 
relationship seems strange. However, the explanation could be that with most of the farmers having access to the 
plentiful customary land, the average farmer just uses more land than is required for the optimal levels in maize 
production. Additionally, they could not have enough of the other resources, especially fertilizer with which to 
produce the maize. Since the interaction terms in a translog function do not have any economic meaning they 
were not interpreted (Okoruwa et al., 2009). 

Elasticity of maize production 

Of particular importance in any production process is the knowledge regarding the responsiveness of output to 
inputs used, that is, the elasticity of production. In this study, the various elasticities of maize production with 
respect to the inputs were calculated at the sample means. Using this method, the elasticities of maize production 
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using a translog functional form are a function of coefficient estimates and the mean values for logs of inputs 
(Coelli et al., 2005; Greene, 2008; Alam et al., 2011).As shown in Table 4, the maize output elasticity with 
respect to seed, fertilizer, land and labour are 0.53, 0.25, 0.13, and 0.01, respectively. The four production 
elasticities sum up to 0.92, implying the possibility of mild decreasing returns to scale in the production of maize. 
The implication is that if the smallholder farmers were to increase all the inputs by 1 %, maize output would 
increase by 0.92 %. This result is in contrast with the findings by Chiona et al. (2014) and Ng’ombe (2017), 
which show that smallholder maize production was exhibiting increasing returns to scale in their separate studies 
of Central Province and Zambia, respectively. 

 

Table 4. Maize output elasticity 

Input Maize output elasticity

Land 0.13 

Seed 0.53 

Fertilizer 0.25 

Labour 0.01 

Source: Authors’ analysis using RALS data, 2012 and 2015 

 

Interestingly, using data for the three agricultural seasons (1999/00, 2002/03 and 2007/08), Ng’ombe (2017) 
found the returns to scale for Southern Province of 1.468. It is plausible that the smallholder maize industry in 
Southern Province had changed from exhibiting increasing returns to scale between 1999/00 and 2007/08 to 
decreasing returns to scale in the period between 2010/11 to 2013/14 as this study showed. 

Seed: As Table 4 shows, the output elasticity with respect to seed was positive and the largest. This elasticity 
(0.53) implies that an increase in the quantity of maize seed used would result in increased maize output. For 
instance, holding other factors constant, if the quantity of seed were increased by 10% of the current levels, 
output would increase by 5.3%. It is noteworthy that the majority of the farmers in the study had used HYV 
improved seed (hybrid) varieties which are of higher quality. The result is consistent with those from other 
studies who observed a positive elasticity of maize output to seed. (Chiona et al, 2014; Ng'ombe and Kalinda, 
2015).  

Fertilizer:Fertilizer had the second largest elasticity of 0.25, implying that holding other inputs constant, a 10% 
increase in the quantity of fertilizer used would increase maize production by 2.5%.  

Land:Maize output response to land was the third in magnitude. The elasticity of 0.13 implies that a 10% 
increase in the unit of land allocation to maize would increase maize output by 1.3%, holding other inputs 
constant. This result is also consistent with the findings in the study by Chiona et al. (2014)and Ogundele and 
Okoruwa (2014). 

Labour:The maize elasticity with respect to labour was the smallest (0.01), implying that a 10% increase in the 
man-days of labour while holding other inputs constant would increase maize output by 0.1%.  

3.4 Change in Technical Efficiency, Technical Change and Total Factor Productivity 

The mean technical efficiencies for the 2010/11 and the 2013/14 seasons were 0.7032 and 0.6219, respectively. 
The mean technical efficiencies imply that on average, in the 2010/11 and 2013/14 seasons, the farmers output 
fell short of that at the frontier by 29.6% and 37.8%, respectively. Using the technical efficiency estimates for all 
the farmers in the two agricultural seasons, the indices for TFP, EC and TC were computed. Table5 presents the 
indices. As shown in Table 5, EC was measured as 0.8734. This result implies that over the 3-year period 
(2010/11 – 2013/14 agricultural seasons), the technical efficiency of the smallholder maize farmers had 
experienced a decline since the index is less than unity. This translates into a TE decline of 12.6%. This result is 
corroborated by the statistically significant negative value of η = ˗ 0.341 in Table 3, which indicates that TE had 
declined over time. Similar results of a declining technical efficiency were found by Ogundele and Okoruwa 
(2014), who reported a 16% decline of TE of rice production in Nigeria between 2002 and 2007. 

Using the two-step stochastic meta-frontier approach, Ng’ombe (2017) also found that the mean TEs for 
smallholder maize production for Southern Province progressively declined from 0.4015 in 1999/00 through to 
0.3615 in 2002/03 and further to 0.3428 in 2007/08.  
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Table 5. Mean values of the Malmquist Productivity Indices between 2010/11 and 2013/14 

Statistic EC TC TFP 

Mean 0.8734 1.0760 0.9401 

Minimum 0.5816 0.9339 0.6112 

Maximum 0.9590 1.2001 1.1269 

Std. deviation 0.0626 0.0466 0.0813 

% Change (Base=2010/11) -12.60 7.60 -5.99 

Source: Authors’ analysis using RALS data, 2012 and 2015 

 

The TC index of 1.0760 was computed as the geometric men of the TCMs using data from both period 1 and 
period 2, that is, the 2010/11 and 2013/14 seasons. However, this technical change result is not statistically 
significant as the hypothesis test ܪ଴:߱௞ = ௧ߠ = 0 could not be rejected since the LR-test statistic (2.39) was 
less than the critical value of ݔସଶ = 9.49. The TFP was then computed as the product of EC and TC, giving the 
mean TFP of 0.9401. This means that in the period under review, the total factor productivity of maize farmers 
fell by 5.99% as shown in Table 5. Thus, the results showing the decline in total factor productivity implies that 
TFP might not have contributed to the increased maize production over the two seasons. Therefore, in light of 
this result, there is every reason to have room for doubt that the overall increased maize production as indicated 
by the overall increase in maize output in Table 1 was due to increased productivity. Rather, it is plausible to 
attribute it to increased use of inputs or resources. The results further imply that there was potential for the 
smallholder farmers to increase maize production by simply improving their technical efficiencies between the 
2010/11 and 2013/14 agricultural seasons. 

3.5 Determinants of Total Factor Productivity 

The POLS was used to model the determinants of TFP change following results of some specification tests. To 
begin with, after running the Fixed Effects (FE) and Random Effects (RE) models on the data, the Hausman test 
results were significant, and thus the FE was settled for. Table 6 shows the results of the POLS regression model 
for the determinants of TFP.  

Diagnostic tests for multicollinearity and heteroscedasticity were conducted on the data. There was no presence 
of multicollinearity as the mean Variance Inflation Factor (VIF) of 1.90 which was far below the 
multicollinearity threshold of VIF=10. To test the poolability of the data and so determine whether or not the 
POLS was appropriate to model the determinants of TFP, an F-test (Chow Test) was conducted based on the 
results from the restrictive POLS and less restrictive Least Squares Dummy Variable (LSDV) models. The Chow 
Test statistic is not valid in the presence of heteroscedasticity, and so both the POLS and LSDV models were 
tested for heteroscedasticity before conducting the test (see Baltagi, 2005: Greene, 2008; Hill et al., 2011). It was 
found that heteroscedasticity was significant in both models.  

However, since the nature of heteroscedasticity could not be identified in both cases, for the estimated results to 
be valid, the models were rerun using panel-robust standard errors. Panel-robust standard errors allow for 
temporal correlation of error terms for individual units as well as the variation of variances across individuals 
(Cameron and Trivedi, 2009). In particular, the null hypothesis for the Chow Test was ܪ଴: ܿଵ = ܿଶ = ܿଷ =⋯ܿேିଵ = 0, where the ܿ௜ are the individual-specific effects for ݅ = 1,… , ܰ farm households. The ܿ௜ are the ܰ − 1 dummy variables for the farm households. The computed Chow Test statistic of 0.83 was less than the 
critical F-test value of 1.30 and so the null hypothesis of no differences in the intercepts could not be rejected at 
the 5% level. This indicated that the unobserved heterogeneity (individual-specific effects) were not significantly 
different from zero. Therefore, the POLS was chosen over the FE model. As a way of reinforcing on this result, 
the Breusch-Pagan Lagrange Multiplier (LM) test to ascertain the appropriate estimator between the RE and the 
POLS was conducted. The LM test results were not significant implying that the RE was not the appropriate 
model. If the LM test is not significant, it means that the POLS is the appropriate model over both the RE and 
the FE model (Hill et al., 2011). Thus, the POLS estimator was used to model the determinants of TFP.  

The results show a statistically significant negative relationship between TFP and the age of the household head. 
The older farmers are less likely to try out the latest technologies and agricultural practices which are more likely 
to bring about increased efficiency and TFP in the medium to long run (Alam et al., 2011). In particular, the 
results show that for an additional year of life for the household head, TFP declined by 0.05%, all other factors 
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held constant. 

 

Table 6. Determinants of total factor productivity (regression of ln( )TFP ) 

     

Variable                      Parameter Coefficient Robust Std. Error p-value 

Constant 

Age of household head 

Education of household head 

Household size 

Plot size 

Plot size squared 

Farmer organization 

(Yes=1; No=0) 

Access to Credit 

(Yes=1; No=0) 

Cattle ownership 

(Yes=1; No=1) 

Ox-drawn plough 

(Yes=1; No=0) 

Drought (Yes=1, No=0) 

Observations 

R-squared 

Variance Inflation Factor 

φ0 

φ1 

φ2 

φ3 

φ4 

φ5 

φ6 

 

φ7 

 

φ8 

 

φ9 

 

φ10 

n 

R2 

VIF 

 

-0.00166** 

-0.000501*** 

0.000967* 

-0.00538*** 

0.00658*** 

-0.000406 

0.0134*** 

 

0.0107** 

 

0.00927** 

 

0.00755 

 

- 0.0199*** 

1,556 

0.0784 

1.90 

 

      0.00826 

0.000137 

0.000558 

0.000898 

0.00265 

0.000252 

0.00416 

 

0.00430 

 

0.00426 

 

0.00488 

 

0.00594 

 

 

 

0.045 

0.000 

0.083 

0.000 

0.013 

0.107 

0.001 

 

0.013 

 

0.030 

 

0.122 

 

0.001 

 

 

 

Note:    *** Significant at 1% level; **Significant at 5% level; *Significant at 10% level 

 

There was a negative relationship between TFP and household size. The results show that for a 10% increase in 
household size, TFP declined at the rate of 5.38% per year. This result is consistent with the findings by Ukoha et 
al. (2010) who also found a negative relationship between TFP and the household size of smallholder cassava 
farmers in Ohafia, Nigeria. One of the plausible explanations for this result could be the age dependency ratio in 
the family, the ratio of the total number of family members below and above some years to the household size, 
who might need attention from the household head and other older active members of the household. 

The relationship between TFP and plot size was significant whereas that between TFP and the square of plot size 
was not. A 10% increase in plot size would result in a 6.58% rise in TFP. This result is consistent with the study 
by Bao (2014) who also found a positive relationship between TFP and plot size. 

As shown in Table 6, compared to a non-member farmer, on average, a farmer with membership to an 
organization has a TFP change of 1.34% higher. A plausible explanation for this could be that a farmer 
organization offers a number of benefits to members. Besides being a vehicle through which extension messages 
and technologies are diffused, members of farmer cooperatives can enjoy access to subsidized inputs. For 
example, for a farmer to access subsidized inputs under FISP in Zambia, they have to belong to a registered 
farmer organization (GRZ, 2016). In his study on farmer organizations and food production in Zimbabwe, 
Bratton (1986), found that a higher proportion of farmers (32%) who belonged to farmer organizations had 
access to credit as compared to individual farmers (7%). Thus, it is expected that such farmers will generally 
have higher technical efficiency in maize production and technical know-how than their counterparts who do not 
belong to farmer organizations. It follows that the result reinforces the expectation of a relatively high TFP for 
members of organizations.  

There was a positive relationship between TFP and access to credit. A farmer with access to credit has a TFP 
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change which is 1.07% higher than a counterpart without access to credit. This finding is consistent with Ukoha 
et al. (2010) who also found a positive relationship between cassava farmers’ access to credit and TFP.  A 
similar positive relationship was found by Deininger and Olinto (2000) between TFP the amount of credit 
accessed by a farmer. A farmer with access to credit is able to purchase high quality inputs such as hybrid seed 
and chemical fertilizers needed for the production process. Credit could also be crucial in cases where farmers 
have cash constraints and so face challenges in accessing subsidised inputs under FISP.  

The results further show a positive relationship between TFP and ownership of cattle. Compared to a farmer who 
does not own cattle, the TFP change for a farmer who owns cattle is 0.9% higher. Deininger and Olinto (2000) 
found a similar relationship between TFP and ownership of draught animals. The explanation is that cattle, 
especially oxen, could be used in agricultural activities such as land preparation, planting and weeding so that 
farmers in possession of cattle are expected to complete agricultural activities on time (Deininger and Olinto, 
2000).  

The results also show a significant negative relationship between TFP and drought stress. In particular, as 
compared to that for farm households who had a normal rainfall season, the TFP change for households who 
experienced drought was 1.99% lower. This result perhaps underscores the problem of overdependence on 
rain-fed agriculture, which is unfortunately widely common in much of SSA, and indeed, Zambia. 

4. Conclusion and Policy Implications 

The study found that between the 2010/11 and 2013/14 agricultural seasons, the EC of smallholder maize 
production was 0.8734, implying that TE fell by 12.6%. In between the same two seasons, TFP was found to be 
0.9401, indicating a TFP decline of 5.99%. The fact that TFP declined over the two seasons implied that TFP did 
not contribute to smallholder maize production in southern Zambia. The results further showed that the age of 
the farmer, the years of education, household size, plot size, membership to some farmer organization, access to 
credit, ownership of cattle and drought stress were also important factors in explaining TFP. In light of these 
findings, a number of policy implications could be drawn. 

Increased farmers’ access to credit plays an important role in contributing to TFP. Farmers with access to credit 
can use it to buy farming inputs and so make them more productive in the long run. Thus, policy makers should 
put in measures to enhance farmers’ accessibility to agricultural credit. In this regard, the central bank could help 
in increasing availability of agricultural credit by charging concessional bank rates to financial institutions which 
offer loans to farmers. The results have shown that membership to a farmer organization is positively related 
with a higher TFP. Farmers should be sensitized on the benefits of belonging to farmer organizations so that 
more of them join or form new cooperatives.  

Policy makers should encourage projects that increase chances of farmers owning cattle. A good example is the 
Heifer Project by Heifer International–Zambia. Among other objectives, the project aims at empowering farm 
families with dairy cattle and oxen through cattle donations to cooperatives. The cooperatives subsequently pass 
on calves to the cooperative members. Such projects are likely to contribute to increased total factor productivity 
in maize production given that in most cases the same farmers also produce maize.  

Since the results showed that drought stress had a considerable negative effect on TFP, it is imperative that 
policy makers consider massive investment in irrigation infrastructure. This would ensure that farmers do not 
solely rely on rainfall for maize production but supplement rains with irrigation in periods of drought or 
prolonged dry spells. 
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Notes 

1. Technological change is the change in the use of production techniques or innovations over time (Fare et al., 
1994; Coelli et al., 2005). In most literature on productivity, it is also called Technical Change (TC). Thus, in the 
present study, the two terms were used interchangeably. TC results in a shift in the production frontier over time. 

2. It should be noted that since in practice it is virtually impossible to account for all possible inputs used in 
production, Multi-Factor Productivity (MFP) and not TFP, should be the better term to use. However, in keeping 
with most of the literature, TFP, will be preferred over the two as in Coelli et al. (2005).  

3. This is the adapted form of the equation from Fuentes et al. (2001). This is in view of the fact that in this study 
we have only one output whereas in Fuentes et al. (2001) there were three outputs. Hence, the output parameter 
estimates do not appear in this adapted form of the TCM Equation. 

4. The parameter ߠ௧௧  could not be estimated because the variable ݐଶ  was dropped due multicollinearity. 
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Consequently, the estimate was not available for use in the estimation of TCM used in calculating technical 
change. 
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