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Abstract 

Global processes, such as warming and eutrophication, affect plant-plant interactions. The positive (facilitation) 
and negative (competition) interactions depend on environmental conditions and species’ characteristics and play 
a key role in regulating the composition, productivity, structure and dynamics of communities and ecosystems. 
Recently, biodiversity in former species-rich, semi-dry grasslands has decreased due to the abandonment of 
traditional land use, under which grass species expanded and dicots declined. The hypothesis that this 
phenomenon will intensify with warming and eutrophication is tested on the expanding grass Festuca rupicola 
(F) and the dicot Dianthus carthusianorum (D). A competition experiment were conducted with conditions 
simulating current average summer temperatures (20 ºC during day/10 ºC during night) and predicted warmer 
conditions (22/15 ºC) in growth-chambers, both under nutrient-poor (simulated natural habitat conditions) and 
nutrient-rich conditions (simulated annual N deposition). The plants were placed in pots with constant densities 
(five individuals per pot) but under varying mixture ratio (F5, D5, D4/F1, D3/F2, D2/F3, D1/F4). The measured 
plant parameters (biomass, leaf number and leaf length) and the interactions varied species-dependent: under 
nutrient poor conditions the performance of both species was low and the interactions were weak. After nutrient 
addition, growth parameters of both species developed between twofold and tenfold better and the species 
interacted more markedly. Under both nutrient levels, D. carthusianorum was significantly promoted by 
warming. But, warmed conditions did not affect the biomass and leaf length of F. rupicola, whereas leaf number 
significantly decreased under both nutrient levels. As such, the dicot became competed against and the grass 
facilitated under current conditions, while under warmed conditions the competitive ability of the grass declined 
and that of the dicot increased, indicating that interactions between both species reverses with warming climate. 
This suggests, that under predicted climate conditions, the expanding grass will decline, while the dicot will be 
promoted, which can have positive effects on biodiversity of semi-dry grasslands.  

Keywords: global warming, global eutrophication, competition, facilitation, semi-dry grasslands  

1. Introduction 

Ongoing global change is characterized by different processes including warming and eutrophication. Over the 
past 100 years, the global average temperature has increased by approximately 0.6 ºC, and a rise of between 1.1 
and 6.4 ºC (depending on the scenario) is forecast for 2100 (Intergovernmental Panel on Climate Change [IPCC], 
2007). A meta-analysis of 143 studies including several plant and animal species showed that a significant 
impact of global warming is already discernible, and affects the connectedness, evenness and turnover up to the 
rearrangement of biotic communities and extinction events (Root et al., 2003). In addition to the effects of 
increasing temperatures, agriculture, combustion of fossil fuels and other human activities have substantially 
altered the global cycle of nitrogen (N), leading to increases in availability and mobility of N over large global 
regions, which have environmental consequences that can be serious and long lasting (Vitousek et al., 1997). The 
critical N load of semi-dry grasslands lies between 14 and 25 kg ha-1 a-1 (De Jong, Fangmeier, & Jäger, 1998), 
but the annual deposition in the dry region of central Germany during the nineties of the last century was 
between 46 and 51 kg ha-1 a-1 (Körschens & Mahn, 1995). Such long-term N enrichment leads to competitive 
exclusion of characteristic species by more nitrophilic plants, especially under oligo- to mesotrophic conditions 
(Bobbink, Hornung, & Roelofs, 1998), and is implicated in floristic changes in semi-dry grasslands (Horswill et 
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al., 2008; Stevens, Thompson, Grime, Long, & Gowing, 2010). Thus, such increases in yield and changes in the 
species composition have promoted grass species (Willems & Bobbink, 1990; Bornkamm, 2006; Dupré et al., 
2010).  

In order to predict biotic responses to climate change, it is necessary to investigate plant-plant interactions as 
important elements of population dynamics (Davis, Jenkinson, Lawton, Shorrocks, & Wood, 1998), which play a 
key role in regulating the composition, productivity, structure and dynamic of communities and ecosystems 
(Fowler, 1986; Callaway, 1995; Whitford, 2002; Brooker, 2006; Cheng, Wang, Chen, & Wie, 2006; Thorpe, 
Aschehoug, Atwater, & Callaway, 2011). They depend on environmental conditions and species’ characteristics 
and are manifold between the constituent species (Holmgren, Scheffer, & Huston, 1997; Callaway & Walker, 
1997; Callaway, 2007; Soliveres, De Soto, Maestre, & Olano, 2010). The interactions can be estimated as 
“intensity”, which describes the effect of one plant on another ignoring the influence of other environmental 
factors and as “importance where the other environmental factors are including (Welden & Slauson, 1986; 
Brooker et al., 2005; Zhang, Cheng, Yu, Kräuchi, & Li, 2008). Interactions are mostly identified as being 
negative in terms of competition for light, nutrients, space, pollinators or water, and positive in terms of 
facilitation, where plants protect each other from the impacts of competitors, climate extremes or herbivores as 
well as resources through canopy leaching, microbial and mycorrhizal networks and hydraulic lift (del-Val & 
Crawley, 2005; Gao, Wang, Han, Patton, & Nyren, 2005; Kuijper, Dubbeld, & Bakker, 2005; Weigelt et al., 2007; 
Brooker et al., 2008). Whereas competition is widely dominant in benign environments (Grime, 1973; Huston, 
1979), facilitation is equally common in stressful ecosystems (Bruno, Stachowicz, & Bertness, 2003), such as 
savannas, deserts, shrublands or salt-marshes (Belsky, 1994; Pugnaire & Luque, 2001; Callaway et al., 2002; 
Maestre, Bautista, & Cortina, 2003; Maestre & Cortina, 2004). A number of studies have demonstrated that 
plant-plant interactions are affected by climate conditions, which change between years (Greenlee & Callaway, 
1996; Herben, Krahulec, Hadincová, Pechácková, & Wildová, 2003; Veblen, 2008; Soliveres et al., 2010), within 
a single growing season (Bertness & Ewanchuk, 2002), or along a climate gradient with increasing altitude 
(Choler, Michalet, & Callaway, 2001; Kikvidze, Khetsuriani, Kikodze, & Callaway, 2006), where competition 
can switch to facilitation and vice versa. In general, increasing environmental severity leads to a shift from 
negative to positive interactions and suggests that the global shift toward increasingly drier Mediterranean-type 
ecosystems will result in greater facilitation between species (Brooker, 2006).  

While there is a justifiable interest in the impacts of global change on rare or endangered species (Maschinski, 
Baggs, Quintana-Ascencio, & Menges, 2006), the fate of widespread species is of greater relevance, because a 
reduction in abundance of a dominant species can have consequences in terms of habitat quality and ecosystem 
functioning (Hovenden et al., 2008). In this study, the interactions between two semi-dry grassland species 
adapted to nutrient poor soils and warm, dry climate conditions are assessed. They belong to the steppe-like 
ecosystem in the dry region of central Germany (Meusel, 1940; Mahn, 1965). A vegetation analyse over 40 years 
showed, that the abandonment of grazing over the last twenty years has led to grass species becoming more 
dominant while dicots have declined and become endangered (Partzsch, 2000; 2001) and the negative effect of 
traditional land use change on biodiversity was also detected in experimental way (Partzsch, 2011b; Partzsch & 
Bachmann, 2011). This phenomenon is expected to intensify as a result of predicted global change (Dupré et al., 
2010). 

The expanding grass Festuca rupicola and the rare dicot Dianthus carthusianorum were chosen with the aim to 
test the hypothesis that the performance of these species will improve under global climate change, with 
interactions becoming stronger in such a way that the dicot suffers for stronger competition from the grass. In 
order to simulate the effect of eutrophication, the performance of the species was tested under nutrient poor and 
nutrient rich conditions. To simulate climate conditions, two different temperature-light regimes were tested 
(current conditions during summer: 20/10 ºC Max and Min daily temperatures, respectively; predicted conditions: 
22/15 ºC Max and Min daily temperatures, respectively; i.e. an increased temperature of approximately 3.5 ºC). 
The specific regimes were chosen because it is predicted that night-time radiant emittance will be much less than 
it is today in central Germany (Easterling et al., 1997). Competition experiments with a replacement design (after 
De Wit, 1960) were conducted with the following questions being investigated: 1) How do the two species 
perform in terms of biomass, number of leaves and leaf length under nutrient poor and nutrient rich conditions 
and under current and predicted climate conditions? and 2) Is there a change in biotic interactions (positive or 
negative and intensity and importance) between the two species after nutrient addition and warming?  

2. Material and Methods 

2.1 Study Species and Collection 
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Dianthus carthusianorum L. (Clusterhead; Caryophyllaceae) is a perennial, 15-45 cm high hemicryptophyte and 
Festuca rupicola Heuff. (Gramineae) is a perennial, 15-80 cm high tussock grass. Both species are distributed in 
submeridional to southern temperate Europe (Jäger, 2011) and mainly occur together in the communities of 
Festuco-Brometea. Whereas the rare dicot is protected by law in Germany (Korneck, Schnittler, & Vollmer, 
1996), the grass is common and has spread extensively over the last 20 years and currently often dominates 
grassland communities subject to the abandonment of traditional land uses (Partzsch, 2000; 2001). Both species 
are very similar in germination biology: the seeds are not dormant and germinate very quickly after dispersal 
(Partzsch, 2010; 2011a). Mature seeds of the species were collected from semi-dry grasslands in the 
surroundings of Halle (Saale) (51.48 N, 11.97 E) at the end of June 2008. The local climate is characterized by a 
mean annual temperature of 9.2 ºC and a mean annual precipitation of 473 mm (Döring, 2004).  

2.2 Competition Experiment 

To detect interactions between the two species, a competition experiment with replacement design (De Wit, 1960) 
was conducted in September 2008. The proportion of both species within mixtures was varied, maintaining a 
constant density throughout in the pots. Treatments included a combined total of five individuals of D. 
carthusianorum (D) and F. rupicola (F) (adapted to the pot size: 10 cm width x 10 cm length x 11 cm height, soil 
substrate mass (dry): 250 g), with the proportion of each species being varied: D4/F1, D3/F2, D2/F3, D1/F4. 
Additional monocultures of both species (D5, F5) were prepared and all treatments were applied with eight 
replications. Simultaneously the treatments were tested under two nutrient-levels: pots (48) with nutrient poor 
soil substrate (pH 5.9; N 80 mg/l, P2O5 80 mg/l, K2O 80 mg/l) simulating current field conditions and pots (48) 
with nutrient rich soil substrate simulating eutrophication by the use of an NPK-granule fertilizer (Basacote Plus 
9M, 15 % N; produced by COMPO GmbH & KG, Münster, Germany). One gram of this fertilizer was added to 
each pot in order to simulate an annual N deposition of ca. 50 kg ha-1 a-1. 

The experiment was carried out simultaneously in two growth-chambers (type VB 1514, Vötsch Industrietechnik, 
Germany; with 96 pots per each chamber) to simulate the summertime conditions in the dry region of central 
Germany. A light regime (illumination 185 mol s-1 m-2) of 10 hours light and 10 hours dark was used, while the 
light phase started and ended with a twilight period (illumination 80 mol s-1 m-2) of two hours. The temperature 
regime in the first chamber simulated the approximate current summertime conditions, with 20 ºC during the day 
and 10 ºC during the night, while the second chamber simulated the temperature conditions under global 
warming, with 22 ºC during the day and 15 ºC during the night. During the twilight phases, the temperature was 
gradually increased or decreased and relative humidity was kept at 65% during the day and 80% at night. The 
pots were rearranged and randomly placed every week to mitigate effects of location in the chambers (The 
chambers were brand-new with guaranteed identical conditions). The pots were watered as required and the 
whole experiment lasted nine month. 

The parameters ‘number of leaves’, ‘length of the longest leaf’ and ‘above-ground biomass per individual’ were 
measured at the end of the experiments; biomass was weighed after drying at 80 ºC for eight hours.  

2.3 Data Analysis 

In order to determine competition intensity, the Relative Interaction Indices (Armas, Ordiales, & Pugnaire, 2004) 
were calculated by  

RII = P+N – P-N/P+N + P-N, 

where P+N is the performance of the target plant in the presence of neighbours and P-N is the performance of 
the target plant in the absence of neighbours. Competition importance was calculated using the index of 
Interaction Importance by Seifan, Seifan, Ariza and Tielbörger (2010). The calculation follows  

Iimp = Nimp/|Nimp| + |Eimp|, 

whereas Nimp = P+N – P-N, and Eimp = P-N – PmaxN. (Eimp = environmental contribution to plant performance; 
Nimp = neighbour contribution to plant performance; PmaxN = maximum value of plant performance in the studied 
system, regardless of neighbours). Both values range from -1 to 1, are symmetrical around zero, with positive 
values indicating facilitation and negative values indicating competition. 

All collected data of plant parameters were checked for normality of distribution and were log-transformed to 
meet the assumption of the analysis of variance (ANOVA). A parametric one-way ANOVA with HSD Tukey’s 
post hoc test (p < 0.05) was used to compare the differences within the mixture ratio (D4/F1, D3/F2, D2/F3, 
D1/F4, D5, F5). To compare the performance of the plant parameters of the two species under all environmental 
factors, a three-way ANOVA was conducted with nutrient level, temperature and treatment as fixed factors. For 
the calculation of biomass, leaf number and leaf length values for the mixtures and the monocultures were 
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included, while only the values of the mixtures were included for the calculation of the three-way ANOVA for 
RII and Iimp. Statistical analyses were performed using SPSS 19.0 (2011).  

3. Results 

3.1 Performance of Plant Parameters 

Under nutrient poor conditions, the produced biomass and the number of leaves of D. carthusianorum did not 
significantly differ under unwarmed conditions, but leaf length decreased significantly with increasing D. 
carthusianorum individuals in the pots (Figure 1). Under warmed conditions, the parameters of biomass and leaf 
length showed no significant differences, but the number of leaves did. After nutrient addition, biomass and 
number of leaves strongly increased (almost tenfold) and leaf length nearly doubled. Under unwarmed 
conditions, biomass increased significantly with an increased number of D. carthusianorum individuals being 
recorded for each pot; however, leaf number and length did not significantly differ. Under warmed conditions, 
biomass and leaf number significantly decreased with increased number of dicot individuals, but leaf length did 
not. 
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Figure 1. Performance of Dianthus carthusianorum in mixtures (D1F4, D2F3, D3F2, D4F1) and monocultures 
(D5) with constant density (with increasing number of D. carthusianorum from left to right) under nutrient poor 
(left) and nutrient rich (right) conditions at current (20/10 ºC; white bars) and predicted (22/15 ºC; black bars) 

conditions (means with standard error). The results of the one-way ANOVA are shown (F- and P-values; letters 
show significant groups: small letters: 20/10 ºC; large letters: 22/15 ºC) 
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Festuca rupicola showed no significant variation in biomass and leaf length under unwarmed and warmed 
conditions at nutrient poor levels; and only the number of leaves significantly differed under unwarmed 
conditions (Figure 2). Nutrient addition caused an approximate tenfold increase in biomass, a threefold increase 
in leaf number and a twofold increase in leaf length. Under unwarmed conditions, biomass, leaf number and 
length decreased significantly with increasing number of F. rupicola individuals in the pots. Under warmed 
conditions, biomass and leaf number did not differ significantly, but leaf length did. 
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Figure 2. Performance of Festuca rupicola in mixtures (D1F4, D2F3, D3F2, D4F1) and monocultures (F5) with 
constant density (with decreasing number of F. rupicola from left to right) under nutrient poor (left) and nutrient 

rich (right) conditions at current climate (20/10 ºC; white bars) and predicted climate (22/15 ºC: black bars) 
conditions (means with standard error). The results of the one-way ANOVA are shown (F- and P-values; letters 

show significant groups: small letters: 20/10 ºC; large letters: 22/15 ºC) 

 

Results of the three-way ANOVA showed that nutrient addition significantly promoted all plant parameters in 
both species (Table 1). The increase in temperature significantly enhanced above-ground biomass, leaf number 
and length of D. carthusianorum while treatments showed significant effects only on leaf number and length. 
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Nutrient*temperature interaction had significant effects on all parameters but temperature*mixture ratio 
interaction significantly affected only biomass. Also, the interaction of all three environmental factors 
significantly enhanced biomass in the dicot. Surprisingly, F. rupicola biomass did neither significantly differ 
with temperature or mixture ratio nor with their interactions; only the interaction nutrient*temperature*mixture 
ratio showed significant effects. Leaf number was however significantly reduced by warming and was 
significantly affected by all interactions that included nutrient as a factor. Leaf length was only significantly 
affected by treatment and the nutrient*mixture ratio interaction. 

 

Table 1. Results of the three-way ANOVA on the plant parameters of Dianthus carthusianorum and Festuca 
rupicola in all treatments under nutrient poor and nutrient rich conditions and under current and predicted 
climate conditions 

Source of variation df 
Biomass per individual [g] 

Number of leaves 

per individual 
Longest leaf [cm] 

F P F P F P 

Dianthus carthusianorum   

Nutrient 1 543.337 <0.0001 612.566 <0.0001 207.795 <0.0001

Temperature 1 100.51 <0.0001 140.092 <0.0001 42.065 <0.0001

Mixture ratio 4 0.411 0.8 3.304 0.013 2.573 0.04 

Nutrient * Temperature 1 61.784 <0.0001 112.795 <0.0001 8.91 0.003 

Nutrient * Mix. ratio 4 1.474 0.213 1.81 0.13 1.226 0.303 

Temperature * Mix. ratio 4 2.824 0.027 1.622 0.172 0.186 0.945 

Nutr. * Temp. * Mix. ratio 4 12.04 <0.0001 2.414 0.052 2.139 0.079 

Error 140 

Festuca rupicola   

Nutrient 1 379.807 <0.0001 367.245 <0.0001 271.948 <0.0001

Temperature 1 0.67 0.414 20.181 <0.0001 3.602 0.06 

Mixture ratio 4 1.954 0.105 2.037 0.092 3.192 0.015 

Nutrient * Temperature 1 3.401 0.067 6.3 0.013 1.978 0.162 

Nutrient * Mix. ratio 4 0.981 0.42 4.587 0.002 2.68 0.034 

Temperature * Mix. ratio 4 1.323 0.264 1 0.41 2.043 0.092 

Nutr. * Temp. * Mix. ratio 4 2.77 0.03 4.758 0.001 1.353 0.253 

Error 140 

 

3.2 Plant-Plant Interactions 

The results indicated that the positive and negative interactions between the two species are generally minor 
under nutrient poor conditions (Figures 3 and 4). Whereas D. carthusianorum became slightly facilitated and F. 
rupicola competed against under unwarmed conditions, the interactions were more or less neutral under warmed 
conditions. After nutrient addition, D. carthusianorum suffered from competition, but it did not significantly 
differ between treatments. After warming, D. carthusianorum switched to facilitation, which significantly 
increased with increasing number of grass individuals in the pots, and F. rupicola was facilitated under 
unwarmed conditions (Figure 4). The positive interactions significantly increased with increasing number of D. 
carthusianorum in the pots. However, after warming, the grass suffered from competition by the dicot. The 
competition intensity and importance were very similar for both species (Figures 3 and 4), however the intensity 
is higher than the importance in D. carthusianorum and visa-versa in F. rupicola. 
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Figure 3. Competition intensity (RII) and competition importance (Iimp) of Dianthus carthusianorum in mixtures 
under nutrient poor (left) and nutrient rich (right) conditions and under current climate conditions (white bars) 

and predicted climate conditions (black bars). Positive values show facilitation and negative values show 
competition (means with standard error) 
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Figure 4. Competition intensity (RII) and competition importance (Iimp) of Festuca rupicola in mixtures under 

nutrient poor (left) and nutrient rich (right) conditions and under current (white bars) and predicted climate 
conditions (black bars). Positive values show facilitation and negative values show competition (means with 

standard error) 
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Results of the three-way-ANOVA (Table 2) showed that RII and Iimp of D. carthusianorum was significantly 
affected by nutrient addition and temperature and the interactions nutrient*temperature and 
nutrient*temperature*mixture ratio. However, nutrient addition significantly enhanced only Iimp of F. rupicola. 
Temperature and nutrient*temperature interaction had significant effects on both “importance” and “intensity” of 
interaction of the grass. 

 

Table 2. Results of the three-way ANOVA on competition intensity (RII) and importance (Iimp) of Dianthus 
carthusianorum and Festuca rupicola in the mixtures under nutrient poor and nutrient rich conditions and under 
current und predicted climate conditions 

Source of variation df 
Competition intensity (RII) Competition importance (Iimp)

F P F P 

Dianthus carthusianorum 

  Nutrient 1 5.268 0.024 9.772 0.002 

  Temperature 1 24.389 <0.0001 11.929 <0.001 

  Mixture ratio 3 0.220 0.883 0.238 0.870 

  Nutrient * Temperature 1 82.987 <0.0001 50.901 <0.0001 

  Nutrient. * Mixture ratio 3 1.810 0.149 1.196 0.315 

  Temperature * Mixture ratio 3 1.655 0.181 0.811 0.490 

  Nutr. * Temp. * Mixture ratio 3 9.586 <0.0001 5.966 <0.001 

  Error 112

Festuca rupicola 

  Nutrient 1 2.489 0.117 9.856 0.002 

  Temperature 1 10.553 0.002 4.533 0.035 

  Mixture ratio 3 1.487 0.222 2.558 0.059 

  Nutrient * Temperature 1 24.527 <0.0001 20.716 <0.0001 

  Nutrient. * Mixture ratio 3 0.896 0.446 0.737 0.532 

  Temperature * Mixture ratio 3 0.390 0.760 0.405 0.750 

  Nutr. * Temp. * Mixture ratio 3 0.957 0.416 1.023 0.385 

  Error 112

 
 

4. Discussion 

4.1 Performance of the Plant Parameters 

The semi-dry grassland species, D. carthusianorum and F. rupicola, responded differently to the manipulated 
environmental factors. While eutrophication showed strong positive effects on the growth of both species, they 
responded differently to warming. However, the biomass of both species was not affected by coexisting species 
under nutrient poor conditions, both under unwarmed and warmed conditions. After nutrient addition significant 
effects were detected, which showed that the species reached the developing stage much earlier than they do 
under natural nutrient poor conditions. As such, a few individuals of D. carthusianorum started to flower after 
four months (data not shown) and the species interacted in the same way as they do in the adult stages. After 
warming, all parameters of D. carthusianorum became significantly increased, but F. rupicola was not positively 
affected in biomass, and the number of leaves per individual was significantly reduced, which was similar under 
both nutrient levels under warming. Similar species-specific responses were detected by Zhang et al. (2008), 
where the biomass and height of Festuca rubra decreased, whilst Trifolium pratense parameters remained 
unchanged with increased temperature and nutrient addition. This is in line with results reported from arctic and 
alpine ecosystems: whereas Ledum palustre and Empetrum nigrum tended to increase shoot height and biomass 
production, Vaccinium uliginosum, V. vitis-idaea and Arctous alpinus did not (Kuodo & Suzuki, 2003); or in 
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Mediterranean shrubland, where Erica multiflora became promoted and Globularia alypum inhibited by 
warming (Llorens, Penuelas, Estiarte, & Bruna, 2004). Otherwise, Hovenden et al. (2008) found that seedlings of 
a temperate grass (Austrodanthonia caespitosa) descendent from “warmed plants” were 20% smaller than those 
from “unwarmed plants”, suggesting that global warming will most likely reduce population growth or 
distribution of this dominant grass. 

Generally, nutrient addition led to increases in growth of semi-dry grassland species reported by several authors 
(Willems & Bobbink, 1990; Bobbink et al., 1998; Dupré et al., 2010). Otherwise, biomass loss by warming is 
caused by the temperature-sensitive respiration process (Yoshida, 1981; Amthor, 2000), which reduces the 
amount of assimilates available for growth and yield (Monteith, 1981). The faster increase in night-time 
temperatures recorded for the past century (Easterling et al., 1997) led to a negative effect on the yield of 
agricultural products such as maize, wheat, sorghum and soybean (Brown & Rosenberg, 1997). Peng et al. (2004) 
found a decrease in the biomass of rice by ca. 10% for every 1 ºC of warming. In contrast, nocturnal warming led 
to a 36.3% increase in respiration for two dominant grass species in a temperate steppe ecosystem in northern 
China, and enhanced consumption of carbohydrates in the leaves, which stimulated plant photosynthesis by 
19.8% in the subsequent days (Wan, Xia, Liu, & Niu, 2009). Such species-specific responses to warming lead to 
a shift in competitive priority along environmental gradients (Zhang et al., 2008), consistently with the results 
from the present study. 

4.2 Performance of Plant-Plant Interactions  

Under nutrient poor conditions, the interactions between the two species were more or less neutral, probably in 
relation to the reduced plant performance. At an early stage of development, the plants did not interact, whereas 
interactions increased with increasing plant growth. As such, plant size or development stage can be good 
predictors of plant performance for several ecological conditions, including responses to neighbours (Miriti, 
2006). Rafferty and Young (2002) found in a competition experiment that the desert needlegrass seedlings 
(Achnatherum speciosum) in comparison to cheatgrass (Bromus tectorum) started to significantly differ in 
growth height and interactions after the 5th week following emergence. In another study, competition tended to 
be greatest during the establishment stage of pine seedlings in the bunchgrass understorey (Kolb & Robberecht, 
1996). However, the differences in physiological and morphological traits of the species led to different levels of 
plant performance and interaction (Zhang et al., 2008).   

After nutrient addition, both species interacted more intensively. Under warmed conditions, the competitive 
ability of the dicot increased, but the competitive ability of the grass decreased, which caused not only a change 
in the interspecific interaction but also the intraspecific interaction. As such, biomass and leaf number of D. 
carthusianorum significantly decreased with increasing dicot individuals in the pots. However, the interaction of 
D. carthusianorum switched from competition to facilitation and was further bolstered with increasing numbers 
of F. rupicola individuals, as a result of reduced plant performance of the grass. Kuodo and Suzuki (2003) 
pointed out that competition accelerated under warmed conditions (between 1.5-2.3 ºC higher), and the less 
competitive Vaccinium vitis-idaea was suppressed by other plant species. A shift between facilitation and 
competition due to changing climate conditions was also described by Greenlee and Callaway (1996), Choler et 
al. (2001), Bertness and Ewanchuk (2002) and Kikvidze et al. (2006), which is further confirmed by the present 
results.  

The plant traits life history and strategy type (Grime, 1977) of the co-existing species, as well as the 
characteristic of the stress factors which are distinguished between resource (e.g. water, nutrients, light) and 
non-resource stress factors (e.g. temperature, wind, salinity, soil structure), determine the interplay between 
facilitation and competition (Chen et al., 2009; Maestre, Callaway, Valladares, & Lortie, 2009). Therefore, D. 
carthusianorum exhibits an intermediate strategy type (CSR-strategist) that is more stress-tolerant, whereas F. 
rupicola is a stress tolerant competitor (CS-strategist) with greater competitive ability (Frank & Klotz, 1990). 
The combination of both stress factors (nutrient and temperature) led to a reduction in competitive ability for the 
grass and increased competitiveness for the dicot. It agrees with the finding of Sala et al. (2000), that multiple 
environmental changes induce synergistic or antagonistic effects. 

According to what has been proposed by Brooker et al. (2005), biotic interactions should be evaluated for 
“intensity” and “importance” in order to identify both physiological factors as well as ecological ones. However, 
the present results showed a very high similarity for both indices, which is also confirmed by Zhang et al. (2008). 
In contrast, Gaucherand, Liancourt and Lavorel (2006) found a different pattern in competition intensity and 
importance along a fertility gradient, while the importance depended on the species individual tolerance to low 
nutrient availability. However, both species in the present study showed similar behaviour to nutrient availability. 
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In general, the results of the present study suggest that environmental change in terms of eutrophication and 
warming may lead to a change in plant species composition in such a way that F. rupicola, the grass which 
currently dominates the semi-dry grassland communities of central Germany, will decline as the rare dicot D. 
carthusianorum is promoted. From a nature conservation perspective, this may represent a positive effect in 
terms of biodiversity enhancement of such steppe-like ecosystems. However, the interactions between grasses 
and dicots need further investigation in order to provide a wider and more robust understanding of their 
dynamics under different environmental conditions. 
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