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Abstract 

Alien, introduced, and non-native species expand their distribution through the development of various 

transportation networks. In Japan, Ligustrum lucidum Aiton (Oleaceae) was introduced in the mid-1800s for use 

as roadside trees, but has escaped from the planting area and spread everywhere. This species also invades 

coastal areas and has adapted to develop its characteristic features under various stress conditions. To clarify the 

adaptive features of L. lucidum in coastal areas, we conducted morphological and anatomical analyses. We found 

that the stomatal size of L. lucidum was smaller in the coastal populations than in inland populations, which is 

similar to the coastal adaptation pattern of L. japonicum Thunb., a closely related native species. Our results 

suggest that strong selective pressure on coastal area conditions could force their leaves to avoid excessive 

transpiration, and such an adaptation pattern of L. lucidum could expand its distribution to various coastal areas. 
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1. Introduction 

The number of non-native species introduced worldwide has more than doubled compared with estimates from 

approximately three decades ago (Williamson & Fitter, 1996a, b). This is predominantly due to the growth in 

global trade and human mobility (Sala et al., 2000). Biological invasions are considered a major environmental 

issue of public concern. The introduction of a non-native species into an ecosystem is likely to present an 

ecological risk if the species can integrate successfully into the ecosystem (Gozlan & Newton, 2009). This can 

result in interactions that are detrimental to native species or even cause dysfunction of the whole ecosystem 

(Mack et al., 2000; Pejchar & Mooney, 2009; Bellard et al., 2016). These invasions are on the rise and human 

modification of ecosystems may provide them with new niche spaces (Tilman & Lehman, 2001; Inouye, 2008; 

Blois et al., 2013; Harte et al., 2015). When dispersed into new environments, introduced species can thrive by 

filling vacant niches or by outperforming native plants (Davis & Pelsor, 2001; Daehler, 2003). For example, the 

Japanese knotweed (Fallopia japonica (Houtt.) Ronse Decr. (Polygonaceae)), one of the world's 100 most 

invasive species (Roy et al., 2018), is particularly invasive throughout North America, Europe, Australia, and 

New Zealand (Nentwig et al., 2018), and exists as a female clone in the United Kingdom from a single 

introduction (Bailey & Conolly, 2000; Hollingsworth & Bailey, 2000). Kudzu (Pueraria montana (Lour.) Merr. 

(Fabaceae)) is an invasive leguminous vine native to Asia, and the promotion of the vine as a forage crop and 

soil stabilization agent during the early 20th century facilitates its firm establishment across the southeastern part 

of the United States (Forseth & Innis, 2004). In Japan, introduced species invade many sites because of 

increasing human activities, rapidly increasing after the latter half of the nineteenth century; today, about 

one-quarter of vascular plants are alien and naturalized species (Shimizu & Konta, 2003). There has been a 

marked increase in the problems arising from the accidental or deliberate escape of introduced plant species into 

the wild; introduced species such as Festuca arundinacea (Schreb.) Darbysh. (Poaceae), Pyracantha angustifolia 

M. Roem. (Rosaceae), and Trifolium repens L. (Fabaceae) can affect ecosystems via competition for pollinators, 

hybridization, reduction of native species, habitat modification, and transmission of novel diseases (Ishida et al., 

1998; Nakatsubo, 1998; Okubo & Oka, 2005). There are many such examples, some of which cause serious 
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consequences for biodiversity conservation (Yoshioka, 2005). 

Ligustrum lucidum Aiton belongs to the Oleaceae family and is an evergreen shrub that reaches approximately 8 

m in height (Noshiro, 1993). This species is native to central and southern China and has been introduced in not 

only Japan but also in southern North America and Australia (Uyemura et al., 2010). In Japan, this species was 

introduced in the mid-1800s and was used as a roadside tree because of its resistance to air pollution. It has also 

been used as a garden shrub and planted in many parks and schools (Yoshinaga & Kameyama, 2001; Ito & 

Fujiwara, 2007). Recently, there have been increasing problems from the accidental or deliberate escape of 

introduced plant species into the wild, and L. lucidum has escaped from the planting area of this species and 

spread into urban areas (Yoshinaga & Kameyama, 2001), riverbeds (Hashimoto et al., 2003) and landfills (Iijima 

& Sago, 2006). Furthermore, L. lucidum reportedly has many seedlings of this species in forest communities and 

urban areas (Ishida et al., 1998; Fujita & Shinohara, 2001), suggesting the possibility of colonies of this species 

in the future. L. lucidum has been reported to grow sympatrically with the native L. japonicum Thunb. 

(Hashimoto et al., 2003; Kameyama et al., 2012; Saito et al., 2012) and could pose a considerable ecological 

threat through not only direct competition but also hybridization with this native species (Yoshinaga & 

Kameyama, 2001), but Saito et al. (2012) indicated that natural hybridization between them could not be 

detected in the field based on PCR-RFLP analyses using chloroplast and nuclear DNA. This result was supported 

by genetic studies using different sympatric populations (Kameyama et al., 2012), however, Kameyama et al. 

(2012) indicated that a small number of seeds were produced by artificial experimental crosses between L. 

lucidum and L. japonicum, suggesting that the difference in flowering phenology between both species prevents 

natural hybridization in the field, and both species produce hybrids when flowering time is shifted. 

Nakajima and Yoshizaki (2016) reported the occurrence of L. lucidum in the coastal forests of the Chubu district 

of Japan, and we confirmed its occurrence in different coastal forests in the Kanto district (Figure 1). The 

occurrence of L. lucidum in these two different coastal forests suggests that this species has invaded various 

coastal areas in Japan. Coastal forests consist of species that are well-adapted to withstand the stresses of high 

salt spray exposure, wind damage, and limited fresh water, and various studies have been conducted to 

understand these stresses (Nakajima & Yoshizaki, 2010; Ito & Yoshizaki, 2017; Ito & Yoshizaki, 2019). Natural 

selection promotes the adaptation of plants for survival and acts on their resulting phenotypes (Bartels & Sunkar, 

2005), and such characteristic environments have allowed various endemic species, such as Quercus 

phillyreoides A. Gray (Fagaceae), Pittosporum tobira (Thunb.) W. T. Aiton (Pittosporaceae), Daphniphyllum 

teijsmannii Zoll. ex Kurz, and (Daphniphyllaceae), to evolve in coastal areas. Moreover, many plants in inland 

areas cannot easily invade coastal areas; therefore, characteristic flora is formed in these areas (Flowers et al., 

1977; Médail & Quézel, 1997; Khan et al., 2002). However, some studies have reported that plants with a wide 

distribution from inland to coastal areas have undergone various morphological and anatomical changes to adapt 

to coastal areas. For example, Tunala et al. (2012) indicated that epidermal cells in the coastal variety of Aster 

hispidus Thunb. var. insularis (Makino) Okuyama (Asteraceae) were larger in size but fewer in number than 

those in As. hispidus var. hispidus, and were involved in succulent leaves to store water. Sunami et al. (2013) 

reported that leaf hair on the abaxial side of leaves was correlated with the stomatal density of As. hispidus var. 

insularis and the less hair on the leaf, the lower the stomatal density to avoid transpirational water loss. Ohga et 

al. (2013) suggested that the coastal population of Adenophora triphylla (Thunb.) A. DC. var. japonica (Regel) H. 

Hara (Campanulaceae) has evolved relatively thick leaves via a heterochronic process to store water. Shiba et al. 

(2022b) indicated that the coastal population of Eurya japonica Thunb. (Ternstroemiaceae) had smaller stomata 

and larger epidermal cells on the adaxial and abaxial sides to reduce transpiration during gas exchange and to 

retain water in the leaves, respectively. Thus, although coastal areas can only be invaded by species with 

morphological and anatomical traits that could avoid environmental stresses there, it is surprising and interesting 

that L. lucidum have grown in large numbers in coastal areas in a short period o after its introduction in Japan. 

Therefore, a better understanding of the invasive ability and future invasive potential of L. lucidum can be 

achieved through morphological and anatomical analysis. 

Recently, Takizawa et al. (2022) suggested, based on morphological and anatomical analyses using inland and 

coastal populations, that the coastal ecotype of L. japonicum was accompanied by a reduction in stomatal size. 

As L. japonicum is closely related to L. lucidum based on molecular phylogenesis (Saito et al., 2012), the 

adaptation process of L. lucidum to coastal areas is concerning. Some studies have indicated that patterns of 

morphological and anatomical changes were similar between the invasive plants and the closely related native 

species (Davidson et al., 2011; Palacio-López & Gianoli, 2011) and that L. lucidum adapted to coastal areas with 

similar morphological and anatomical changes as the coastal ecotype of L. japonicum. However, it is doubtful 

whether L. lucidum has invaded coastal areas through the same process as the adaptation pattern of L. japonicum, 
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even though only 150 years have passed since the introduction of L. lucidum in Japan. The short-term coastal 

adaptation of L. lucidum may have acquired a more specialized form in coastal environments than that of L. 

japonicum. Therefore, it is important to reveal the morphological and anatomical adaptation processes of L. 

lucidum to clarify the factors that enable introduced species to expand their distribution into coastal areas. This 

study aimed to investigate the adaptive leaf traits of L. lucidum by comparing individuals from coastal and inland 

areas using morphological and anatomical approaches. 

 
Figure 1. Ligustrum lucidum Aiton (Oleaceae) 

(A1) coastal forests in Chigasaki, (A2) coastal (Chigasaki), (B) inland (Shimomiyata). 

 

2. Materials and Methods 

All L. lucidum samples examined in this study were collected from the field. The collection locations are shown 

in Figure 2 and Table 1. 

 
Figure 2. Sampling localities in this study 

Blue and red circles indicate coastal and inlamd (control) populations, respectively. Number in circles 

corresponds to that given in Table 1. Blue and red triangles indicate the locations of coastal (Tsujido) and inland 

(Fuchu) meteorological instruments. Wind velocity data from meteorological observations were shown in Figure 

3. 

The inland populations near each coastal area were used as controls. A total of 150 individuals (30 individuals 

per population) representing five populations involved in two coastal areas and three populations were sampled. 

L. lucidum had been grown together with the following coastal endemic species: Pittosporum tobira (Thunb.) W. 

T. Aiton (Pittosporaceae) and Eurya emarginata (Thunb.) Makino (Ternstroemiaceae) in coastal forests. 
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Moreover, according to the Japan Meteorological Agency, our coastal sampling areas showed stronger winds 

than inland areas (Figure 3). 

For morphological analysis, individual plants were measured for the following continuous macro morphological 

variables of leaves: 1) length and width of the leaf blade, and 2) leaf thickness. Measurements were made using a 

digimatic caliper (CD-15CXR; Mitutoyo) and digimatic outside micrometer (MDC-SB; Mitutoyo) based on a 

previous study by Shiba et al. (2021). Leaf measurements were obtained from a fully expanded leaf at the middle 

of the total plant height. Three leaves were randomly selected from each individual, and their average values 

were calculated. 

 

Table 1. Sampling localities in this study 

Type Locality name and number* Locality Latitude and longitude 

Coastal     

 Odawara  1 Hayakawa, Odawara City, Kanagawa Pref. 35°23'N 139°14'E 

 Chigasaki  2 Higashikaiganminami, Chigasaki City, Kanagawa Pref. 35°31'N 139°42'E 

Inland (control) 

 Shimomiyata  3 Shimomiyata, Hassemachi, Miura City, Kanagawa Pref. 35°18'N 139°64'E 

 Tamazutsumi  4 Tamazutsumi, Setagaya-ku, Tokyo Pref. 35°60'N 139°65'E 

 Konandai  5 Konandai, Konan-ku, Yokohama City, Kanagawa Pref. 35°38'N 139°58'E 

* : locality number corresponds to that given in Figure 2. 

 

Table 1. (Continued) 

Type Locality name Distance to shoreline (m) Elevation (m) 

Coastal   

 Odawara 93 41 

 Chigasaki 180 5 

Inland(control)   

 Shimomiyata － 11 

 Tamazutsumi － 10 

 Konandai － 34 

 

 
Figure 3. Comparison of wind velocity in coastal and inland areas 

Comparisons of wind velocity (2012-2021) between Tsujido (coastal) in Kanagawa Pref. and Fuchu (inland) in 

Tokyo Met. Locality of Tsujido and Fuchu corresponds to that given in Figure 2. Solid circles are average of 

maximum wind velocity, and open triangles are average of mean wind velocity. 

 

Fully expanded leaves were collected from each individual for anatomical analysis. The middle part of the blade 

along the midrib was analyzed to determine the number and size of the stomata. A Dino-Lite AF4515 Digital 

Microscope (ANMO Electronics Corporation, Taiwan) was used to photograph the dissection of each leaf 

(Figure 4). To count the number of stomata and measure stomatal size, we used the DinoCapture 2.0 software 

(ANMO Electronics Corporation, Taiwan). 
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Figure 4. Stomata of Ligustrum lucidum 

Suzuki’s Universal Micro-Printing method (SUMP) replicas of (A) coastal (Chigasaki) and (B) inland 

(Tamazutsumi) samples (Kijima, 1962). Bar = 20µm. 

 

3. Results 

We analyzed the leaf morphology of Ligustrum lucidum. A summary of the measurements is presented in Table 2. 

In the coastal areas (two populations: Odawara and Chigasaki), leaf lengths were 72.23 ± 2.06 and 115.56 ± 3.45 

mm (Figure 5), leaf widths were 37.39 ± 0.67 and 50.10 ± 0.99 mm (Figure 5), and leaf thickness were 128.87 ± 

3.95 and 201.67 ± 6.59 µm (Figure 6), respectively. In the inland (control) areas (three populations: Shimomiyata, 

Tamazutsumi, and Konandai), leaf lengths were 91.75 ± 1.43, 97.04 ± 1.43 (Figure 5), and 109.57 ± 2.11 mm, 

leaf widths were 42.08 ± 0.65, 43.69 ± 0.73, and 53.92 ± 1.05 mm (Figure 5), and leaf thickness were 234.72 ± 

9.52, 152.87 ± 7.21, and 160.46 ± 3.10 µm (Figure 6), respectively. There were no significant morphological 

differences between the coastal and inland areas. 

 

Table 2. Morphological and anatomical measurements (average ± standard error) of Ligustrum lucidum in 

Kanagawa Pref. 

 Coastal  Inland (control) 

 Odawara Chigasaki  Shimomiyata Tamazutsumi Konandai 

leaf      

length (mm) 72.23±2.06
e
 115.56±3.45

a
 91.75±1.43

cd
 97.04±1.43

c
 109.57±2.11

ab
 

width (mm) 37.39±0.67
d
 50.10±0.99

b
 42.08±0.65

c
 43.69±0.73

c
 53.92±1.05

a
 

thickness (μm) 128.87±3.95
d
 201.67±6.59

b
 234.72±9.52

a
 152.87±7.21

cd
 160.46±3.10

c
 

stomata      

density (N/mm2) 235.29±3.00
b
 217.28±3.31

c
 240.15±2.96

b
 197.36±3.14

d
 253.64±2.99

a
 

size (μm2) 310.82±3.03
e
 484.38±4.95

d
 639.52±6.06

a
 589.98±6.16

b
 513.36±4.96

c
 

Columns marked by different letters differ significantly according to the Tukey's HSD test (p < 0.05). 

 

We measured and calculated the mean stomatal size and density of L. lucidum from all examined localities. The 

stomatal density of the leaves from Odawara and Chigasaki in coastal populations (235.29 ± 3.00, and 217.28 ± 

3.31 N/mm2) were not considerably different from those of Shimomiyata, Tamazutsumi, and Konandai in inland 

populations (240.15 ± 2.96, 197.36 ± 3.14, and 253.64 ± 2.99 N/mm2) (Figure 7). However, the stomatal size 

(310.82 ± 3.03 and 484.38 ± 4.95 µm2) of the leaves from the coastal populations were significantly different 

from those of the inland populations (639.52 ± 6.06, 589.98 ± 6.16, and 513.36 ± 4.96 µm2) (Figure 7). These 

morphological and anatomical results showed that the reduction in the stomatal size of L. lucidum was a 

common factor in coastal areas. 
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Figure 5. Leaf length and width of Ligustrum lucidum 

Boxplots of leaf length and width measurements corresponding to Table 2. 

 

 

Figure 6. Leaf thickness of Ligustrum lucidum 

Boxplots of leaf thickness measurements corresponding to Table 2. 

 

 

Figure 7. Stomata density and size of Ligustrum lucidum 

Boxplots of stomata density and size measurements corresponding to Table 2. 

 

4. Discussion 

Stomata balance gas exchange between the lead and the atmosphere to maximize CO2 uptake for photosynthetic 

carbon assimilation and to minimize water loss through transpiration. Kumekawa et al. (2013) showed that 

stomatal size and density adapt to various environments. Our results showed that the stomatal size of the coastal 

populations of L. lucidum was smaller than those of the inland populations, indicating that this species 
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experienced stomatal size reduction to adapt to coastal areas. Moreover, it was interesting that the process of 

adaptation of the introduced species, L. lucidum, to the coastal areas was similar to that of the native species, L. 

japonicum, supporting Davidson et al. (2011) and Palacio-López and Gianoli (2011), who claimed that 

introduced species show similar adaptation patterns to closely related native species. However, which coastal 

stresses led to common stomatal changes in L. lucidum and L. japonicum remains unknown. A recent analysis of 

many accessions in the model plant Arabidopsis described significant correlations between stomatal size and 

water use efficiency (Dittberner et al., 2018), indicating that stomatal size is an adaptive trait that contributes to 

the optimization of water stress. Coastal plants suffer from dehydration caused by wind, intense sunlight with 

diffused reflection, and sand-loaded salt spray, with salt spray being specific to coastal environments (Boyce, 

1954); therefore, the transpiration of their water reserves must be minimized. According to the Japan 

Meteorological Agency, and as shown in Figure 3, the wind velocity near the coastal area where L. lucidum was 

growing was faster than at inland, and the former received greater stress from the wind than the latter. Such 

stresses may have contributed to the reduction in the stomatal size of L. lucidum and L. japonicum in coastal 

areas, such that they exhibited similar adaptation patterns in coastal areas. In the future, there is a risk that such 

adaptation patterns of L. lucidum will enable the expansion of its distribution into various coastal areas, and 

therefore, further investigation and careful management plans of the ecosystem in Japan are required to achieve 

conservation. 

Whether the variation in stomatal size occurred due to genetic factors or plasticity, that is, growth under different 

environmental conditions remains unclear. In general, a species can be constrained by selective pressures acting 

in their particular native climate; therefore, species exposed to more environmental variation in their distribution 

range are reported to have more phenotypic plasticity than those exposed to restricted environmental variation in 

their ranges (Valladares et al., 2006; Valladares et al., 2014). For example, Franks et al. (2009) concluded that 

stomatal size was a plastic variation because Eucalyptus species (Myrtaceae) had different stomatal sizes in 

various environments. Moreover, the stomatal size of potato (Solanum tuberosum L.: Solanaceae) plants has also 

been observed in plastic developmental responses to environmental changes (Sun et al., 2014). Plant traits that 

allow introduced species to become successful invaders remain a challenging question in conservation ecology 

(van Kleunen et al., 2010), and previous studies have emphasized how high phenotypic plasticity in specific 

functional traits in introduced species is important for exhibiting favorable phenotypes in a wide range of 

environments (Richards et al., 2006; Davidson et al., 2011). Moreover, these are considered potential factors that 

facilitate the successful colonization of different environments (Matesanz et al., 2010). Godoy et al. (2012) 

reported that morphological and physiological leaf traits are usually associated with invasiveness. Moreover, the 

leaves of introduced species compared to the native seem to have a high plastic response to light levels 

(Yamashita et al., 2000). Nascimento et al. (2015) suggested that functional traits that play critical roles in 

survival and development are susceptible to change and adapt to different environments. Considering these 

studies, L. lucidum has invaded coastal areas by changing stomatal size, suggesting that L. lucidum may have the 

capacity for acclimation owing to phenotypic plasticity. The question of how L. lucidum maintains phenotypic 

plasticity in stomatal size remains. Bradshaw (1965) indicated that phenotypic plasticity can be explained as a 

change in the phenotypic expression of a genotype in response to environmental factors. Stomatal anatomical 

traits have been determined during organ growth when stomata are gradually formed across the developing 

epidermis (Geisler & Sack, 2002; de Marcos et al., 2016) under the influence of internal and environmental 

factors (Casson & Hetherington, 2010; Qi & Torii, 2018). The developmental process of stomata has been 

extensively studied in A. thaliana (Ohashi-Ito & Bergmann, 2006; MacAlister et al., 2007; Pillitteri et al., 2007). 

Based on the results from other model plants, three key transcription factors mediate the sequential steps of 

stomatal development, and their functions are conserved in land plants (Liu et al., 2009; Ran et al., 2013; Raissig 

et al., 2016; Ortega et al., 2019; Wang et al., 2019; Harris et al., 2020). Recently, Doll et al. (2021) indicated that 

the different expression times of two of the three transcription factors have a strong influence on the different 

division patterns of meristemoids, suggesting that the difference in the expression time of these transcription 

factors may influence the stomatal size of L. lucidum. In the future, isolation and comparative expression 

analyses of homologues of SPEECHLESS and MUTE from L. lucidum will reveal factors in the adaptation of L. 

lucidum to coastal areas. 

In this study, we indicated that L. lucidum had invaded into the coastal forest by changing smaller stomatal size 

(Tables 1, 2 and Figure 7). But we could not found this species in the shoreline side of coastal forests because 

Nakajima and Yoshizaki (2016) suggested that the shoreline side of the coastal forest had the highest selective 

pressure owing to wind and soil conditions, and these environmental effects decreased from the shoreline side to 

inland. Therefore, L. lucidum could grow in coastal forests by varying its stomatal size, but this stomatal 

variation alone would not enable it to grow along the shoreline side of coastal forests. Nakajima and Yoshizaki 
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(2016) reported that Cinnamomum yabunikkei H. Ohba (Lauraceae) and Ilex integra Thunb. (Aquifoliaceae) 

grew widely from the shoreline to the inland side of the coastal forest, where L. lucidum has been reported. 

These plants may have hidden morphological and anatomical characteristics that allow them to grow close to the 

coastline of the coastal forest. Therefore, further morphological and anatomical comparisons of the shoreline and 

inland populations may reveal adaptation traits on the shoreline side of coastal forests. 

Recently, Shiba et al. (2022a) reported that L. japonicum can be grown on serpentine soils. Serpentine soils occur 

in small patches along fault lines where igneous rocks appear and are characterized by a suite of challenging 

crucial abiotic factors, such as low calcium-to-magnesium ratio, high heavy metal concentrations, nutrient 

deficiency, and low moisture retention, leading to sharp transitions in abiotic conditions at the boundaries of 

serpentine patches (Brady et al., 2005). Adaptation to edaphic factors has long been considered an important 

component in plant distribution, diversification, and speciation (de la Vega, 1996; Shiba et al., 2022c). 

Serpentine soils provide an exceptional system for studying the edaphic adaptation of plants (Kruckeberg, 1951, 

1954; Rajakaruna et al., 2003; Wright et al., 2006, 2009). Serpentine soil mosaics exist in several areas of Japan, 

and many endemic species occur in each serpentine area, including Aster hispidus Thunb. var. leptocladus 

(Makino) Okuyama, Hypericum tosaense Makino, and Saussurea nipponica Miq. ssp. yoshinagae Kitam. 

(Toyokuni, 1955; Hayakawa et al., 2012). Interestingly, the adaptation of L. japonicum to serpentine areas 

showed a reduction in stomatal size (Shiba et al., 2022a), suggesting that this stomatal variation pattern was 

similar to the adaptation of L. japonicum to coastal areas (Takizawa et al., 2022). Therefore, it is possible that L. 

lucidum also adapted to and invaded serpentine areas with similar anatomical change patterns as L. japonicum; 

however, there has been no report of L. lucidum growth in serpentine areas. 
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