Xylem Development and Xylem Conductivity of Furrowed Xylem in
 Stem Terminals of Five Species of Aristolochia (Aristolochiaceae)

Lance S. Evans ${ }^{1}$ \& Maya Carvalho-Evans ${ }^{1}$
${ }^{1}$ Pfizer Laboratory, New York Botanical Garden, The Bronx, NY 10458, USA
Correspondence: Lance S. Evans, Pfizer Laboratory, New York Botanical Garden, The Bronx, NY 10458, USA.

Received: October 23, 2022
doi:10.5539/jps.v12n1p12

Accepted: December 6, 2022
Online Published: December 8, 2022
URL: https://doi.org/10.5539/jps.v12n1p12

Abstract

Xylem cells are responsible for water transport and mechanical support in most plants. Since vines depend upon other plants for mechanical support, the main responsibility of xylem cells in vines is primarily water transport and not mechanical support. The purpose of the current study was to study xylem characteristics in stems of five species of Aristolochia. Tissue samples from about 1.0 to 5.5 mm in diameter were processed with standard histological techniques. Anatomical characteristics were similar among all five species. Results show: (1) interfascicular cambia were not present, so stems had only furrowed xylem, (2) numbers of vascular bundles in stems were specific for each species and did not increase as stems enlarged, (3) radii of vessels were not dimorphic for any species, (4) numbers of vessels were linearly related with stem diameters, and (5) the largest half of all vessels supplied 95% of total xylem conductivity. To our knowledge, this is the first publication to document the development of furrowed xylem, describing both vessel characteristics and xylem conductivities in stems of Aristolochia species.

Keywords: Aristolochia, furrowed xylem, interfascicular cambium, xylem conductivity, vascular bundles.

1. Introduction

Most Lianas occur in tropical, moist, deciduous forests, but also occur in temperate rainforests and temperate deciduous forests. Lianas are long-stemmed, woody vines rooted in soils and use trees, as well as other means of vertical support, to climb the canopy for sunlight exposure. Their long slender stems must transport water from soils to the uppermost shoots and leaves to maintain growth (Rajput et al., 2017).

During normal development of woody plants with secondary growth, the vascular cambium forms and produces secondary xylem and secondary phloem to supplement the primary xylem and primary phloem, respectively. Initially, sections of the fascicular cambium originate between the primary xylem and primary phloem. At about the same time, some mature parenchyma cells between individual vascular bundles resume cell division to produce sections of interfascicular cambium (Mauseth, 2014). When the sections of interfascicular cambium link with sections of the fascicular cambium, the vascular cambium forms a complete circle. The complete vascular cambium then produces secondary xylem internally and secondary phloem externally (Mauseth, 2014).

Metcalf and Chalk (1950) describe many anomalous structures in stems and roots in many species. They describe 'furrowed xylem' in a stem of a species of Aristolochia, however, their description did not indicate how furrowed xylem develop. In furrowed xylem, it is presumed that the fascicular cambium develops normally but the absence of an interfascicular cambium does not allow for a complete vascular cambium. This research will focus on the expansion of vascular bundles, characteristics of cells proximal to bundles, and xylem conductivities during stem enlargement, with specific focus on the structure of the cells between vascular bundles that would ordinarily produce an interfascicular cambium. Overall, the purpose of this study was to determine the histological development of furrowed xylem, determine characteristics of vascular bundles, radii of xylem vessels and xylem conductivities in several species of Aristolochia. For the five species of Aristolochia, the hypotheses of this study are: (1) stem anatomies are similar among the five species, (2) interfascicular cambia are not present so the vascular cambium does not form a continuous ring, (3) numbers of vascular bundles in stems were specific for each species and were independent of stem diameters, (4) numbers of vessels were not similar among the species but were linearly related with stem diameters, (5) xylem conductivities were not similar among species but varied as a function of stem diameters, (6) the largest half of all vessel radii
provided 95% of the total xylem conductivity for all species.

2. Materials and Methods

2.1 Tissue Samples

Samples of Aristolochia acutifolia Duch. Accession number 1361/2001*A; A. maxima var. augustofolia Duch., Accession number 466/95*A; A. pilosa Kunth., Accession number 227/97; A. spathulata Duct. were obtained from the New York Botanical Garden on 07 July 2022. Three plants of A. fimbriata Cham. were obtained from Plant Delights Inc. in 09 July 2022. Tissues of this study were limited to stems between 0.5 and 7.0 mm in diameter. Tissue samples were selected along the stems in order to obtain tissues with only primary vascular tissues to tissues with secondary vascular tissues. Stem lengths were measured with a ruler. Stem diameters were measured with a digital caliper (Fisherbrand Traceable Digital Calipers cat. 06-664-16, Fisher Scientific, www.fishersci.com) to 0.1 mm .

2.2 Histological Processing

Tissue samples were taken for histology along the stems. Tissues were fixed in FAA (Formaldehyde Alcohol Acetic Acid) for 24 hours, dehydrated through a tertiary butanol series (Sass, 1958) and placed in wax (Histoplast, Thermo Scientific, Richard-Allen Scientific, Kalamazoo, MI). After tissues were embedded in Histoplast, sections were cut with a microtome at $20 \mu \mathrm{~m}$ and placed on microscope slides, stained with safranin/fast green and mounted with Canada balsam (Sass, 1958).

2.3 Vessel Measurements

All xylem vessels were counted for each sample. Photographs of samples were taken at $40 \times$ magnification. Photographic images of tissues were transferred to ImageJ (National Institutes of Health, http://rsb.info.nih.gov/ij; 1.53a, August 2022) to determine the radii of xylem vessels. One third of all bundles were sampled. For each microscopic tissue image, each bundle was numbered. Playing cards with numbers were randomly drawn to determine the bundles to be evaluated. All vessels in each selected bundles were evaluated. Since xylem vessels are not always circular (Tyree and Zimmermann, 2002), the derived conductivities are approximations. Two or three diameter measurements were obtained for each vessel, and mean diameters were converted to mean radii for each vessel.

2.4 Test for Vessel Dimorphism

A previous study (Bastos et al., 2016) postulated that vine species of the Sapindaceae have vessel dimorphism, large and small vessels only. Samples of the five species were studied to determine the distribution of vessel radii in all tissue samples. First, all vessel radii of each sample were sorted from smallest to largest. Second, differences between successive vessel radii were measured from smallest to largest. Third, the largest overall difference were determined for each sample. Lastly, radii of successive pairs of vessels were compared, the number of successive samples that were (1) more than $4 \mu \mathrm{~m}$ different, (2) between 2 to $3.99 \mu \mathrm{~m}$ different, (3) between 1 to $1.99 \mu \mathrm{~m}$ different, and (4) less than $1.0 \mu \mathrm{~m}$ different. Small differences in radii among successive vessels would indicate the lack vessel dimorphism while large differences would indicate the presence of dimorphism.

2.5 Xylem Conductivity Measurements

Xylem conductivity is a measure of the ability of plant tissues to transport water (McCulloh and Sperry, 2005a; Evans et al., 2016). Mean vessel diameters were converted to weighted mean vessel radii to calculate the xylem conductivity of each stem tissue section (McCulloh et al., 2009) using the Hagen-Poiseuille equation:

$$
\frac{\pi * \text { number of vessels } * \text { mean radius of each vessel cm }{ }^{4}}{8 * \text { viscosity of water }}
$$

(K. McCulloh, personal communication). The units of xylem conductivity are $\mathrm{g} \mathrm{cm}^{-1} \mathrm{MPa}^{-1} \mathrm{~s}^{-1}$.

Xylem conductivities of all stem sections for each species were compared. Statistical comparisons between two stem tissue sections were determined using t-test (socscistatistics.com). Regression analyses were performed with Microsoft Excel (Microsoft 8.0) to determine relationship between numbers of vessels versus stem diameters, xylem conductivities versus stem diameters, and versus stem diameters versus numbers of vessels.

3. Results

3.1 Stem Samples

Stem tapers were determined from diameter and distance measurements along stems since all data are expressed
as stem diameters. Mean tapers were $0.65 \mathrm{~mm} \mathrm{~cm}^{-1}$ for A. acutifolia, $0.07 \mathrm{~mm} \mathrm{~cm}^{-1}$ for A. fimbriata and A. maxima, $0.9 \mathrm{~mm} \mathrm{~cm}^{-1}$, for A. pilosa, and $1.0 \mathrm{~mm} \mathrm{~cm}^{-1}$ for A. spathulata.

3.2 Comparative Anatomies among Species

3.2.1 Features in 1.7 to 2.1 mm Diameter Samples

Stem anatomies were similar among the five species. All species had a single-celled epidermis with seven to ten layers of cortical cells. All species had developing fused phloem fibers (Fig.1; Tamaio et al., 2010). Internally, additional individual phloem fibers were present. Parenchyma cells were present internal to the phloem fibers. The numbers of vascular bundles in stems were specific for each species and were independent of stem diameters but varied from 8 to 13 among the five species (Table 1).

Fig. 1. Anatomical samples of Aristolochia between 1.7 and 2.1 mm in diameter
A: Sample of A. pilosa (1.7 mm in diameter) with developing phloem fibers with regularly spaced, small vascular bundles. B. Sample of A. fimbriata (1.8 mm) with fused fibers and varied vessel cell diameters. C: Sample of A. maxima (2.1 mm) with many phloem fused phloem fibers. D: Sample A. acutifolia (2.0 mm) showing several well developed vascular bundles. All bars $=100 \mu \mathrm{~m}$.

Table 1. Number of vascular bundles in stem samples of Aristolochia species

Species					
	A.	A.	A.	A.	A.
Stem sample	acutifolia	fimbriata	maxima	pilosa	spathulata
Smallest sample	11	9	13	7	9
Medium sample	11	9	13	6	10
Medium sample	--	7	13	7	12
Largest sample	11	9	16	7	10
Mean value	11	8.5	13.8	6.8	10.2
S.D.	--	1.0	1.5	0.5	1.2

3.2.2 Features in 2.2 to 4.5 mm Diameter Samples

As in smaller diameter samples, all species had a single-celled epidermis, seven to ten layers of cortical cells, and two or more cell layers of phloem fibers. All species, except A. fimbriata, had a two to nine-celled fused phloem fiber layer (Fig. 2A; 2B) internal to the phloem fibers. Parenchyma cells were present internal to the fused phloem fiber layer and collapsed phloem cells were present in all species except A. fimbriata. Some bundles were fused while there was a variety of bundle sizes (Fig. 2). For all species, stems were circular and
vascular bundles were distributed regularly. Diameters of vessels varied from small to large (Fig. 2C). Parenchyma cells of axial rays (Mauseth, 1988) were present between vascular bundles of all species. No traces of interfascicular cambia were present in any tissue samples. For most species, axial parenchyma cells were relatively uniform in size (Fig. 2A, 2C, 2D).

Fig. 2. Anatomical samples of Aristolochia between 2.2 and 4.5 mm in diameter
A: Sample of A. fimbriata (2.2 mm diameter) with few phloem fibers and few collapsed phloem cells near vascular bundles. Vascular bundles are regularly distributed, with peeled epidermis and uniform axial parenchyma. B: Sample of A. spathulata $(3.0 \mathrm{~mm})$ with developing phloem fibers and varied vessel diameters. C: Sample of A. maxima (4.5 mm) with many phloem fibers, one fused vascular bundle and axial parenchyma cells. D: Sample A. pilosa (3.8 mm) with large bundles and uniform shaped axial parenchyma cells. All bars $=100 \mu \mathrm{~m}$.

3.2.3 Features in 4.0 to 5.5 mm Diameter Samples

Fig. 3. Anatomical samples of Aristolochia between 3.9 and 5.5 mm in diameter
A: Sample of A. fimbriata (4.3 mm diameter) shows peeled epidermis and cortex, fused vascular bundles, few phloem fibers and no collapsed phloem cells near vascular bundles. Vascular bundles are regularly distributed. B: Sample of A. spathulata (3.9 mm) shows individual (not fused) vascular bundles. Note the uniform shapes of axial parenchyma cells. C: Sample of A. pilosa (5.5 mm) with fused vascular bundles and a variety of vessel
diameters. D: Enlargement of the sample in C of A. pilosa (5.5 mm) showing the uniform shapes of axial parenchyma cells. All bars $=100 \mu \mathrm{~m}$.

All species had a single-celled epidermis. For all samples except A. fimbriata and A. pilosa, the epidermis and cortex were intact. For A. fimbriata and A. pilosa the outermost cortical cells peeled away (Fig. 3A). Two to three cell layers of phloem fibers were present in all samples. In all tissues except A. fimbriata, all species had a two to nine-celled fused phloem fibers layer (Fig 3B, Fahn 1967) internal to the phloem fibers. Parenchyma cells were present internal to the fused phloem cell layer. Collapsed phloem cells were present near vascular bundles in all species expect A. fimbriata (Fig. 3B, 3C). Some species (A. acutifolia, and A. spathulata) had separate individual bundles (Fig. 3B), while the other species had some individual bundles that were fused (Fig. 3C). Some bundles were large while others were smaller. All species had axial parenchyma with no trace of interfascicular cambia (Fig. 3D).

3.3 Vessel Radii and Xylem Conductivities

Stems of A. acutifolia had 2, 5 and 26 vessels above $60 \mu \mathrm{~m}$ in radius with $99,128,460$ vessels with xylem conductivities of $38.7,24.8$ and $293 \mathrm{~g} \mathrm{~cm}^{-1} \mathrm{MPa}^{-1} \mathrm{~s}^{-1}$ in stems of $2.0,2.1$ and 4.0 mm diameter, respectively (Table 2). In contrast with A. acutifolia, stems of A. fimbriata had no vessels above $60 \mu \mathrm{~m}$ in radius with 74,187 , 191 , and 305 vessels with xylem conductivities of $0.03,1.20,3.63$ and $4.05 \mathrm{~g} \mathrm{~cm}^{-1} \mathrm{MPa}^{-1} \mathrm{~s}^{-1}$ in stems of $0.6,1.8$, 2.2 and 4.3 mm diameter, respectively (Table 3). Overall, xylem conducitivities for A. acutifolia were about 80 times higher than xylem conducitivities for A. fimbriata.

Table 2. Distribution of vessel radii in samples of Aristolochia acutifolia

Stem diameter (mm)	2.0	2.1	4.0
Number of vessels in stem	99	128	460
Number of vessels sampled	35	38	67
Xylem conductivities $\left(\mathrm{g} \mathrm{cm}^{-1} \mathrm{MPa}^{-1} \mathrm{~s}^{-1}\right)$	38.7	24.8	293
Vessel radii - Mean (number of cells)			
Less than $20 \mu \mathrm{~m}$	$15.1(7)$	$15.4(13)$	$18.5(2)$
Between 20 and $39.9 \mu \mathrm{~m}$	$26.7(10)$	$28.8(15)$	$30.3(18)$
Between 40 and $59.9 \mu \mathrm{~m}$	$46.8(9)$	$46.7(5)$	$51.5(21)$
Above $60 \mu \mathrm{~m}$	$85.6(2)$	$70.6(5)$	$73.5(26)$
Mean of all samples $(\mu \mathrm{m})$	41.8	32.5	53.4
T-test results	t -value	probability	
2.0 vs 2.1 samples	1.88	0.032	
2.0 vs 4.0 samples	-2.57	0.0058	
2.1 vs 4.0 samples	-5.09	0.00001	

Table 3. Distribution of vessel radii in samples of Aristolochia fimbriata

Stem diameter (mm)	0.6	1.8	2.2	4.3
Number of vessels in stem	74	187	191	305
Number of vessels sampled	20	39	74	59
Xylem conductivities $\left(\mathrm{g} \mathrm{cm}^{-1} \mathrm{MPa}^{-1} \mathrm{~s}^{-1}\right)$	0.04	1.20	3.63	4.05
Vessel radii Mean (number)				
Less than $20 \mu \mathrm{~m}$	$9.75(20)$	$15.3(16)$	$15.7(13)$	$15.4(16)$
Between 20 and $39.9 \mu \mathrm{~m}$	(0)	$25.3(11)$	$26.4(30)$	$26.6(24)$
Between 40 and $59.9 \mu \mathrm{~m}$	(0)	(0)	$51.0(2)$	$44.6(1)$
Mean of all samples $(\mu \mathrm{m})$	9.75	16.9	20.2	19.6
T-test results	t -value		probability	
0.6 vs 1.8 samples	-4.97		<0.00001	
0.6 vs 2.2 samples	-5.10		<0.00001	
0.6 vs 4.3 samples	-5.31		<0.00001	
1.8 vs 2.2 samples	-2.07		0.040	
1.8 vs 4.3 samples	-1.83		0.069	
2.2 vs 4.3 samples	-0.38		0.70	

Stems of A. maxima had $0,0,2$, and 13 vessels above $60 \mu \mathrm{~m}$ in radius with $57,116,97,220$ vessels with xylem conductivities of $0.40,4.57,8.0$, and $103 \mathrm{~g} \mathrm{~cm}^{-1} \mathrm{MPa}^{-1} \mathrm{~s}^{-1}$ in stems of $0.6,1.5,2.0$, and 4.5 mm in diameter, respectively (Table 4). Stems of A. pilosa had 36, 62, 240, and 562 vessels with xylem conductivities of 23, 5.06, 50.3 , and $84.8 \mathrm{~g} \mathrm{~cm}^{-1} \mathrm{MPa}^{-1} \mathrm{~s}^{-1}$ in stems of $1.7,2.0,3.8$, and 5.5 mm diameter, respectively (Table 5). Xylem conductivities for A. spathulata were $0.19,1.55,4.75$, and $39.9 \mathrm{~g} \mathrm{~cm}^{-1} \mathrm{MPa}^{-1} \mathrm{~s}^{-1}$ for $56,133,149$, and 279 vessels in stems of $1.0,2.0,3.0$, and 3.9 mm diameter, respectively (Table 6). Within each of the five species, stems with the smallest diameter had significantly smaller vessel radii compared with those of the largest stems.
Table 4. Distribution of vessel radii in samples of Aristolochia maxima

Stem diameter (mm)	0.6	1.5	2.0	4.5
Number of vessels in stem	57	116	97	220
Number of vessels sampled	19	29	36	4
Xylem conductivities $\left(\mathrm{g} \mathrm{cm}^{-1} \mathrm{MPa}^{-1} \mathrm{~s}^{-1}\right)$	0.04	4.57	8.00	103
Vessel radii Mean (s.d.)				
Less than $20 \mu \mathrm{~m}$	$9.7(19)$	$18.4(14)$	$15.4(12)$	$16.8(9)$
Between 20 and $39.9 \mu \mathrm{~m}$	(0)	$24.8(13)$	$26.6(13)$	$25.7(15)$
Between 40 and $59.9 \mu \mathrm{~m}$	(0)	$49.9(3)$	$49.0(6)$	$55.9(7)$
Above $60 \mu \mathrm{~m}$	(0)	(0)	$64.7(2)$	$74.8(13)$
Mean of all samples $(\mu \mathrm{m})$	9.69	23.2	28.7	43.2
T-test results	t -value		probability	
0.5 vs 1.5 samples	-4.89		<0.0001	
0.5 vs 2.0 samples	-5.44		<0.0001	
0.5 vs 4.5 samples	-5.81		<0.0001	
1.5 vs 2.0 samples	-1.61		0.11	
1.5 vs 4.5 samples	-4.02		0.00014	

Table 5. Distribution of vessel radii in samples of Aristolochia pilosa

Stem diameter (mm)	1.7	2.0	3.8	5.5
Number of vessels in stem	36	62	240	562
Number of vessels sampled	24	33	55	56
Xylem conductivities $\left(\mathrm{g} \mathrm{cm}^{-1} \mathrm{MPa}^{-1} \mathrm{~s}^{-1}\right)$	1.23	5.06	50.3	84.8
Vessel radii Mean $(\mathrm{s} . \mathrm{d})$.				
Less than $20 \mu \mathrm{~m}$	$13.6(12)$	$15.4(6)$	$14.4(4)$	$18.6(3)$
Between 20 and $39.9 \mu \mathrm{~m}$	$24.3(10)$	$28.6(19)$	$30.7(25)$	$29.3(28)$
Between 40 and $59.9 \mu \mathrm{~m}$	$52.1(2)$	$48.3(9)$	$51.5(15)$	$48.2(14)$
Above $60 \mu \mathrm{~m}$	(0)	(0)	$69.0(5)$	$66.6(4)$
Mean of all samples $(\mu \mathrm{m})$	21.3	31.5	39.8	37.1
T-test results	t -value		probability	
1.7 vs 2.0 samples	-3.12		0.0028	
1.7 vs 3.8 samples	-5.02		<0.00001	
1.7 vs 5.5 samples	-4.85		<0.00001	
2.0 vs 3.8 samples	-2.52		0.0134	
2.0 vs 5.5 samples	-1.90		0.063	
3.8 vs 5.5 samples	0.89		0.376	

Fig. 4. Relationship between stem diameters and number of xylem vessels for five species of Aristolochia
Closed triangles, solid line: A. acutifolia, slope 47.9; Closed circles, dashed line: A. fimbriata, slope 6.010; Open squares, dashed line: A. maxima, slope 39.8; Open circles, solid line: A. pilosa, slope 135 . Solid squares, solid line: A. spathulata, slope 70.1 . All r^{2} values were above 0.92 .

Numbers of vessels were linearly related with stem diameters with slopes 47.9, 6.01, 39.8, 135, and 70.1 for A. acutifolia, A. fimbriata, A. maxima, A. pilosa, and A. spathulata, respectively (Fig. 4). All r^{2} values were above 0.92 . For A. fimbriata, there were 74 vessels for the 0.6 mm diameter sample and 305 vessels for the 4.3 mm diameter sample to produce a slope of 6.01 . In contrast, for A. pilosa there were 36 vessels for the 1.7 mm diameter sample and 562 vessels for the 5.5 mm diameter sample to give a slope of 135 .

Fig. 5. Relationship between stem diameters and xylem conductivities for five species of Aristolochia
Closed triangles, solid line: A. acutifolia, slope 138; Closed circles, dashed line: A. fimbriata, slope 1.06; Open squares, dashed line: A. maxima, slope 27.7; Open circles, solid line: A. pilosa, slope 22.5. Solid squares, solid line: A. spathulata, slope 13.3. All r^{2} values were above 0.89

Xylem conductivities were not similar among species but they varied as a function of stem diameters. Slopes of relationships of xylem conductivities and stem diameters were 138, 1.06, 27.7, 22.5, and 13.3 for A. acutifolia, A. fimbriata, A. maxima, A. pilosa, and A. spathulata, respectively. All r^{2} values were above 0.78 (Fig. 5). For A. fimbriata the xylem conductivity was $0.04 \mathrm{~g} \mathrm{~cm}^{-1} \mathrm{MPa}^{-1} \mathrm{~s}^{-1}$ for the 0.6 mm diameter sample and $4.05 \mathrm{~g} \mathrm{~cm}^{-1}$ $\mathrm{MPa}^{-1} \mathrm{~s}^{-1}$ for the 4.3 mm diameter sample to produce a slope of 1.06 . In contrast, for A. acutifolia, the xylem conductivity was $38.7 \mathrm{~g} \mathrm{~cm}^{-1} \mathrm{MPa}^{-1} \mathrm{~s}^{-1}$ for the 2.0 mm diameter sample and $293 \mathrm{~g} \mathrm{~cm}^{-1} \mathrm{MPa}^{-1} \mathrm{~s}^{-1}$ for the 4.0 mm diameter sample to produce the slope of 138 .

Fig. 6. Relationship between number of vessels and xylem conductivities for five species of Aristolochia
Closed triangles, solid line: A. acutifolia, slope 0.78; Closed circles, dashed line: A. fimbriata, slope 0.17 ; Open squares, dashed line: A. maxima, slope 0.68 ; Open circles, solid line: A. pilosa, slope 0.16 . Solid squares, solid line: A. spathulata, slope 0.19 . All r^{2} values were above 0.82

Slopes of relationships of xylem conductivities and numbers of vessels were $0.78,0.17,0.68,0.16$, and 0.19 for A. acutifolia, A. fimbriata, A. maxima, A. pilosa, and A. spathulata, respectively. All r^{2} values were above 0.78 (Fig. 6). The lower slope values for A. pilosa and A. fimbriata may be attributed to the low mean vessel radii of 19.6 and 37.1 mm , respectively for their largest diameter samples. In contrast, the high slope value may be attributed to the large mean vessel radius of 73.5 mm for the largest diameter sample of A. acutifolia.

Analyses were performed to determine the contributions of vessel radii to xylem conductivities. Since values of $\mu \mathrm{m}^{4}$ radius are the basis to calculate xylem conductivities, values of $\mu \mathrm{m}^{4}$ radius were determined for the largest diameter samples of each species (Table 7). For each species values of $\mu \mathrm{m}^{4}$ radius with (1) all vessels, (2) without the smallest vessels, (3) without the smaller half of vessels and (4) without the smaller three quarters of vessels were determined. For the above four categories, mean percentages of $\mu \mathrm{m}^{4}$ radius values were 98.9, 94.7 and 80.1% of all the vessels, respectively. The data indicate that the smallest vessels made little to no contribution while the smallest half of vessels added only 5% to all $\mu \mathrm{m}^{4}$ radius values. Therefore, the largest half of all vessels supplied 95% of total xylem conductivities.
Table 6. Distribution of vessel radii in samples of Aristolochia spathulata.

Stem diameter (mm)	1.0	2.0	3.0	3.9
Number of vessels in stem	56	133	149	279
Number of vessels sampled	17	37	33	44
Xylem conductivities $\left(\mathrm{g} \mathrm{cm}^{-1} \mathrm{MPa}^{-1} \mathrm{~s}^{-1}\right)$	0.19	1.55	4.75	39.9
Vessel radii Mean (s. d.)				
Less than $20 \mu \mathrm{~m}$	$11.3(14)$	$15.3(16)$	$15.7(13)$	$15.4(16)$
Between 20 and $39.9 \mu \mathrm{~m}$	$24.1(3)$	$25.7(16)$	$28.5(10)$	$27.4(17)$
Between 40 and $59.9 \mu \mathrm{~m}$	(0)	$45.7(5)$	$50.3(9)$	$51.4(8)$
Above $60 \mu \mathrm{~m}$	(0)	(0)	$66.3(1)$	$73.6(3)$
Mean of all samples $(\mu \mathrm{m})$	13.5	30.5	23.9	30.6
T-test results	t -value		probability	
1.0 vs 2.0 samples	-3.59		0.0001	
1.0 vs 3.0 samples	-4.23		0.0001	
1.0 vs 3.9 samples	-3.86		0.0003	
2.0 vs 3.0 samples	2.03		0.046	
2.0 vs 3.9 samples	-1.98		0.0514	
3.0 vs 3.9 samples	-0.008		0.99	

Table 7. Influence of vessel radii on the calculations of the Hagen-Poiseuille equation for the stem samples of Aristolochia

Sample						
	A.	A.	A.	A.	A.	
	Acutifolia	fimbriata	maxima	pilosa	spathulata	Mean (s.d.)
Stem diameter (mm)	4.0	4.3	4.5	5.5	3.9	
Number of vessels in sample	460	305	220	562	279	
Number of vessels sampled	67	59	44	56	44	
Radius of largest vessel $(\mu \mathrm{m})$	109	44.5	101	72.2	76.1	
Radius smallest vessel $(\mu \mathrm{m})$	17.3	8.6	11.0	16.3	10.8	
Vessel radii $(\mu \mathrm{m})$						
Smallest quarter	$35.6>$	$13.4>$	$20.5>$	$26.8>$	$16.5>$	
Smallest half	$53.3>$	$17.8>$	$31.0>$	$32.5>$	$24.5>$	
Smallest three-quarters	$63.8>$	$24.8>$	$66.7>$	$45.5>$	$34.8>$	
Sum of all $\mu \mathrm{m}^{4}$ radius values $($ percent of all $)$						
Without smallest quarter	1.07×10^{9}	1.97×10^{7}	5.27×10^{7}	1.84×10^{8}	1.60×10^{8}	98.9
	(98.1)	(98.5)	(99.8)	(97.9)	(100)	(0.98)
Without smallest half	9.85×10^{8}	1.88×10^{7}	5.21×10^{7}	1.74×10^{8}	1.57×10^{8}	94.7
	(90.3)	(94.0)	(98.6)	(92.6)	(98.2)	(3.6)
Without smallest three quarters	7.92×10^{8}	1.55×10^{7}	4.30×10^{7}	1.43×10^{8}	1.47×10^{8}	80.1
	(72.7)	(78.0)	(81.4)	(76.1)	(92.1)	(7.6)
All	1.09×10^{9}	2.00×10^{7}	5.00×10^{7}	1.88×10^{8}	1.60×10^{8}	
	(100)	(100)	(100)	(100)	(100)	

4. Discussion

Vines need support to grow vertically and wrap around supports. Some of the mechanical aspects of vines and vine growth has been described by Niklas (1992). Values of flexural stiffness, the product of the second moment of area and elastic modulus, are low for vines (Niklas, 1992). The low values of flexural stiffness of vine stems may result from the furrowed xylem structure that includes the lack of a continuous, circular cambium with resultant compact secondary xylem and fused or continuous phloem fiber layers. Moreover, the thin walled axil parenchyma tissues between individual vascular bundles and the lack of fused phloem fibers in species of Aristolochia may aid in the flexibility for stems to wrap around supports.
Tamaio et al. (2010) described the development of new vascular bundles in stems of Cissampelos andromorpha related to xylem furrowing. In this study, stems of A. fimbriata, A. maxima, and A. pilosa produced new vascular bundles adjacent to existing vascular bundles. In stems of A. pilosa, two new vascular bundles were produced near each existing vascular bundle.
Tamaio et al. (2010) stated that new vascular bundles are produced from cambium cells that separate from exiting cambium (fragmented cambium) to produce independent vascular bundles. A fragmented cambium may produce new of vascular bundles in the species of this study.

Xylem furrowing occurred in roots of Urvillea rufescens, Serjania lethalis and S. caracasana that was attributed to phloem wedges, additional phloem cells that occur in vascular strands and cylinders formed with secondary phloem that connects with the central cylinder during root enlargement (Bastos et al., 2016). Another interpretation of their images is that the vascular cambium ceased to produce xylem cells but continued to produce phloem cells. This explanation fits the images shown by Bastos et al. (2016). For species of Aristolochia phloem wedges were not present. The only axial parenchyma were present between vascular bundles for the Aristolochia. For Aristolochia, a complete vascular cambium never developed, thus the interfascicular cambium never formed.

Bastos et al. (2016) suggested that several species of the Sapindaceae have vessel dimorphism, large and small vessels only. Based upon the images of Bastos et al. (2016) S. lethalis and P. carpopoda have primarily large and small vessel diameters. However, images of S. caracasana, T. scadens and U. rufescens exhibit a variety of vessel diameters. To determine if vessel radii were dimorphic for species of Aristolochia, analyses were performed to determine the differences in radii among vessels. Large differences occurring among vessel radii may indicate vessel dimorphism. However, if only small differences occurred among vessel radii, then the idea of dimorphisms is not supported. The largest difference between samples was 9.6, 6.25, 23.6, 4.53 and $12.0 \mu \mathrm{~m}$
in which the entire range of values was $88.2,35.9,90.4,55.9$ and $63.3 \mu \mathrm{~m}$ for the largest diameter stem samples of A. acutifolia, A. fimbriata, A. maxima, A. pilosa, and A. spathulata, respectively (Table 8). For these same largest stem samples, the number of vessel differences of more than $4.0 \mu \mathrm{~m}$ were $5,1,3,2$ and 6 for A. acutifolia, A. fimbriata, A. maxima, A. pilosa, and A. spathulata, respectively. These data do not support the idea of vessel radii dimorphism for the Aristolochia species.
Table 8. Vessel characteristics of stem samples of Aristolochia species

Species					
	A.	A.	A.	A.	A.
Stem sample	acutifolia	fimbriata	maxima	pilosa	spathulata
Smallest sample					
Number of vessels sampled	35	20	29	33	17
Largest radius ($\mu \mathrm{m}$)	85.6	13.8	58.5	59.8	27.8
Smallest radius ($\mu \mathrm{m}$)	12.8	6.3	8.9	11.1	7.5
Range of radii ($\mu \mathrm{m}$)	72.8	7.5	49.6	48.7	20.3
Differences in radii among successive vessel.					
Largest difference ($\mu \mathrm{m})^{1}$	7.2	1.5	10.3	5.38	4.2
Number of samples (differences) ${ }^{2}$					
More than $4.0 \mu \mathrm{~m}$	6	0	3	3	1
Between 2 to $3.99 \mu \mathrm{~m}$	8	0	3	3	2
Between 1 to $1.99 \mu \mathrm{~m}$	7	1	6	12	3
Less than $1.0 \mu \mathrm{~m}$	13	19	16	14	10
Medium sample					
Number of vessels sampled	38	74	37	55	37
Largest radius ($\mu \mathrm{m}$)	85.1	57.5	65.2	76.5	51.4
Smallest radius ($\mu \mathrm{m}$)	12.0	8.1	8.2	9.6	8.2
Range of radii ($\mu \mathrm{m}$)	72.1	49.4	57.0	66.9	43.2
Differences in radii among successive vessel.					
Largest difference ($\mu \mathrm{m}$) ${ }^{1}$	15.8	11.8	12.5	6.75	8.1
Number of samples (differences) ${ }^{2}$					
More than $4.0 \mu \mathrm{~m}$	3	2	2	3	1
Between 2 to $3.99 \mu \mathrm{~m}$	9	3	5	9	7
Between 1 to $1.99 \mu \mathrm{~m}$	7	6	10	12	5
Less than $1.0 \mu \mathrm{~m}$	18	62	19	30	23
Largest sample					
Number of vessels sampled	67	59	44	56	44
Largest radius ($\mu \mathrm{m}$)	105.5	44.5	101	72.2	76.1
Smallest radius ($\mu \mathrm{m}$)	17.3	8.6	11.0	16.3	10.8
Range of radii ($\mu \mathrm{m}$)	88.2	35.9	90.4	55.9	63.3
Differences in radii among successive vessel.					
Largest difference ($\mu \mathrm{m})^{1}$	9.6	6.25	23.6	4.53	12.0
Number of samples (differences) ${ }^{2}$					
More than $4.0 \mu \mathrm{~m}$	5	1	3	2	6
Between 2 to $3.99 \mu \mathrm{~m}$	8	1	6	6	3
Between 1 to $1.99 \mu \mathrm{~m}$	16	8	14	11	7
Less than $1.0 \mu \mathrm{~m}$	37	48	20	36	27

A variety of vessel diameters is advantageous for plants exposed to environmental extremes. Conductivity is proportional to vessel diameter to the fourth power according to the Poiseuille's law (Zimmermann, 1983; Sperry et al., 2006), so the contribution of large vessels may make the largest contribution to xylem conductivity. However, if embolisms occur to larger vessels (Ewers et al., 1997), smaller diameter vessels may ensure the water column is maintained (Brodersen et al., 2013). Lianas are well known for having wider vessels in their wood than the vessels of self-supporting relatives (Ewers and Fisher, 1991; Angyalossy et al., 2012; Wyka et al., 2013). Ewers and Fisher (1991) demonstrate that lianas and their free-standing relatives had mean maximum vessel diameters of 234 and $116 \mu \mathrm{~m}$, respectively. According to Poiseuille's law, the larger vessels for Lianas should provide 16 times more efficient conductivity than free-standing relatives (Ewers and Fisher, 1991).

Values of xylem conductivities involving the Hagen-Poiseuille equation are most relevant in non-woody tissues in which xylem cells are mostly involved with water transport and are less involved with mechanical support. Examples of plant tissues less involved with mechanical support are compound leaves (McCulloh et al., 2009), young plants of Psilotum nudum (McCulloh and Sperry, 2005b), terminal cactus stems (Evans and Skonieczny, 2015), terminal shoot meristems (Evans et al., 2016), grass leaves (Evans and Ortega, 2019) and the stems of Aristolochia of this study. Xylem conductivities of many stems of the present study were small between 3 and 5 $\mathrm{g} \mathrm{cm}^{-1} \mathrm{MPa}^{-1} \mathrm{~s}^{-1}$. In contrast primary leaf veins of several plants such as Catalpa bignoniodies, C. speciosa, Oxydendrum arboretum, and Phytolacca americana had large xylem conductivities of 20.4, 12.9, 4.47, and 5.08 $\mathrm{g} \mathrm{cm}^{-1} \mathrm{MPa}^{-1} \mathrm{~s}^{-1}$, respectively (Evans et al., 2020). The xylem conductivities of stems of Aristolochia were smaller than primary veins of some leaves. In summary, the xylem conductivities of the stems of Aristolochia in this study are small.
To our knowledge, this is the first publication to document the development of furrowed xylem in Aristolochia stems. Results exhibit the following: (1) interfascicular cambia were not present, since only axial cells were present, (2) numbers of vascular bundles in stems were specific for each species and did not increase as stems enlarged, (3) radii of vessels were not dimorphic for any species, (4) numbers of vessels were linearly related with stem diameters, and (5) the largest half of all vessels supplied 95% of total xylem conductivity.

Funding

No external funding was used for this project.

Declaration of competing interest

The authors have no competing interests.

Author contributions

Experimental design, sample procurement, microscopic preparation, data analysis, line figure and figure preparation, manuscript preparation and editing was performed by LSE. All photographs of tissue samples, all vessel diameters, analyses of vessels and xylem conductivity calculations and figure preparations were done by MCE.

Acknowledgements

Thanks to Dr. Dennis Stevenson for help with sample procurement and encouragement for these research activities. The authors appreciate the excellent editorial assistance of Dr. RikkiLynn Shields.

References

Angyalossy, V., Angeles, G., \& Pace, M. (2012). An overview of the anatomy, development and evolution of the vascular system of lianas. Plant Ecology and Diversity, 5, 167-182. http://doi.org/10.1080/17550874.2011.615574

Bastos, C. L., Tamaio, N., \& Angyalossy, V. (2016). Unravelling roots of lianas: a case study in Sapindaceae. Annals of Botany, 118, 733-746. http://doi.org/10.1093/aob/mcw091
Brodersen, C. R., Choat, B., Chatelet, D., Shackel, V., Matthews, M., \& McElrone, A. (2013). Xylem vessels relays contribute to radial connectivity in grapevine stems (Vitis vinifera and V. arizonica; Vitaceae). American. Journal Botany, 100, 314-321. http://doi.org/10.3732/ajb. 1100606
Evans, L. S., \& Skonieczny, K. (2015). Xylem Conductivity in Terminal Stems of 20 Species of Columnar Cacti of South America. Bradleya, 33, 108-118. https://doi.org/10.25223/brad.n33.2015.a16
Evans, L. S., Wiley, W. I., \& Auricchio, C. (2016). Xylem conductivity of petioles and primary stem tissues at stem terminals of herbaceous plant species. Journal of the Torrey Botanical Society, 143, 621-631. https://doi.org/10.3159/TORREY-D-15-00023
Evans, L. S., \& Ortega, H. (2019). Xylem conductivities in grasses. Flora, 257, 151420. http://doi.org/10.1016/j.flora.2019.151420

Evans, L. S., Carvalho-Evans, M., \& Gina Leoncavallo, G. (2020). Xylem conductivity in leaf veins. Flora, 268, 151627. http://doi.org/10.1016/j.flora.2020.151627

Ewers, F., \& Fisher, J. (1991). Why vines have narrow stems: Histological trends in Bauhina (Fabaceae). Oecologia, 88, 233-237. http://doi.org/10.1007/BF00320816

Ewers, F., Carlton, M., Fisher, J., Kolb, K., \& Tyree, M. (1997). Vessel diameters in roots versus stems of tropical lianas and other growth forms. IAWA Journal, 18, 261-279.
http://doi.org/10.1163/22941932-90001490
Fahn, A. (1967). Plant Anatomy. Pergamon Press. New York.
Mauseth, J. (1988). Plant Anatomy. The Blackburn Press. Caldwell. NJ.
Mauseth, J. (2014). Botany: An Introduction to Plant Biology (5th ed.). Jones \& Bartlett Learning. Burlington, MA.
McCulloh, K. A., \& Sperry, J. S. (2005a). Patterns in hydraulic architecture and their implications for transportation efficiency. Tree Physiology, 2, 257-267. http://doi.org/10.1093/treephys/25.3.257

McCulloch, K. A., \& Sperry, J. S. (2005b). The evaluation of Murray's law in Psilotum nudum (Psilotaceae), an analogue if ancestral plants. American Journal Botany, 92, 985-989. http://doi.org/10.3732/ajb.92.6.985
McCulloh, K. A., Sperry, J. S., Meinzer, F. C., Lachenbruch, B., \& Arala, C. (2009). Murray’s law, the 'Yarrum' optimum, and the hydraulic architecture of compound leaves. New Phytologist, 184, 234-244. http://doi.org/10.1111/j.1469-8137.2009.02950.x
Metcalfe, C. R., \& Chalk, L. (1983). Anatomy of the Dicotyledons (2nd ed.). Clarendon Press. Oxford.
Niklas, K. J. (1992). Plant Biomechanics: An Engineering Approach to Plant Form and Function. The University of Chicago Press, Chicago.

Rajput, K., Lekhak, M., Kapalane, K., \& Yadav, S. R. (2017). Formation of tri-lobed stem and development of successive cambia in the stems of Argyreia hookeri C.B. Clarke (Convolvulaceae). Flora, 233, 140-149. http://doi.org/10.1016/j.flora.2017.06.005
Sass, J. E. (1958). Botanical Microtechnique (3rd ed.). The Iowa State University Press, Ames. http://doi.org/10.31274/isudp. 25
Sperry, J., Hacke, U., \& Pittermann, J. (2006). Size and function in conifer tracheids and angiosperm vessels. American Journal Botany, 93, 1490-1500. https://doi.org/10.3732/ajb.93.10.1490

Tamaio, N., Joffily, A., Braga, J. M. A., \& Rajput, K. S. (2010). Stem anatomy and pattern of secondary growth in some herbaceous vine species of Menispermaceae. Journal of the Torrey Botanical Society, 137, 157-165. http://doi.org/10.3159/09-RA-059R. 1
Tyree, M. T. \& Zimmerman, M. H. (2002). Xylem Structure and the Ascent of Sap (2nd ed.). Springer-Verlag, Berlin/Heidelberg, Germany. http://doi.org/10.1007/978-3-662-04931-0
Wyka, T., Oleksyn, J., Karolewski, P., \& Schnitzer, S. (2013). Phenotypic correlates of the lianescent growth form: a review. Annuals Botany, 112, 1667-1681. https://doi.org/10.1093/aob/mct236
Zimmermann, M. H. (1983). Xylem Structure and the Ascent of Sap. Springer, Berlin. http://doi.org/10.1007/978-3-662-22627-8

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

