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Abstract 
The paper presents the results of an experimental study of the pipe extrusion process using the method of 
coordinate grids. The estimation of influence of separate conditions of friction on the contact surfaces of the 
deformable material and the pressing tool on metal flow pattern. The calculation of the forming operation is made 
for extrusion process stages.  
Keywords: extrusion of pipe, method of coordinate grids (MCG), picture of metal flowing, friction conditions, 
metal forming. 
1. Introduction 
As it is shown in works (Starostin & Kargin, 1983; Osadchy & Kolikov, 2012), qualitative characteristics of 
extruded pipes depend on a number of technological parameters. Among them a strain capacity of a work material 
(Barichko, Kosmatskiy, & Rushchits, 2013; Kosmatskiy, Barichko, & Voskhodov, 2014; Barichko, Kosmatskiy, 
& Akhmedyanov, 2015; Kosmatskiy, Fokin, & Filyaeva, 2016) and friction conditions on contact surfaces, i.e. a 
deformed metal – a pressing tool (Manegin & Anisimova, 1978) should be singled out. The studies in the first area 
are successfully realized due to upsetting tests of cylindrical specimens using a multifunctional complex Gleeble 
(Barichko, Kosmatskiy, & Rushchits, 2013; Kosmatskiy, Gaslenko, & Tikhonova, 2013; Barichko, Kosmatskiy, & 
Akhmedyanov, 2015; Kosmatskiy, Fokin, & Filyaeva, 2016). The rationale for choosing a lubricant on the 
external and internal surfaces of a deformable material raises an unconventional problem. However, friction 
conditions specify not only qualitative characteristics of pipes of a finished size, but also the maximum load on a 
deforming instrument of a pipe extrusion press. Thus, an experimental study of the influence of friction conditions 
on the pattern of metal flow when pressing pattern pipes can ensure in the initial approximation the formation of a 
scientific and technology-based approach to selection of lubricants during the pipe extrusion. At the same time, the 
coordinate grid method (CGM) (Del & Novikov, 1979; Kargin & Kargin, 2011) can help justify the choice of 
boundaries of plastic deformation applied in case of mathematical description of the pipe extrusion process. 
Besides, the choice in favour of CGM is also justified by the fact that when using it is possible to consider each 
element of the coordinate grid as an element of the metal flow nucleus undergoing homogeneous strain during the 
deformation process (Gubkin, 1960).  
2. Method 
The billets (С1 grade) 12 quantity and sizes 45 mm in diameter, 40 mm long and with a through hole of 9 mm in 
diameter were used for physical simulation. The billets were preliminary cut along the centerline in two halves. 
The coordinate grid consisting of square cells with a way of nearly 5 mm was applied to each cut surface with the 
help of the EDM machine (see Figure 1).  
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3. Results 

 

Figure 1. Pattern sleeve with the applied coordinate grid 
 
Table 1. Grid point position of the pattern sleeve: No. of a point (ρ; z), mm 
1.1 (4,9; 0) 2.1 (8,31; 0) 3.1 (13,35; 0) 4.1 (18,53; 0) 5.1 (23,24; 0) 
1.2 (4,9; 1,9) 2.2 (8,31; 1,9) 3.2 (13,35; 1,9) 4.2 (18,53; 1,9) 5.2 (23,24; 1,9) 
1.3 (4,9; 6,96) 2.3 (8,31; 6,96) 3.3 (13,35; 6,96) 4.3 (18,53; 6,96) 5.3 (23,24; 6,96) 
1.4 (4,9; 6,96) 2.4 (8,31; 6,96) 3.4 (13,35; 6,96) 4.4 (18,53; 6,96) 5.4 (23,24; 6,96) 
1.5 (4,9; 17,12) 2.5 (8,31; 17,12) 3.5 (13,35; 17,12) 4.5 (18,53; 17,12) 5.5 (23,24; 17,12) 
1.6 (4,9; 22,17) 2.6 (8,31; 22,17) 3.6 (13,35; 22,17) 4.6 (18,53; 22,17) 5.6 (23,24; 22,17) 
1.7 (4,9; 27,26) 2.7 (8,31; 27,26) 3.7 (13,35; 27,26) 4.7 (18,53; 27,26) 5.7 (23,24; 27,26) 
1.8 (4,9; 27,26) 2.8 (8,31; 27,26) 3.8 (13,35; 27,26) 4.8 (18,53; 27,26) 5.8 (23,24; 27,26) 
1.9(4,9; 37,47) 2.9 (8,31; 37,47) 3.9 (13,35; 37,47) 4.9 (18,53; 37,47) 5.9 (23,24; 37,47) 
1.10 (4,9; 40,5) 2.10 (8,31; 40,54) 3.10 (13,35; 40,5) 4.10 (18,53; 40,54) 5.10 (23,24; 40,54) 
Subsequently, the billet parts were put together according to a parting plane, previously covered by automobile oil, 
which protects them from thermal bonding during the extrusion, and jointed together. Using the testing machine by 
the maximum deformation force of 1.25 MN and corresponding pressing equipment (see Table 2) pattern sleeves 
were exposed to extrusion in case of production of pattern pipes 25×18 mm in size according to the following 
schemes: without lubrication (scheme No. 1); lubrication on the contact surface: a mandrel – an internal surface of 
the sleeve (scheme No. 2); lubrication on the contact surface: a two-part container liner – an external surface of the 
sleeve (scheme No. 3); lubrication on all contact surfaces (scheme No. 4).  
 
Table 2. Geometrical parameters of pressing equipment, mm  
Pressing tool Height  Outer diameter Inner diameter 
Mandrel 95 7 – 
Pressure pad 10 50 – 
Matrix 6 50 25 
Container liner 90 70 50 
 
To reduce a time interval and consequently improve the reliability of experimental data, used for quantitative 
assessment of a strained condition, we evaluated three positions of the coordinate grid (see Tables 3 – 5), which 
correspond to well-known stages (Perlin, 1964) of the extrusion process: pressing out (see Figure 2); steady state 
(see Figure 3); extrusion process end (see Figures 4 – 7).  
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Figure 2. Pressed out pattern sleeve with the applied coordinate grid  
(scheme No. 1) 

 
Table 3. Grid point coordinates of the pattern sleeve: No. of a point (ρ; z), mm 

1.1 (25,3; 0) 2.1 (19,42; 0) 3.1 (13,6; 0) 4.1 (7,56; 0) 5.1 (3,69; 0) 
1.2 (25,75; 2,4) 2.2 (20,02; 1,69) 3.2 (13,84; 1,69) 4.2 (7,83; 1,72) 5.2 (3,86; 1,89) 
1.3 (25,82; 4,7) 2.3 (20,62; 5,27) 3.3 (14,51; 5,54) 4.3 (8,3; 5,74) 5.3 (3,69; 5,6) 
1.4 (25,84; 8,9) 2.4 (20,64; 8,98) 3.4 (14,62; 9,22) 4.4 (8,5; 9,5) 5.4 (4,7; 9,88) 
1.5 (12,87; 25,8) 2.5 (20,37; 12,8) 3.5 (14,27; 12,9) 4.5 (8,57; 13,3) 5.5 (4,51; 13,6) 
1.6 (25,79; 16,3) 2.6 (20,02; 16,4) 3.6 (13,83; 16,76) 4.6 (8,47; 17,5) 5.6 (4,5; 17,73) 
1.7 (25,99; 19,6) 2.7 (19,75; 20,5) 3.7 (13,77; 21,63) 4.7 (8,13; 22,01) 5.7 (4,58; 22,31) 
1.8 (25,78; 23,0) 2.8 (19,63; 24,55) 3.8 (13,72; 25,29) 4.8 (7,61; 26,97) 5.8 (4,51; 27,8) 
1.9 (25,78; 27,4) 2.9 (14,14; 27,5) 3.9 (14,79; 29,06) 4.9 (9,6; 32,37) 5.9 (5,5; 33,2) 
1.10 (25,2; 28,6) 2.10 (19,11; 28,7) 3.10 (13,53; 31,4) 4.10 (8,72; 35,31) 5.10 (5,82; 35,73) 

 

 

Figure 3. Pattern sleeve with the applied coordinate grid in the steady state (scheme No. 1) 
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Table 4. Grid point coordinates of the pattern sleeve in the steady state: No. of a point (ρ; z), mm 
1.1 (25; 0) 2.1 (23,26; 0) 3.1 (13,5; 0) 4.1 (7,79; 0) 5.1 (5,09; 0) 
1.2 (24,6; 1,85) 2.2 (21,94; 1,85) 3.2 (13,15; 1,85) 4.2 (7,98; 1,7) 5.2 (3,7; 1,85) 
1.3 (24,2; 4,52) 2.3 (21,16; 4,52) 3.3 (13,17; 5,78) 4.3 (7,47; 5,85) 5.3 (3,49; 5,64) 
1.4 (23,8; 6,97) 2.4 (19,63; 6,97) 3.4 (13,17; 9,34) 4.4 (7,47; 9,34) 5.4 (3,49; 9,54) 
1.5 (23,2; 8,44) 2.5 (20,76; 8,44) 3.5 (12,89; 12,85) 4.5 (7,15; 13,43) 5.5 (3,34; 13,21) 
1.6 (22,8; 11,42) 2.6 (20,2; 11,44) 3.6 (11,68; 17,03) 4.6 (6,37; 17,8) 5.6 (3,02; 18,06) 
1.7 (22,2; 14,5) 2.7 (20,09; 14,22) 3.7 (11,5; 21,15) 4.7 (6,41; 22,55) 5.7 (3,19; 22,55) 
1.8 (22,3; 18,68) 2.8 (19,81; 17,23) 3.8 (10,83; 26,91) 4.8 (6,53; 27,62) 5.8 (3,57; 28,02) 
1.9 (21,9; 19,35) 2.9 (18,33; 18,93) 3.9 (12,03; 30,12) 4.9 (8,07; 32,08) 5.9 (5,07; 33,04) 
1.10 (16,94; 18,8) 2.10 (13,39; 22,18) 3.10 (12,28; 32,22) 4.10(8,51; 33,72) 5.10 (5,9; 34,71) 
 
When considering the coordinate grids (see Figures 4 – 7) the following conclusions can be made: 
– a hypothesis about the flow non-uniformity in case of correct pressing; 
– the maximum speed differential of longitudinal movements is observed in the area before an exit from the 
deformation zone. When the metal moves towards the exit from the deformation zone, the deformation speed 
becomes balanced.  
– near the contact surface of the deformed metal with the mandrel grids are deformed for a smaller value, as 
compared to the zone of a matrix funnel, where deformation has a larger value; 
– in the matrix funnel zone, where deformation has a larger value, the quality of the coordinate grid is 
unsatisfactory and difficult to replicate. In case of large values of deformation degrees the use of CGM is 
unacceptable.  

  
Figure 4. Pattern pipe with the applied coordinate grid 

(scheme No. 1) 
Figure 5. Pattern pipe with the applied coordinate grid 

(scheme No. 2) 
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Figure 6. Pattern pipe with the applied coordinate grid 

(scheme No. 3) 
Figure 7. Pattern pipe with the applied coordinate grid 

(scheme No. 4) 
 
It is commonly known (Siebel, 1934) that the stress of contact friction ( Кτ ) is defined by Siebel’s formula:  

SК μστ = , (5) 

The work of deformation can be defined as: 

=
V

εσ dVА ИSФ , (6) 

where Sσ  is a value of metal resistance to plastic shear strain; Иε  is a strain intensity; V is the volume of 
metal where deformation happens.  
The strain intensity ( Иε ) is calculated according to the formula (Kolmogorov, 1986): 

( ) ( ) ( ) ( )222222 γγγ
2
3εεεεεε

3
2ε ϕρρϕρϕϕρ ZZZZИ +++−+−+−= , (7) 

where ρε , ϕε , Zε  is a normal component of the strain intensity; γ  is a tangential component of the strain 
intensity.  
During extrusion there is a non-uniform plastic flow and a value of the strain intensity is different at different 
points of the deformation zone. Thus, for determination of deformation work we should specify the strain 
intensity (7), as a function, the volume integral of which, can be used for calculation of deformation work. The 
analytical determination of the deformation field is not a trivial task. That’s why in this case the CGM is applied 
to determine the deformation strain.  
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Table 5. Grid point coordinates of the pattern pipe: No. of a point (ρ; z), mm 
Scheme No. 1 (see Fig. 4) 
1.1 (25,0;0) 2.1 (14,2;0) 3.1 (11,79;8,92) 4.1 (6,93;0) 5.1 (3,43;4,85) 
1.2 (19,11;18,04) 2.2 (11,07;19,1) 3.2 (9,23;29,86) 4.2 (5,79;36,97) 5.2 3(3,79;29,12) 
1.3 (14,14;22,41) 2.3 (11,44;29,78) 3.3 (10,17;34,75) 4.3 (7,59;45,97) 5.3 (4,05;49,96) 
1.4 (14,01;40,27) 2.4 (11,09;45,97) 3.4 (8,77;53,83) 4.4 (6,05;58,36) 5.4 (3,86;55,79) 
1.5 (13,55;53,46) 2.5 (9,78;58,87) 3.5 (9,03;63,54) 4.5 (6,94;65,02) 5.5 (3,77;64,34) 
1.6 (12,1;62,38) 2.6 (11,81;64,49) 3.6 (9,65;70,47) 4.6 (6,05;71,48) 5.6 (3,76;70,09) 
1.7 (12,14;72,11) 2.7 (12,18;73,23) 3.7 (8,98;74,72) 4.7 (6,09;78,06) 5.7 (3,35;78,92) 
1.8 (12,56;84,1) 2.8 (10,17;82,79) 3.8 (6,91;85,09) 4.8 (6,07;85,68) 5.8 (3,46;87,17) 
1.9 (12,24;89,83) 2.9 (11,73;88,33) 3.9 (11,36;89,4) 4.9 (8,08;91,93) 5.9 (5,06;93,58) 
1.10 (12,16;91,14) 2.10 (11,66;91,48) 3.10 (11,56;92,07) 4.10 (8,89;93,62) 5.10 (5,97;94,33) 
 Scheme No. 2 (see Fig. 5) 
1.1 (24,0; 0) 2.1 (14,6; 0) 3.1 (5,2; 0) 4.1 (2,6; 4,0) 5.1 (3,2; 27,80) 
1.2 (24,0; 3,76) 2.2 (10,16; 16,05) 3.2 (6,0; 9,05) 4.2 (5,44; 15,06) 5.2 (7,11; 25,60) 
1.3 (24,0; 7,52) 2.3 (10,45; 24,61) 3.3 (7,09; 34,64) 4.3 (5,88; 38,31) 5.3 (3,38; 42,10) 
1.4 (12,58; 35,91) 2.4 (10,3; 41,44) 3.4 (7,51; 46,53) 4.4 (6,22; 48,76) 5.4 (3,5; 51,49) 
1.5 (12,6; 54,39) 2.5 (10,97; 54,89) 3.5 (8,69; 54,41) 4.5 (6,29; 61,31) 5.5 (3,51; 62,18) 
1.6 (12,73; 65,29) 2.6 (10,8; 69,55) 3.6 (8,65; 68,79) 4.6 (6,23; 72,5) 5.6 (3,4; 74,04) 
1.7 (12,57; 76,85) 2.7 (10,23; 82,6) 3.7 (9,02; 81,02) 4.7 (6,36; 84,0) 5.7 (3,4; 84,91) 
1.8 (12,61; 82,66) 2.8 (12,27; 85,78) 3.8 (10,96; 87,12) 4.8 (7,83; 91,78) 5.8 (3,48; 93,84) 
1.9 (12,67; 89,69) 2.9 (11,9; 91,59) 3.9 (11,67; 95,94) 4.9 (7,99; 97,90) 5.9 (5,38; 98,99) 
1.10 (12,7; 92,62) 2.10 (12,73; 94,5) 3.10 (12,76; 97,49) 4.10 (8,82; 99,38) 5.10 (5,99; 100,0) 
Scheme No. 3 (see Fig. 6) 
1.1 (23,82;0) 2.1 (16,28; 0) 3.1 (7,62; 0) 4.1 (3,5; 3,25) 5.1 (3,53; 22,43) 
1.2 (23,79; 4,17) 2.2 (10,56; 16,62) 3.2 (8,36; 3,85) 4.2 (6,14; 12,4) 5.2 (6,85; 21,47) 
1.3 (23,79; 8,09) 2.3 (10,68; 23,13) 3.3 (8,06; 29,75) 4.3 (6,1; 34,91) 5.3 (3,53; 37,64) 
1.4 (12,44; 38,31) 2.4 (10,07; 34,02) 3.4 (8,93; 37,81) 4.4 (6,22; 47,08) 5.4 (3,5; 49,54) 
1.5 (12,33; 49,47) 2.5 (10,54; 46,91) 3.5 (8,84; 54,84) 4.5 (5,38; 59,33) 5.5 (3,61; 59,9) 
1.6 (12,17; 59,25) 2.6 (11,12; 56,94) 3.6 (8,89; 62,9) 4.6 (5,89; 69,35) 5.6 (3,15; 70,06) 
1.7 (12,02; 67,65) 2.7 (11,0; 65,22) 3.7 (9,36; 76,14) 4.7 (6,29; 77,62) 5.7 (3.13; 78,21) 
1.8 (11,92; 74,10) 2.8 (11,03; 78,34) 3.8 (9,71; 83,01) 4.8 (6,21; 84,92) 5.8 (3,05; 85,2) 
1.9 (12,93; 81,21) 2.9 (11,26; 82,19) 3.9 (11,17; 88,72) 4.9 (7,08; 90,55) 5.9 (3,92; 91,01) 
1.10 (12,08; 84,29) 2.10 (12,13; 87,11) 3.10 (12,17; 89,9) 4.10 (7,63; 92,39) 5.10 (4,79; 93,11) 
Scheme No. 4 (see Fig. 7) 
1.1 (24,67;0) 2.1 (17,94; 0) 3.1 (9,89; 0) 4.1 (4,93; 0) 5.1 (2,77; 7,41) 
1.2 (24.61; 2,61) 2.2 (11,64; 11,96) 3.2 (8,7; 9.11) 4.2 (6,16; 6,35) 5.2 (5,66; 15,43) 
1.3 (24,66; 6,43) 2.3 (12,77; 27,33) 3.3 (9,22; 17,24) 4.3 (5,37; 18,02) 5.3 (3.28; 28,26) 
1.4 (12,61; 36,34) 2.4 (10,54; 31,18) 3.4 (7,88; 31,0) 4.4 (5,8; 38,25) 5.4 (3,5; 40,72) 
1.5 (12,71; 50,27) 2.5 (10,94; 46,62) 3.5 (9.12; 40,61) 4.5 (6,04; 48,83) 5.5 (3,43; 49,91) 
1.6 (12,78; 59,48) 2.6 (10,11; 51,55) 3.6 (8,91; 53,02) 4.6 (5,46; 61,5) 5.6 (3,42; 61,17) 
1.7 (12,45; 75,31) 2.7 (9,76; 64,59) 3.7 (7,05; 72,82) 4.7 (5,38; 74,45) 5.7 (3,23; 74,45) 
1.8 (12,84; 82,0) 2.8 (10,09; 76,81) 3.8 (8,8; 83,22) 4.8 (6,15; 84,44) 5.8 (3,36; 85,43) 
1.9 (13,51; 87,53) 2.9 (10,78; 87,58) 3.9 (11,06; 90,22) 4.9 (6,39; 91,3) 5.9 (3,34; 91,22) 
1.10 (13,62; 90,78) 2.10 (13,62; 93,79) 3.10 (12,8; 96,87) 4.10 (7,26; 97,26) 5.10 (3,95; 97,34) 

 
4. Discussion 
To find the strain intensity the components of a deformation tensor should be specified. Therefore, from the 
plasticity theory (Thomsen, Yang, & Kobayashi, 1969; Kolmogorov, 1986) it is known: 
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where u  is displacement of elementary volume.  
The metal doesn’t flow in a circular motion around an axis of pressing, i.e. displacement: 0=∂ ϕu . As the 
process is axially symmetrical, the displacement of points and deformation doesn’t depend on the ϕ  coordinate. 
As for derivative determination, a derivative of the constant value is equal to 0 (Fikhtengolts, 2001), namely: 
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Based on the abovementioned, deformation degrees can be defined by formulas: 
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To specify the components of strain intensity coordinates of all points before ( нач
ijz , начρ ij ) and after deformation 

( ijz , ijρ ) should be defined. After that it is not difficult to determine the average values of height, width and 
radius of cells, respectively:  
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2
1,1,1,,1 ++++ −+−

= jijijiji
ij

zzzz
h ; (11) 

2
ρρρρ 1,1,11,, ++++ −+−

= jijijiji
ijs ; (12) 

4
1,11,,1, ρρρρρ ++++ ⋅⋅⋅= jijijijiij . (13) 

For each cell we define the values of four angles ( kji ,,ϕ ), applying a relevant formula for determination of 
angles between vectors a  and b


, where k is an angle number in the cell: 















⋅
+=

ba
yyxx baba arccosϕ . (14) 

The diagram for determination of values reflected in the formulas (11-14) is shown in Figure 8.  
According to Figure 8, the cell height can be specified using the formula: 

2
П,,Л,, jiji

ij

HH
h

+
= , (14) 

where jijiji zzH ,,1Левое,, −= + , 1,1,1Правое,, +++ −= jijiji zzH . 

 

 

Figure 8. Design model of the deformed cell 
After that the deformation degrees are defined: 



jmsr.ccsenet.org Journal of Materials Science Research Vol. 7, No. 3; 2018 

66 










































+










=











=











=











=

2

lnln

γ

lnε

lnε

lnε

4,,2,,0

4,,2,,

3,,1,,0

3,,1,,

0

0

0

jiji

jiji

jiji

jiji

Z

ij

ij

ij

ij

ij

ij
Z

s
s

r
r

h
h

ϕϕ
ϕϕ

ϕϕ
ϕϕ

ρ

ϕ

ρ

, (15) 

Whereupon, using the dependency (7), the stain intensity ( Иε ) is specified. 
As a result, having the information about the strain intensity, it is possible to define the deformation work in each 
cell: 

( )jijijijiИSФ shsA
i,j ,max,,, ρ2επσ −⋅⋅⋅⋅= , (16) 

where 
i,jmaxρ is a maximum cell radius: 

2
ρρ

ρ ,1,
max

jiji
i,j

++
= . (17) 

Using the results of coordinate measuring of the coordinate grid nodes, given in Tables 1, 3 – 5, we performed 
calculation of deformation work when manufacturing pattern pipes 25×18 mm in size in accordance to the 
following schemes: without lubrication (scheme No. 1, see Figure 4); with lubrication on the contact surface: a 
mandrel – an internal surface of the sleeve (scheme No. 2, see Figure 5); with lubrication on the contact surface: 
a two-part container liner – an external surface of the sleeve (scheme No. 3, see Figure 6); with lubrication on all 
contact surfaces (scheme No. 4, see Figure 7). The calculation results are shown in Table 6.  
 
Table 6. Calculation results of deformation work, kJ 

Extrusion process stages Scheme No. 1 Scheme No. 2 Scheme No. 3 Scheme No. 4 
Sleeve pressing out  0,42 0,42 0,42 0,42 
Steady-state process 0,32 0,28 0,23 0,19 

Process end 2,40 1,92 1,77 1,76 
 
The conducted experimental study of pipe extrusion process using the CGM under different friction conditions 
on the contact surfaces of the deformed metal and the pressing tool has enabled us to draw the following 
conclusions: 
– it is obvious that deformation proceeds non-uniformly. At the same time when creating favourable conditions 
on the contact surfaces owing to lubricants (see Figures 5 – 7), the deformed sample is distinguished by 
uniformity of distribution of the coordinate grid over the wall thickness of a pattern pipe. 
– according to Figures 3 – 7, the deformed sample has a stagnant zone of metal, geometrically similar to 
designated zones in case of mathematical simulation of the pipe extrusion process. For illustration purposes, Fig. 
9 shows a fragment (1/4 part) of pattern pressing residue formed as a result of pipe extrusion on the pipe 
extrusion press, 20 MN stress, in the context of Volzhsky Pipe Plant applying a pressure pad of new shaping. As 
you can see, according to Figure 9, porosity and a fiber structure in the area of press tightening is observed in the 
macrostructure of pressing residue. In addition, the macrostructure of metal in the contact area with the matrix 
and the mandrel has a sophisticated fine-grained structure. 
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Figure 9. Macrostructure of a press residue template made of 10Х13Н3 steel  
 
– the coordinate grid distribution along the length of pattern pipes (see Figures 5 – 7) is characterized by 
non-uniformity. The front part of pattern pipes isn’t worked out to the full through the wall thickness. At the 
same time, the back part is characterized by a dense structure of the coordinate grid. This as a whole enables one 
to implicitly judge about possible anisotropy of properties along the body of extruded pipes.  
– the use of lubricants on the contact surface: a mandrel – an internal surface of the sleeve will not exert 
significant influence over pressing force and can be mainly applied for durability of a pressing tool and 
performance of qualitative characteristics of the internal surface of extruded pipes. Moreover, lubricants, 
designed for the internal surface of the sleeve, and consequently ensuring a separating layer between the mandrel 
and the sleeve, in a first place should conform to requirements for thermal properties, namely heat capacity and 
thermal conductivity, and only after that friction properties.  
In conclusion, we should note that when maintaining dynamic and plastic conformity (Chizhikov, 1970) it is 
possible to use the results of the conducted research based on the CGM under production-line conditions.  
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