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Abstract 
Thin-walled, high-strength concrete elements exhibiting low system weight and great slenderness can be created 
with a large degree of lightweight structure using the textile-reinforced, load-bearing concrete (TRC) slab and a 
shell with a very high level of sound absorption. This was developed with the objective of lowering system weight, 
and then implemented operationally in construction. 

Arising from the specifications placed on the load-bearing concrete slab, the following took place: an adapted 
fine-grain concrete matrix was assembled, a carbon warp-knit fabric was modified and integrated into the fine 
concrete matrix, a formwork system at prototype scale was designed enabling noise barriers to be produced with an 
application-oriented approach and examined in practically investigations within the context of the project. This 
meant that a substantial lowering of the load-bearing concrete slab’s system weight was possible, which led to a 
decrease in transport and assembly costs. 
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1. Introduction 
Noise is a consequence of increasing mobility and has a negative effect on both human beings and the environment. 
The continual rise in traffic density, which grew by more than 70 percent on motor ways between 1980 and 2012 
(Lohre et al., 2012), has led to greater noise emissions. Today, this makes sound protection measures more important 
than ever. It does not matter whether these noise barriers are for major roads, motorways or high-speed sections. For 
such systems, there are very complex and contain restrictions with regards to load-bearing capacity, serviceability 
and functionality. Alongside acoustic and mechanical specifications including durability, economic and ecological 
aspects additionally come to the fore. The objective is savings on resources not just based on optimizing weight and 
minimizing manufacturing costs but also leading to decreasing expenditure for transport and assembly.  

In Germany, about 50 percent of noise barriers are erected in concrete. They are mostly composed of a 
load-bearing layer made from steel reinforced concrete and a noise-absorbing facing concrete shell set up on one or 
both sides and made from lightweight concrete. The usual material thickness with the load-bearing concrete layer 
is about 12 to 15 cm due to the concrete coverage needed in terms of passive protection against corrosion. Utilising 
textile reinforced concrete in this case offers great potential for reducing weight and constructing in a 
resource-efficient and sustainable manner. Textile reinforced concrete is an innovative high-performance 
composite material consisting of a fine concrete matrix and textile reinforcement (Curbach & Scheerer, 2011; 
Funke et al., 2014; Brameshuber, 2006). The development of this new type of composite material has made a 
construction method available which utilizes reinforcement that is generally not susceptible to corrosion due to 
environmental influences (e.g. air humidity and chloride) (Curbach et al., 2008; Curbach & Jesse, 2010). The 
concrete coverages needed in steel reinforced concrete construction can thus be substantially reduced by 
employing textile reinforced concrete (Curbach & Scheerer, 2012; Funke et al., 2013). Just a few millimeters 
minimum concrete cover is necessary to safeguard the transfer of bonding forces between the fine concrete matrix 
and the textile reinforcement (Mobasher et al., 2014; Curbach et al., 2013). This means that thin-walled, 
free-formed surfaces can be created with a great degree of lightweight structure that feature low system weight and 
great slenderness. 

This paper reports the development of a noise barrier, which consists of a load-bearing concrete made of textile 
reinforced concrete and a noise-absorbent made of a lightweight concrete. An important part of this work is 
durability and so the lifespan of the noise barrier. 
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2. Materials and Methods 
2.1 Components for Load-Bearing and Noise-Absorbent Concretes 

Table 1 illustrates the qualitative and quantitative composition of the load-bearing concrete and the 
noise-absorbent concrete. The load-bearing concrete contains, besides type CEM I 52.5 R Portland cement 
according to DIN EN 206, pozzolanic fly ash and silica fume as binding agents (Table 1), which have a positive 
action on both fresh and hardened concrete characteristics in respect of sedimentation slability, durability and 
mechanical strength. Two quartz sands and dolomite powder are utilized as aggregate or filler. The alkali resistant 
(AR) glass fibres, which lower the propensity to shrinkage cracking and can enhance first crack tension in the 
concrete, are 12 mm long and have a length mass of 45 tex. The high-performance superplasticiser employed has a 
30 percent by weight proportion of polycarboxylate ether (PCE). The noise-absorbent concrete has a monodisperse 
(single particle) aggregate made of round expanded clay in a fraction of 0 to 2 mm. 

 

Table 1. Composition of the load-bearing and the absorber concrete 

Component  Load-bearing in kg/m³ Absorber in kg/m³ 

White cement 52.5 R 495 250 

Amorphous alumosilicate 150 - 

Quartz sand 0/2 310 - 

Quartz sand 0/1 900 - 

Expanded clay - 970 

Dolomite powder (x5ß= 70 µm) 190 - 

Water 210 150 

AR-glass fibres (12 mm, integral) 14 - 

superplasticizers 15 - 

Water-binder-ratio 0.38 0.60 

 

2.2 Textile for Textile Reinforced Concrete 

Two layers of a two-dimensional bidirectional warp-knit fabric of carbon were used for the reinforcement of TRC 
(Figure 1). The warp and weft yarn had a length weight of 3300 g/km (≙ 3300 tex) and a tensile strength of 1576 
MPa. The mesh size of the 15 mass percent impregnated warp-knit fabric (measured by thermogravimetry) was 
10.8×18.0 mm². The warp and weft yarn consisted of 50000 carbon filaments with a diameter of 7 μm. The degree 
of reinforcement in concrete was approximately 1.1% by volume. 

 

 

Figure 1. Schematic of the bidirectional warp-knit fabric of carbon fibres 
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2.3 Test Specimens 

Several plates (50×50 cm²) were prepared for the test specimens. In a first step, the absorber concrete was mixed. 
Thereafter, the fresh absorber concrete was poured into the mold. After this, the fine grained concrete was mixed 
with the intensive mixer R05T by Erich. The mixing parameters are shown in Table 2. 

 

Table 2. Mixing parameters for fine grained concrete 

 component mixing technology mixing power in % mixing time in s

1st binders + aggregates concurrent 15 60 

2nd 75% of water sequence 35 90 

3rd super plasticizer sequence 35 60 

4th residual water sequence 40 30 

5th AR-glass fibres sequence 40 30 

 

Subsequently, the fresh fine grained concrete was applied on the absorber concrete (Figure 2a). Finally, the test 
plates were demolded after 24h (Figure 2b). 

 

(a) Application of fine grained concrete              (b) Demolded test plate 

Figure 2. Application of fine grained concrete (a) and demolded test plate (b) 

2.3 Test Specimens Test Set-Up for TRC and Absorber 

The samples for the tests to be performed on the hardened concrete were stored dry, according to DIN EN 12390-2. 
The 3-point bending tensile strength (Figure 3a) was determined by means of the Toni Technik ToniNorm with 
samples which measured 225 x 50 x 15 mm³ (length x width x height), based on DIN EN 12390-5. The span width 
set was 200 mm and the load speed 100 N/s constant. The compressive strength was determined by means of the 
Toni Technik ToniNorm (load frame 3000 kN) following DIN EN 12390-3, with cubes having an edge length of 
150 mm (Figure 3b). The pre-load was 18 kN. 

 

 

(a) 3-point bending tensile strength                (b) compressive strength 
Figure 3. Determination of 3-point bending tensile strength (a) and compressive strength (b) 
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To validate the durability of the fine grained concrete, the capillary suction of de-icing solution and freeze thaw 
test (CDF-Test) was measured by the Schleibinger Freeze-Thaw-Tester with standard agent solution according to 
the recommendations of RILEM TC 117-FDC (Figure 4). 

 

 
Figure 4. Determination of the capillary suction of de-icing solution and freeze thaw test 

 

3. Results  
3.1 Properties of Fresh and Hardened TRC 

Table 3 shows the fresh and hardened concrete characteristics after 28 days. The fresh fine grained concrete 
possessed great flowability (flow spread 640 mm) and corresponded to flow class F6. Using an air content tester, 
an air content of 2.7 volume percent and a gross geometric density of 2.31g/cm3 were determined in the fresh 
concrete. A shrinkage channel was utilized to determine the total shrinkage deformation at 0.68 mm/m. The reason 
for this high total shrinkage was the high binding agent content and the great chemical and autogenic strength of 
the hardened concrete at 28 days (gross density: 2.31 g/cm3) was 83.7 MPa; it was 25 MPa after 24 hours. The 
3-point bending tensile strength of the unreinforced concrete was 11.73 MPa after 28 days. 

 

Table 3. Properties of fresh and hardened fine grained concrete 

characteristic fresh concrete hardened concrete 

geometric bulk density 2.37 g/cm³ 2.31 g/cm³ 

flow spread 640 mm - 

air content 2.7 Vol.-% - 

linear shrinkage 0.91 mm/m 

compressive strength - 83.7 MPa 

3-point bending tensile strength - 11.73 MPa 

 

In addition, the fine concrete exhibited great durability, which was verified through a successful CDF test with an 
average weathering of 912 g/m² and a relative dynamic modulus of elasticity of 100 percent after 28 freeze-thaw 
cycles (Table 4). 
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Hz means that great sound particle velocity prevails in this area. These types of curve progressions occur 
comparatively often with mono-modular and porous aggregate materials. They are indicative of insufficient flow 
resistance adaptation. The result is that the noise absorber acts like a resonator. Based on these measurements, the 
noise absorbent shell met the conditions for sound group 4 (highly absorbent). 

 

 

 
       (a) Degree of sound absorption         (b) measurement in echo chamber 

Figure 6. Degree of sound absorption according to DIN EN ISO 354:2003 

 

4. Conclusions 
At the completion of this project, a noise barrier was able to be implemented using a textile-reinforced lightweight 
construction method under construction conditions. In the context of this present research and development project, 
a scientific basis was created for developing the materials: it was technically implemented in production, tested in 
numerous test series, adopted and practically investigated in the form of a prototype. 

Integrating short fibres in the concrete generated a fine crack pattern with a positive action on durability, amongst 
other things. Taking the first crack computations into account, proof was furnished in mechanical investigations 
that the thickness of the textile-reinforced, load-bearing concrete slab can be reduced from 12 cm (steel reinforced 
concrete) to 5 cm (carbon reinforced concrete). Proof was also given of good post-cracking strength, low creep and 
shrinkage deformation, low susceptibility to cracking and excellent resistance to frost/de-icing salt (exposure class 
XF4). 

This new type of textile-reinforced noise barrier meets requirements as regards resource efficiency, cost reduction, 
sustainability, minimization of the system slab weight and a decrease in transport and assembly expenses in 
practice under construction conditions.  

The marginal conditions for manufacturing such noise barriers on an industrial scale in large quantities with high 
demands on equality are currently being created in preparation for its mass production and market launch. Beyond 
this, a key priority is obtaining general building authority approval or product approval.  
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