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Abstract 

The AA6061 is reinforced by adding SiC at various volume fractions and, the mixture is hot compacted at different 
processing temperatures. The influences of such parameters are investigated on the product relative density along 
with its relevant Vickers hardness using quantitative and qualitative formulation approach. Empirical relationships 
are established to relate each of the controlling (independent) parameters (SiC% and hot compaction (HC) 
temperature), to the composites relative density and the hardness, as dependent variables. The developed models 
are examined for its adequacy and significance using several statistical criteria. Response surface and contour 
graphs are established to reflect the relevant function interrelations and, to provide a data base source for the prior 
design stage. 

Within the specified experimental domain, first order and nonlinear models are found independently adequate and 
significant to grasp the functional dependence between the relative density and both SiC and HC temperature. 
However, second order multiple model with quadratic components of SiC percent is found to best suit the 
hardness-SiC%-temperature functional relationship. 

Increasing SiC content is found to reduce the relative density of the composites regardless the hot compaction 
temperature while, up to about 18 vol.% SiCp relative ratio, it enormously and nonlinearly increases the composite 
hardness. Further increase in SiC% addition seems not to affect the composite hardness. Relative density of the 
resulting composite is decreased by increasing HC temperature.  

Keywords: AA6061, hot compact powder technology, relative density, vickers hardness, linear and nonlinear 
regression procedures, response surface methodology 

1. Introduction  

Aluminum alloys are notable by vast diversity in industrial application thanks to their many advantages regarding 
specific strength, corrosion resistance, thermal conductivity, low density, and good workability. On the other hand, 
their use is limited due to their relatively low yield strength and poor tribological characteristics (Min, 2009; 
O'Donnel et al., 2001). Therefore, applicability was affected negatively in many circumstances as a result of their 
reduced hardness and wear resistance (Huang et al., 2004). Recently, the interest to increase aluminum strength 
has risen and the study of metal matrix composites (MMCs) has been motivated in particular applications such as 
the aerospace and aeronautic industries. MMCs are considered as outstanding materials to obtain properties that 
are superior to those of the constituent phases and also to satisfy the above requirements. Aluminum is the most 
common metal used in MMCs; in particular, particles reinforced Aluminum-based MMCs are focal composites 
grasping an increasing attention recently thanks to their lightness, higher specific strength, and wear resistance 
(Senapati et al., 2014; Zakaria, 2014; Mohanakumara et al., 2014).  
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Aluminium-Silicon alloys, as a matrix material, are frequently selected for their good wear resistance, 
strength-to-weight ratio, thermal conductivity, ease of fabrication at reasonable cost, high strength at elevated 
temperature, as well as excellent corrosion resistance. As a result of the previous mentioned properties, the 
suitability of these alloys for aerospace, automotive and military applications has been evident (Senapati et al., 
2014; Rao & Das, 2011). The strengthening of Aluminum and its alloys can be done by dispersing hard particles 
such as carbides, oxides, or nitrides into the aluminum matrix by using various techniques in the solid or liquid 
state (Pawar & Utpat, 2014). Al2O3 and SiC reinforcements are two widely used types of reinforcing agents in 
aluminum metal matrix composites (AMCs). Their use is focused mainly in automotive and aircraft industries due 
to the importance of material tribological properties in these applications (Senapati et al., 2014; Mazahery & 
Shabani, 2013). SiC is a covalent material of huge technological attention thanks to its excellent overall properties. 
It has good thermal shock behavior and mechanical resistance with has high thermal conductivity, oxidation, and 
erosion resistances (Liu et al., 2010). The SiC as whisker or particle reinforced Al matrix composite (Al-SiC) is 
perhaps the most successful class of MMCs produced ever (Mandal & Viswanathan, 2013). As a result, AMCs 
reinforced with SiC particles offer higher modulus, wear resistance, and better dimensional stability than 
conventional aluminum alloys (Mohanakumara et al., 2014). 

Powder Metallurgy (PM) can be used to prepare aluminum composites in the solid state. The process consists of 
mixing reinforcement particles with the metallic powder, followed by consolidation and sintering processes. Other 
methods that could be also adopted include mechanical alloying (MA) and mechanical milling (MM), which 
renders composites with fine and homogeneous distributions of the particles (Mazahery & Shabani, 2013; 
Showaiter & Youssefi, 2008; Kim et al., 2001). The best properties of PM for fabrication of composites can be 
obtained when the reinforcement is homogeneously dispersed in the matrix (Ravindran et al., 2013). 

MMCs can be reinforced using alternatives such as continuous fibres, discontinuous particles, or whiskers (Yan et 
al., 2008). Particle-reinforced MMCs possess distinct advantages over fibre reinforced composites regarding low 
cost and isotropic mechanical properties considerations. Therefore, they are relatively easier to process via powder 
compared to AMCs reinforced with ceramic whiskers and fibers (Mazahery & Shabani, 2012). The mechanical 
properties of a composite under loading are typically controlled by the interfaces formed between matrix and 
reinforcement particles. Generally, a good interface bonding with coherency or semi-coherency is advantageous 
for better mechanical properties. Conversely, interface with in-coherency degrades its properties, especially with 
the presence of brittle intermetallic phases (Mandal & Viswanathan, 2013). Discontinuous particles reinforced 
MMCs have gained much interest recently due to their promising mechanical properties regarding 
matrix-reinforcement coherency (Mohanakumara et al., 2014; Mazahery & Shabani, 2013; Zhanwei et al., 2014). 
Additionally, the common problems accompanying the fabrication of continuous reinforced MMCs such as 
fiber-damage, microstructural heterogeneity, fiber mismatch, and inter-facial reactions are minimized by the use of 
discontinuous reinforcements (Kalkanl & Yilmaz, 2008). 

During the last several decades, optimizing the mechanical properties of the SiC reinforced aluminum alloy 
composites has been a main point of interest for many researchesrs, for instance (Min, 2009). The improvement of 
mechanical properties of produced composites could be reached by having a well performed homogenization 
which would enable uniform distribution of reinforcement particles in the composite matrix. The effectiveness of 
the powder and the performance of produced components are typically determined by the appropriate relative 
mixture contents and constituents (Bozic et al., 2010).  

In the current study, a quantitative procedure is adopted to explore the effect of the SiC volume fraction and the HC 
temperature on the physical and mechanical properties of AMCs, and to develop a general approach describing the 
dependence of the relative density and hardness of the AA6061-SiC composite on SiC content and hot compaction 
temperature. Based on a previous study (El_Garaihy, 2012), experimental data are used to establish mathematical 
models of the functional relationship of the aforementioned parameters. Response surface in terms of three 
dimensions and contours representations are introduced as database reference to help in the design stages. 

2. Materials and Experimental Procedures 

2.1 Materials 

The investigated aluminum alloy AA6061 (supplied by Powders Company Limited) was received in the form of 
powders 30 µm in average size, Figure 1a. AA6061 particles were characterized by irregularity in shape with 
variation in size from 10-to-75 µm. The as-received SiC powders (supplied by American Elements Company) 
were used as reinforcement. As shown in Fig. 1b, SiC powder was characterized by non-uniformity in shape with 
particles size ranging from 1-to-5 µm with an average size of 2 µm. 
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3.2 NonlinearModeling 

However, to detect the possible nonlinear nature of the independent variables, a nonlinear model is usually 
proposed in the form (Myres et al., 2012; Kowalski, 1977):  

 1 2 x  x .......... ,1 2
a a anR ao xn=  (4) 

where a’s are the model coefficients to be determined by the nonlinear regression procedures using the 
experimental data. 

Regression statistical routine is used together with the experimental data to reach the most adequate and 
significant relationship between each of the dependent variable; relative density (RD) and Vicker's hardness 
(HV), and the independent variables; AA6061 percentage in the alloy (Al%) and compact temperature (THC).  

Regression routine is one of the most familiar statistical tool to detect the influence of more than one 
independent variables are involved. This is a necessity if a response surface is required. Using regression 
analysis asseses and estimates the effect of each individual variable on the measured response together with the 
possible interaction effect among all involved variables. As in many modeling and forecasting techniques, such 
as neural network, genetic algorithm, etc, regression analysis uses the most widely used ordinary least squares 
analysis. Such a fitting technique is included as a toolbox facility in many commercial programs such as 
MathWork and MatLab. Least squares method creats the best fit line or surface through all of the available data 
points so as to minimize error sum of squares. Fitting a regression model requires several assumptions of which 
the assumption that the errors are uncorrelated random variables with mean zero and constant variance. Also, 
tests of hypotheses and interval estimation require that the errors are normally distributed. There are a number of 
advanced statistical tests that can be used to examine whether or not these assumptions are true for any given 
regression equation (Myres et al., 2012; Kowalski, 1977). 

Through the current study, a fitting strategy is followed so as to begin with the first-order model of form (2) then; 
interaction among dependent variable and their possible quadratic and nonlinear trend are examined using model 
structures (3) and (4). Fitting procedures are terminated once the best model is detected. Model adequacy and 
significant is judged through many criteria which can be defined as follow: 

ሺܴଶሻ	ݎ݋ݐܿܽܨ	݊݋݅ݐ݈ܽ݁ݎݎ݋ܥ • ൌ ሾ1 െ ሺܴ݁ݏ݈ܽݑ݀݅ݏ	݉ݑܵ	ݏ݁ݎܽݑݍܵ ⁄ݏ݁ݎܽݑݍܵ	݉ݑܵ	݈ܽݐ݋ܶ ሻሿ 
݁ݑ݈ܽݒ	௦௧௔௧௜௦௧௜௖௦ݐ • ൌ ሾܲݎ݋ݐܿ݅݀݁ݎ	݁ݑ݈ܸܽ ⁄ݎ݋ݎݎܧ	݀ݎܽ݀݊ܽݐܵ	ݎ݋ݐܿ݅݀݁ݎܲ ሿ 
௥௔௧௜௢ܨ • ൌ ሾܴ݁݃݊݋݅ݏݏ݁ݎ	݊ܽ݁ܯ	ݏ݁ݎܽݑݍܵ	 ⁄ݏ݁ݎܽݑݍܵ	݊ܽ݁ܯ	ݏ݈ܽݑ݀݅ݏܴ݁ ሿ 

Correlation factor R2, sometimes denoted as coefficient of determination, measures the percentage of variation in 
the response variable R explained by the explanatory variable x. Thus, it is an important measure of how well the 
regression model fits the data. The value of R2 is always between zero and one. R2 of unity or, 100%, means all 
variability are grasped while 50% or below, indicates the the predictionmay be poor. Student tstatistics value usually 
measures the influence strength (weight) of an estimated coefficient for a specivic independent variable xi 
through comparing its estimated value to its calculated standard error. For a variable to be significant, tstatistics 
absolute value must not be less than 2.0. As indicated above, Fratio (F-test) indicates the ratio of regression mean 
squares to the residuals mean squares for a set of independent variables and number of data points (degrees of 
freedom). This has a preset threshold value from special statistical tables where greater value is not always a 
judgment of model superiority. 

Further statistical judgment (hypothesis tests) is performed by observing the trends of each of the residuals 
pattern and the normal distribution of the predicted values (Douglas et al., 2012). Based on the selected best 
model, a surface response representation is introduced in terms of 3-dimensional graphs and contours which will 
be demonstrated in the following section. 

4. Effect of SiC Content and Compact Temperature on the Relative Density 

The aforementioned fitting strategy is used to establish a relationship between the relative density (RD), as a 
dependent variable, and AA6061 percent in the alloy and compact temperature (THC) as independent variables 
using the experimental data listed in Table 1. To get rid of computational error arises during fitting process at 
zero SiC%, AA6061 content (Al%) is transformed and coded so that the value is always greater than zero    
(Al% = 100% – SiC%). 

A first-order linear model of form (2) was obtained taking the form: 

 )HC(T 0.13 - (Al%) 132.0903.90RD +=  (5) 
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with R2 of 90% along with tstatistics for bo, b1 and, b2 are 51, 8.7 and, -5.1 respectively together with Fratio value of 
52, the model satisfies the adequacy requirements. Model significance is justified as its residuals are with error 
zero mean, Figure 2a, error normal distribution, Figure 2b, and random distribution, Figures 2c. 

 

  

    a) Residuals zero-mean hypothesis              b) Residuals normal probability hypothesis  

 

c) Random error distribution hypothesis 

Figure 2. Residuals hypothesis tests for the developed model (5) 

 

Figure 3. Comparison of experimental and predicted data for both linear and nonlinear models 
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4. Effect of SiC Content and Temperature on the Hardness 

Same fitting procedures and strategy, which has been explained in the last section, are followed to develop a 
functional interrelationship between the alloy hardness (Vickers Hv) as a dependent variable and both of the 
AA6061 content (Al%) and HC temperature (THC) as influential independent variables.  

Applying a first order linear multiple form (2) didn’t lead to satisfactory general statistical outcome. To resolve 
such an emerged problem, the partial plots are considered to reveal the individual real natural dependence of Hv 
on each of Al% and THC, Figure 7. Hardness-AA6061 content, Figure 7a, exhibits a strong indication of 
second-order (quadratic) trend while an almost linear trend is noticed regarding hardness-temperature 
dependency, Figure 7b. Consequently, a second-order multiple regression of form (3) is proposed. Using 
Stepwise procedure in linear regression routine, which determines the maturity of each individual independent 
variable to be included into the final equation, the following second order linear model is obtained: 

 (Al%) 13.325  )HC(T 0.082 - 2(Al%) 081.0 -17.424HV +=   (7) 

with R2 = 93.7%, t_values= -2.4, -4.3, -4.3 and 3.94 and, F_ratio = 54, the developed model is considered 
adequate and significant to represent the relevant functional interrelationship. 

 

 
a) Quadratic component in the Hv-Al% real relationship 

 

 

 

 

 

 

 

 

 

 

b) Hv-THC relationship 

Figure 7. Partial relation between hardness and each of AA6061 content and temperature 
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Residuals examination shows nothing against its zero mean, normal probability and, randomness distribution, 
Figure 8. 

 

  
   a) Residuals zero-mean hypothesis                  b) Random error distribution hypothesis   

Figure 8. Residuals zero mean, normality, and random distribution of multiple regression model (7) 

 

An equivalent iterative no-linear model is found to have the following structures: 

 -1.348 -0.474602469.152 (Al%)  (T )HCHV =  (8) 

with less correlation factor R2 of 87.7 and, therefore, it is of less predictability than model (7) to predict values 
of Hv as a relation to both AA6061 content (Al%) and HC temperature (THC).This may be observed from Figure 
9 where both models are examined against the experimental values. As shown by Figure 9.b, nonlinear model 
exhibits larger deviations from the experimental values especially for experiments Nos. 1, 2, 3, 13 and 14 with 
overestimation trend. For the rest of cases, an approximate trend is observed for both models credibility. 
However, both models tend to represent the effect of reducing AA6061% or, increasing SiC%, on the hardness of 
the composite. It is obvious that a reinforced disc has a Hv-value higher than the monolithic alloy. However 
compact temperature seems to have a limited influence on the hardness. At higher HC temperature, the grain 
coarsening increases thus lower HV-values result. 

Figure 10 shows a 3-D surface response along with a contour graph of the functional Hv-Al%-THC relationship. 
The effect of HC temperature has a higher impact of the hardness of monolithic material than on the composite. 
As SiC percent increases up to 18 %, hardness increases reaching its ultimate value. Further increase in SiC 
content seems not to affect composite hardness which is slightly and linearly decreases according to a 
temperature-dependent pattern. 

The hardness distribution results showed that good sintering was achieved in the case of AA6061 with or without 
SiC reinforcement even at the 400°C sintering temperature and adhesion between particles increase as the 
sintering temperature increase. When temperature rises, the resulting heat leads to the expansion of an aluminum 
particle making a wider contact with the neighbor particle. As a result, voids between particles are reduced. 
Furthermore, increasing HC temperature up to 500°C usually leads to strain softening due to grain coarsening as 
shown in Figure 6. 

The presence of the SiC increased the composite hardness as they carry some of the load applied to the material 
(load transfer from the matrix to the reinforcement due to the difference in the elastic constant). The increase in 
the Hv-values of the composite can be attributed to the high hardness of the reinforcement. So mainly the 
interaction is either aluminum with aluminum particles which adhere properly or aluminum with SiC in which 
adhesion is enhanced by the presence of SiC particle. 
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the clustering of SiC particles chances which dramatically affect the material properties. This agrees with the 
experimatal observations, Figure 11, where at 20% SiC composite, the hardness drops due to the weak contact 
among SiC particles and, as aresult, higher probability of more than two particle cluster together occurs, Figure 11. 
Additionally, such decrease in hardness of the AA6061- 20% SiCp composite can be attributed to the decreasing of 
the composite compressibility which resulted in increasing voids. The porosity volume fraction dominated the 
behavior of the composite which resulted in deterioration of the overall hardness of the discs. This probably 
reflects mixing difficulties in obtaining a uniform particle distribution at high volume fraction for this process, 
there being a higher number of nucleation sites present for the cracks to form as a result of the particle clusters. 

 

  
Figure 11 SEM Micrograph for AA6061-20% SiC showing the segregation of SiC particles along boundaries and 

triple points, arrows point at SiC particles  

 

5. Conclusions 

Different volume fractions of SiC are added to the monolithic aluminum AA6061. Mixture is hot compacted at 
various HC temperatures and both the relative product density and Vickers hardness are recorded. Linear and 
nonlinear model structures are proposed with sequential preference strategy and robust statistical criterion 
judgment measures of the model predictability and residuals pattern examination. Although, in many current 
cases, linear model structure is sufficient for predictability purposes, the need for nonlinear forms is still required 
to obtain better and more representative respose surface regarding the functional interrelationship considered. 

Increasing SiC content is found to reduce the relative density and to increase the hardness of the composites. 
However, the surface response and the contour graphs interestingly explained that adding greater than (15 to 
20%) SiC% to the composite does not benefit increasing of its hardness. HC temperature showed a negative 
trend (decrease) in each of the composite relative density and its hardness. 
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Appendix A  

 

Table 1. Experimental Date used in the analysis 

No SiC % Temperature ºC  Relative Density RD% Vicker's Hardness Hv AA6061% 

1 0 400 98.5 63 100 

2 0 450 98 61 100 

3 0 500 97.7 60 100 

4 5 400 98.3 78 95 

5 5 450 98 76 95 

6 5 500 97 72 95 

7 10 400 97.5 88 90 

8 10 450 96 82 90 

9 10 500 95.5 77 90 

10 15 400 96.4 96 85 

11 15 450 96 83 85 

12 15 500 95.3 78 85 

13 20 400 96.3 89 80 

14 20 450 96 87 80 

15 20 500 94.8 86 80 
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