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Abstract 
In this investigation, the onset of mode I delamination growth under a standard aircraft spectrum load sequence, 
mini-FALSTAFF truncated to contain only tension-tension fatigue cycles is predicted. The study was carried out 
on a standard Double Cantilever Beam (DCB) test specimen of Uni Directional (UD) layup Carbon Fiber 
Composite (CFC) IMA/M21. Finite element modeling and analysis was carried out using ABAQUS standard to 
determine Strain Energy Release Rate (SERR) by Virtual Crack Closure Technique (VCCT). Both two 
dimensional (2D) and three dimensional (3D) models were studied. Using the FE analysis results, an empirical 
equation was derived for SERR (G) and load (P) relationship. Further, the load cycles in the spectrum sequence 
were rain flow counted to separate individual cycles. For each of the counted cycle, the SERR was obtained and 
corresponding N onset for that cycle was estimated from the Constant Onset Life Diagram (COLD) of the material. 
Linear damage accumulation law was used to predict the number of spectrum load blocks required for onset of 
mode I delamination growth. The prediction was carried out for various reference loads (P ref), and the 
corresponding reference SERR (G ref) of the spectrum sequence. Predicted results show that decreasing the 
reference stress increases the mode I delamination onset life under spectrum loads.  
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1. Introduction 
Carbon fiber reinforced polymer matrix composites are widely used in airframe structures. Mainly due to their 
high specific strength and stiffness, they are fast replacing metallic materials in primary and secondary structures. 
The structural composites are subjected to various types of static and variable amplitude fatigue loads in service. 
For a durable and safe structure, in addition to having high static strength and stiffness, the composites should 
possess high fatigue resistance and fracture toughness. 

The fatigue properties of polymer composites have been studied by various investigators and the 
micro-mechanisms based observations on progressive failure mechanism in CFC has been well established 
(Talreja, 2000). The major fatigue damage mechanisms in composites are (i) matrix cracking (ii) debond or 
disbond (iii) delamination, and (iv) fiber breaks (Jones, 1998). These damage mechanisms have been observed in 
composites to occur either independently or as a consequence of evolution and growth of other type of damage 
during fatigue loads. 

Damage tolerance evaluation of composites requires the knowledge of the behavior of micro-structural damages 
under external loads on the structures in service. Delamination, being one of the major types of damage in 
polymer composites, may initiate either during the fabrication or due to low/high velocity impact in service. It 
has been observed that delamination subjected to fatigue loads requires significant number of load cycles for 
onset of delamination growth (Brunner et al., 2008). This depends on various factors including the applied stress 
level and mode of loading. Regardless of the method by which delamination is created, it has two phases i.e., 
onset and growth. Hence, the knowledge of the onset and growth behavior of such damage under service loads 
would assist in safe design of composite structures. Knowledge of delamination onset provides significant inputs 
on the damage tolerant behaviour of composites.  
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Several studies on the delamination onset and growth have been carried out both by using finite element analysis 
and laboratory experiments. Maillet et al. (2013) studied delamination onset and observed that increasing the 
frequency from 10 Hz to 100 Hz decreased the onset life at R = 0.1 by over an order of magnitude. Argüelles et 
al. (2008) studied effect of R and observed that increasing the R from 0.2 to 0.5 increases onset life and also 
increases onset threshold. The effect of pre-crack shape such as sharp or blunt notch is investigated in mode I 
and mode II conditions (Stevanovic et al., 2000). The variation of specimen thickness from 3.9 to 19 mm in a 
GFRP specimen has been shown to have no significant effect on the onset behavior (Behzad et al., 2013). Effects 
of various parameters such as frequency, load ratio, notch shape etc. and various methods of modeling have been 
used to investigate the fatigue behavior of delamination (Abrate, 1998). The VCCT is generally used for the 
evaluation SERR in finite element analyses. Various numerical analyses have been performed by using this 
technique, many of them dealing with delamination growth initiations (Mukherjee et al., 1994) and others with 
growth evolution (Shen et al., 2001).  

It may be noted that most of these studies have been limited to constant amplitude fatigue. Considering that the 
service loads are mostly spectrum in nature, it is necessary to understand the delamination behavior under 
spectrum load sequence and such efforts have been found to be limited in the past. Thus, the main aim of this 
study was finite element modeling and analysis of a standard DCB specimen and predict the onset of mode I 
delamination growth in a carbon fiber composite under a truncated standard spectrum load sequence. 

2. Finite Element Analysis 
A standard DCB specimen of a twenty layered unidirectional IMA/M21 CFC specimen was considered for the 
study. Both 2D and 3D models were created for the study to determine the SERR. A schematic diagram of the 
DCB specimen and the mechanical properties of the composite used are shown in Figure 1 and Table 1, 
respectively.  

 

 

Figure 1. Schematic diagram showing the dimensions of the double cantilever beam (DCB) specimen 

 

Table 1. Mechanical properties of the CFC investigated 
_______________________________________________________________________________ 

Modulus(GPa)    E11 = 128 
E22 = 10 
E33 = 10 

_______________________________________________________________________________ 

Strength(MPa)    σUTS=920 
σUCS=640 

_______________________________________________________________________________ 

Toughness (J/m2)   GIC = 212 
GIIC = 480 
GIIIC = 480 

_______________________________________________________________________________ 

Poisson's ratio    v12 = 0.31 
v23 = 0.52 
v13 = 0.31 

_______________________________________________________________________________ 
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Shear (GPa)    G12 = 4.80 
G23 = 4.80 
G13 = 3.20 

_______________________________________________________________________________ 

 

2.1 Two-Dimensional Model 

A typical 2D finite element model of DCB specimen is shown in Figure 2. The specimen was modeled with solid 
plain strain elements (CPE4I) in ABAQUS standard 6.11 (Abaqus Analysis Users Manual, 2011). The DCB 
specimen was modeled with six elements through the specimen thickness (2h). Along the length of the specimen 
(2L), from the delamination front, mesh was refined at the center with an elemental length of 0.50 mm otherwise 
the element size was kept approximately 2mm. Across the width (B), uniform mesh was used to avoid potential 
problems at the transition between a coarse and fine mesh (Krueger, 2007) (Krueger, 2008). The plane of the 
delamination, was modeled as a discrete discontinuity in the center of the specimen i.e., between the tenth and 
eleventh layer (Abaqus Analysis Users Manual, 2011). For the analysis with ABAQUS standard, the models 
were created as separate meshes for the upper and lower part of the specimen with identical nodal point 
coordinates in the plane of delamination. Two surfaces (top and bottom surface) were defined to identify the 
contact area in the plane of delamination as shown in Figure 2. Additionally, a node set was created to define the 
contact (bonded nodes) region. The VCCT approach was used to calculate SERR. 

 

 

Figure 2. Two dimensional finite element model of a DCB specimen 

 

2.2 Three-Dimensional Model 

A typical 3D finite element model of DCB specimen is shown in Figure 3. The specimen was modeled with solid 
brick elements (C3D8I), in ABAQUS standard 6.11 (Abaqus Analysis Users Manual, 2011). Through the 
specimen thickness (2h), four elements were used. Along the length of the specimen the mesh was refined after 
the delamination front with elemental length of 0.50 mm and at other places the elemental length of 2mm was 
maintained. The plane of the delamination, was modeled in the similar way as explained in the two dimensional 
modeling in the previous paragraph. 

 

 

Figure 3. Three dimensional finite element model of a DCB specimen 

 

3. Spectrum Load Sequence 
A standard spectrum load sequence, known as Fighter Aircraft Loading STAndard For Fatigue evaluation; 
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mini-FALSTAFF (Van Dijk et al., 1975) was used in the present study. A short version of standard FALSTAFF 
load spectrum, which was a standardized variable-amplitude test load sequence developed for the fatigue 
analysis of materials used for fighter aircrafts is shown in Figure 4a. Y -axis is a normalized value of load or 
stress and is plotted against peak/trough points of load sequence. One block of this load sequence consists of 
18,012 reversals at 32 different stress levels and represents loading equivalent of 200 flights. For the purpose of 
present investigation, the load sequence was truncated below zero so that it has only positive loads. All the 
negative values were set to zero and the resulting truncated mini-FALSTAFF load sequence is shown in Figure 
4b. The onset of delamination was predicted under this load sequence. The actual load sequence was obtained by 
multiplying with a constant reference load value, Pref for all the peak/trough points in the entire block. 

 

 

(a) Original mini-FALSTAFF load sequence (Van Dijk et al., 1975) 

 
(b) Truncated mini-FALSTAFF load sequence 

Figure 4. Standard spectrum load sequence used in this investigation 

 

4. Onset Life Prediction 
The delamination onset under truncated mini-FALSTAFF load sequence has been predicted using the following 
procedure schematically shown in Figure 5.  
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Figure 5. Flow chart showing the methodology used for onset life prediction 

 

5. Results and Discussion 
In order to derive the SERR-Load (G max- P) relation for the material, the SERR was computed from FE analysis 
of DCB specimen for various loads. The maximum load value used was about 95% of the load corresponding to 
GIC of the material. The variation of G max as a function of P is shown in Figure 6. 3D model results were closer 
than 2D results, when compared to analytical calculations. Hence, the data from 3D model was least square fit to 
obtain the G max - P relation as 

G = 0.074 P2 + 0.022 P - 0.088                              (1) 
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Figure 6. The G - P relationship derived for IMA/M21 Carbon Fiber Composite- DCB specimen 

 

The onset of mode I delamination under truncated mini-FALSTAFF load sequence was predicted at various 
reference stresses following the procedure explained earlier. The COLD for the IMA/M21 composite material 
(Jagannathan et al., 2013) is shown in Figure 7. COLD is a two dimensional plot of Gamp vs Gmean. The radial 
lines emanating from origin represents the specific stress ratio (R). For any given rain flow counted cycle the 
onset life can be obtained from this figure. The rain flow-counted load cycles will be of various load amplitudes 
and mean stresses, it is necessary to interpolate and determine Nonset for all these load cycles using the COLD. 
Various interpolation techniques have been developed for determination of Nf from the Constant Life Diagram 
(CLD) for any given load cycle (Post et al., 2008; Vassilopoulos et al., 2010). However, Vasilopolous et al. (2010) 
have shown that the simple piecewise linear formulation compares favourably to other more sophisticated and 
complicated schemes. They also observed that, for most of the cases studied, the S-N predictions based on the 
piecewise linear CLD are the most accurate ones. Hence, the piecewise linear technique was employed for 
interpolation during this investigation. Several different damage accumulation models have been proposed for 
fatigue life estimation in composites (Post et al., 2008). In the present investigation, the simple Palmgren-Miner 
(PM) (Vasilopolous et al., 2010) linear damage accumulation mode was used   

    D = Σ (ni / Ni onset)                                      (2) 

Where D is the damage fraction, ni is the cycle count and Ni onset is the cycles to failure for a given load cycle 
amplitude. From the COLD diagram, the number of spectrum load blocks required for onset was predicted 
following the procedure shown in Figure 5 and is plotted in Figure 8. As expected, decreasing the reference 
stress, increase the required number of load blocks for the delamination onset.  
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Figure 7. Constant onset life diagram (COLD) of IMA/M21 composite (Jagannath et al., 2013) 

 

 

Figure 8. Predicted onset life for Mode I delamination under spectrum load sequence 

 

6. Conclusions 
An attempt is made to predict the onset of mode I delamination growth in a DCB specimen of a carbon fiber 
composite under a tensile spectrum load sequence. The procedure involved estimation of driving force, SERR 
from FE analysis for each of the rain flow counted fatigue cycles and then estimating the fatigue damage per 
cycle to determine the onset life. The prediction is made for a truncated mini-FALSTAFF load sequence and it is 
observed that decreasing the reference load, increase the onset life.  
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