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Abstract 
Organic thin film solar cells show generally lower power conversion efficiencies than those of the solar cells 
based on inorganic active materials. To solve the problem diverse research works have been tried: development 
of new organic semiconductors; modification of internal structure of active layers by means of organic solvent; 
design and fabrication of vertical device structure; introduction of buffer layer on the side of cathode electrode. 
Nevertheless, the buffer layer on the side of anode has not been fully optimized. This study is focused on the 
representative anode-side-buffer layer of Poly(3,4-ethylenedioxythiophene)(PEDOT): poly(styrenesulfonate) 
(PSS). PEDOT:PSS is an excellent conducting polymer material with favorably high optical transparency for 
almost entire range of visible wavelength, which is widely used for organic thin film solar cells as well as for 
other organic material based electronic devices such as organic light emitting diodes. Aiming for further 
performance enhancement of organic thin film solar cell device, an optimized condition was studied on the 
PEDOT:PSS by means of the thickness control and modification of the internal structure via addition of different 
organic solvents in mixture solution for thin film process.  

Keywords: organic thin film solar cell, hole transfer layer, PEDOT:PSS, bulk heterojunction, PCDTBT:PC71BM 

1. Introduction 
Today the exhaustion of energy sources is the most critical issue for modern civilization, which is mainly due to 
drastic decrease of the remaining fossil fuel based energy resources by continuous and increasing utilization for 
the conventional electric power generation system. Moreover, environment pollution is another severe problem 
contributed by carbon dioxide emission from the thermoelectric power generation and radioactive wastes from 
the nuclear power generation. Focused on these problems of environment and being exhausted energy resources, 
an environment-friendly generation technology of electricity has been developed since decades, and solar-energy 
based solar cells have attracted much attention. Enormous amount of the solar light is emanated to the earth and 
it could be utilized to generate electricity without emission of harmful wastes, and therefore, the solar cell is 
regarded as an environment-friendly energy generation technology. Nevertheless, current supply price of the 
electricity via Si-based inorganic solar cell is still relatively expensive (e.g., 30 Yen/kWh in Japan) compared to 
that (e.g., 22 Yen/kWh in Japan) of the electricity supplied by conventional electric power company. Therefore, 
price cutting for consumer electricity by reduced production cost would be a critical issue for popularization of 
the environment-friendly electricity based on solar cell technology. Topics of almost all the solar cell researches 
are nowadays focused on the low-cost generation of electric power.  

Recently, organic thin film solar cell (OTFSC) based on organic semiconductor materials have attracted much 
attention to solve the above-mentioned problems of environment-friendly and low-cost power generation. Easier 
and low-cost fabrication technologies distinguished from those of conventional inorganic counterparts would be 
a typical advantage for the OTFSCs (Pivrikas, Neugebauer, & Sariciftci, 2011). In addition, light-weight 
originated from the organic material itself, flexibility, and three-dimensional layout could be other merits for 
OTFCs. If the OTFSCs combined with such advantages could be realized, then wearable or portable power 
source units could be popularized, and the place for its utilization could be much extended: although the entire 
amount of the solar energy emitted to the earth is huge enough, but it is strictly limited to the size of being 
emanated area (e.g., 1.37 kW/m2). An accelerated supply of the solar light power generation could only be 
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Figure 8. AFM images for ITO and PEDOT:PSS: (a) bare ITO; (b) PEDOT:PSS (5000 rpm) 

 

Deeper insight of the thickness-effect was studied by investigation of the light absorbance characteristic (UV-vis) 
and surface morphology (AFM) on the three varieties of PEDOT:PSS. Figure 7 shows the light absorbance 
characteristic of the PEDOT:PSS layers analyzed by UV-vis spectrophotometer. Figure 8 shows an image of 
surface morphology of the PEDOT:PSS prepared by a rotation speed of 5000 rpm compared with that of the ITO 
anode used for fabrication of organic thin film solar cell device. Difference in surface roughness was obtained 
from the AFM analysis for the ITO and PEDOT:PSS (5000 rpm; 58 nm), and root-mean-square (rms) and 
peak-to-valley (P-V) values are summarized in Table 3. The light absorbance characteristic curves (Figure 7) 
reveal that there is no distinctive variation of light-absorption-peak and light-absorption-wavelength for ITO and 
PEDOT:PSS layers. It can be thought that the PEDOT:PSS thin films have fairly high optical transmittance 
characteristic in visible wavelength range. The surface roughness data (Table 3) indicate that the PEDOT:PSS 
resulted in drastic decrease of surface roughness for both of rms and P-V values. The decreased surface 
roughness could be contributed to improvement of surface interface with active layers. The increased Jsc of the 
organic thin film solar cell device (Table 1) might be originated by the enhanced charge carrier extraction due to 
improved surface interface (Gholamkhass & Servati, 2013). Considering the above mentioned factors, an 
optimized process condition was decided for the preparation of PEDOT:PSS by spin coating technique: rotation 
speed of 5000 rpm; rotation time of 30 s.   

 

Table 3. Surface roughness of ITO and PEDOT:PSS (5000 rpm) on ITO 

Sample RMS [nm] P-V [nm] 

bare ITO 3.88 3.17 

PEDOT:PSS (5000 rpm) 0.97 7.13 

 

 
Figure 9. J-V characteristics of the organic thin film solar cell devices with three different PEDOT:PSS as hole 
transfer layer: (1) pristine PEDOT:PSS; (2) PEDOT:PSS added with EG; (3) PEDOT:PSS added with DMSO 
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3.2 Modification of the Property of PEDOT:PSS by Two Different Additives 

Further improvement of hole transport property of the PEDOT:PSS was tried by adding two different additives 
in the precursor mixture solution for preparation of the hole transfer layer of PEDOT:PSS by spin coating 
process (Xiao, Cui, Anderegg, Shinar, & Shinar, 2011; Ochiai, Kumar, Santhakumar, & Shin, 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Dark current characteristic curves the organic thin film solar cell devices with three different 
PEDOT:PSS as hole transfer layer: (1) pristine PEDOT:PSS; (2) PEDOT:PSS added with EG; (3) PEDOT:PSS 

added with DMSO 

 

Figure 9 shows J-V characteristic curves of three different organic thin film solar cell devices: (1) pristine 
PEDOT:PSS; (2) PEDOT:PSS added with EG; (3) PEDOT:PSS added with DMSO. Performance parameters 
obtained from the J-V characteristic curve are summarized in Table 4. The two OSC devices with PEDOT:PSS 
with additive reveal distinctively higher Jsc than that with pristine PEDOT:PSS, while they show smaller FF 
values than that with pristine PEDOT:PSS. Despite the highest Jsc of 9.67 mA/cm2, the OSC device with 
PEDOT:PSS (DMSO) reveal a drastic decrease of FF value. Consequently, the OSC device with PEDOT:PSS 
(DMSO) reveals rather smaller increase of PCE ( = 3.82%). On the other hand, the OSC device with 
PEDOT:PSS (EG) reveals distinctively improved PCE ( = 4.07%) due to combined effect of distinctively 
enhanced Jsc (9.50 mA/cm2) and suppressed decrease of FF. Dark current characteristics of the three different 
OSC devices are shown in Figure 10: (a) rectification characteristic; (b) semi-logarithmic float. Obvious increase 
of dark current density can be observed for the two OSC devices with PEDOT:PSS (EG) or PEDOT:PSS 
(DMSO). Regarding the increase of photo-induced current and dark current, it is clear that conductivity of the 
PEDOT:PSS with additive has been improved, which, in turn, resulted in increase of JSC. Slope of the curve at 
working point shown in Figure 10(b) represents rectification characteristic of the OSC device, and it could be 
partially related to FF at light absorption. The OSC with PEDOT:PSS (DMSO)shows distinctively mitigated 
slope relative to that of the OSC with pristine PEDOT:PSS. Onthe other hand, the OSC device with PEDOT:PSS 
(EG) reveal moderate relaxation of slope, which corresponds to the suppressed decrease of FF given in Table 4. 

 

Table 4. Performance parameters of the organic thin film solar cell devices with three different PEDOT:PSS as 
hole transfer layer: (1) pristine PEDOT:PSS; (2) PEDOT:PSS added with EG; (3) PEDOT:PSS added with 
DMSO  

Buffer layer Voc [V] Jsc [mA/cm2] FF PCE () [%] 

PEDOT:PSS 0.88 7.39 0.51 3.31 

PEDOT:PSS (EG) 0.87 9.50 0.49 4.07 

PEDOT:PSS (DMSO) 0.88 9.67 0.45 3.82 

 

To clarify the effect of the additive of EG or DMSO in PEDOT:PSS on the characteristic of the resulting OSC 
device, surface morphology (AFM), light absorption characteristic (UV-vis spectrophotometer), and molecular 
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orientation (XRD) of the PEDOT:PSS layers were investigated. Figure 11 shows images of surface morphology 
analyzed by AFM. Surface roughness parameters obtained from the AFM analysis are summarized in Table 5: 
rms [nm]; P-V [nm].  

 

 

 

 

 

 

 

 

 

 

Figure 11. AFM images for three different PEDOT:PSS layers: (a) pristine PEDOT:PSS; (b) PEDOT:PSS 
(DMSO); (c) PEDOT:PSS (EG) 

 

Table 5. Surface roughness parameters obtained from AFM analysis for three different PEDOT:PSS layers: 
pristine PEDOT:PSS; PEDOT:PSS (EG); PEDOT:PSS (DMSO) 

Layer RMS [nm] P-V [nm] 

PEDOT:PSS 0.97 7.13 

PEDOT:PSS (EG) 1.11 11.89 

PEDOT:PSS (DMSO) 1.59 18.40 

 

The pristine PEDOT:PSS reveals relatively superior surface smoothness than those of the PEDOT:PSS with 
additives, which is originated that PEDOT:PSS is a conducting polymer with a nature of 
colloid-dispersive-molecules. The PEDOT:PSS with additive of DMSO shows grains with elongated shape on 
the surface, which indicates that DMSO effected to promote a condensation of colloid particles. On the other 
hand, the PEDOT:PSS with additive of EG shows no particles on the surface, which implies that EG did not 
effect to hinder a condensation of particles of PEDOT:PSS but rather to be formed as needle-shapes 
(Nano-morphology). Although the PEDOT:PSS with additive of EG reveals clearly increased surface roughness 
(rms and P-V value) compared to that of the pristine PEDOT:PSS, such a change of the surface morphology 
might be contributed to modification of internal structure of active layers for improved power conversion 
efficiency: increase of FF and parallel resistance; decrease of serial resistance.  

 

Table 6. Thickness of the three different PEDOT:PSS layers: pristine PEDOT:PSS; PEDOT:PSS (EG); 
PEDOT:PSS (DMSO) 

Layer Thickness [nm] 

PEDOT:PSS 58 

PEDOT:PSS (EG) 28 

PEDOT:PSS (DMSO) 39 

 

Thickness of the PEDOT:PSS layers are given in Table 6. Thicknesses of the PEDOT:PSS with additives are 
thinner than that of the pristine PEDOT:PSS, which is possibly due to higher melting point of the organic solvent 
including the additives of EG (Tm = 189 C) or DMSO (Tm = 197 C): drying after spin casting might be done 
slowly. Although too thin layer of PEDOT:PSS could not be worked effectively as buffer layer, the PEDOT:PSS 
with additive of EG revealed suppressed decrease of FF (Table 4). That might be closely related to the surface 
morphology analyzed by AFM, so that increase of specific surface area due to additive effected to suppress the 
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