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Abstract 

Boron-doped single crystal diamond films were grown homoepitaxially on synthetic (100) Type Ib diamond 
substrates using microwave plasma assisted chemical vapor deposition. A modification in surface morphology of 
the film with increasing boron concentration in the plasma has been observed using atomic force microscopy. 
Use of nitrogen during boron doping has been found to improve the surface morphology and the growth rate of 
films but it lowers the electrical conductivity of the film. The Raman spectra indicated a zone center optical 
phonon mode along with a few additional bands at the lower wavenumber regions. The change in the peak 
profile of the zone center optical phonon mode and its downshift were observed with the increasing boron 
content in the film. However, sharpening and upshift of Raman line was observed in the film that was grown in 
presence of nitrogen along with diborane in process gas. 
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1. Introduction 

Doped diamond films are of interest because of their potential use in the semiconductor industry as well as other 
applications involving their unique thermal, mechanical and chemical properties. Doping of diamond with boron 
during its growth process is a widely investigated field of research (Gheeraert et al., 1998; Issaoui et al., 2010; 
Ramamurti et al., 2009; Teraji et al., 2004). Boron provides diamond a wide range of dopant concentrations (1016 
up to 1021 atom cm-3) from a wide band gap semiconductor to a metal and to a superconductor (Bustarret et al., 
2008; Kraft, 2007; Mavrin et al., 2008). However, the large scale production of doped diamond film can be 
possible only if high growth rate and high crystalline quality can be achieved simultaneously. It has been 
reported that the use of nitrogen during deposition improves the growth rate of diamond films (Hemley et al., 
2005; Horino et al., 2006; Theije et al., 2000). The catalytic effect of parts per million nitrogen impurity on 
homoepitaxial diamond growth has been extensively investigated and exploited in the high growth rate 
experiments. Similarly, boron doped homoepitaxial diamond growth has been investigated for the 
semiconducting diamond studies. In this paper, we have investigated simultaneous effects of nitrogen and boron 
in the homoepitaxial diamond growth and shown that an optimal growth conditions with low surface roughness 
and high growth rate can be achieved in doped diamond. In particular, we have investigated the effect of 
nitrogen on growth morphology and growth rate of diamond films during boron doping and also studied their 
electrical conductivity as a function of temperature. 

2. Method 

Synthetic (100) oriented Type Ib diamond substrates (size 3.5×3.5×1.5 mm3) were chosen as seed crystals for 
this study. The diamond seed crystals cleaned in acetone were inserted into 2.45 GHz microwave reactor 
chemical vapor deposition (CVD) chamber. The microwave power was adjusted to 1.4–1.5 kW to set a 
deposition temperature of 1100 ± 20 oC at a chamber pressure of 100 Torr. The 10% B2H6 diluted in H2 with 6% 
of CH4/H2 mixture was used for the deposition with a total of 400 standard cubic centimeters per minute (sccm) 
of gas. The details of deposition parameters and growth rate of samples have been summarized in Table 1. Each 
sample was ultrasonicated in acetone after deposition to remove any residual boron-carbon soot. The quality and 
surface morphology of as deposited films were determined by Raman spectroscopy, X-ray rocking curve 
experiment, optical microscopy (OM) and atomic force microscopy (AFM). Raman spectra were recorded using 
a 514 nm laser excitation wavelength at room temperature. In the X-ray rocking curve experiment, omega scans 
were obtained by rotating sample with 0.02o angular step with a detector fixed at 2θ position corresponding to 
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(400) Bragg diffraction peak. Type of doping, doping level and electrical conductivity was determined by room 
temperature Hall measurement and four point probe measurements respectively. In a four point probe 
measurement, the samples were first heated to 600 K and the electrical resistance was measured during the cool 
down process. This procedure was followed to remove any adsorbates from the diamond films that could have 
arisen from the CVD shut down procedure in hydrogen atmosphere. The I-V characteristics were maintained in 
the linear regime during experiment by limiting the current supply to 1 mA at zero–magnetic field. The value of 
sheet resistance was measured in magnetic field of 0.55 Tesla. The measurements were taken for both positive 
and negative current with both polarities of magnetic field. 

 

Table 1. Growth conditions, Growth rate [r] and bulk carrier concentrations [η] of grown diamond films. 

Sample B2H6 

(ppm)

[B/C]gas

(ppm)

N2 

(ppm)

[r] 

(µm/hr)

[η] 

(cm-3) 

HD2 

(BD5) 

(BD6) 

(BD7) 

(BD8) 

(BD9) 

0 

150 

250 

500 

500 

500 

0 

5000 

8000 

16,000

16,000

16,000

0 

0 

0 

0 

1000

2000

10 

6 

5 

4 

6 

12 

5.5×1017

1.0×1019

6.6×1019

2.3×1020

3.9×1019

- 

 

3. Results and Discussion 

In order to study the effect of nitrogen on growth morphology of boron doped diamond, a few samples were 
grown at varying diborane and nitrogen contents in the feed gas. The deposition time for diamond film growth 
has been set for 5 hours. After doping the color of seed had been found to change from yellowish to pale blue, 
then to dark blue and finally opaque to visible light depending upon the increasing boron concentration in the 
films. Optical transmission spectra of the samples in the visible range were taken in order to measure the effect 
of doping on the color of the films as shown in Figure 1. The spectra indicate small downshift of peak and 
decrease in intensity as the doping level of the films increases. The peak of low doped film (sample BD5) 
appeared at 454 nm in the optical transmission spectra (Figure 1). The surface morphology of films was analysed 
using OM and AFM. The AFM images taken over scanned areas of 10 × 10 µm2 are shown in Figure 2 (a, b and 
c). The untreated substrate samples (seeds) are macroscopically flat. The OM image of undoped diamond film 
(HD2) shows some hillocks on its surface as shown in Figure 2(a). The growth rate and surface morphology are 
observed to be dependent on B/C ratio in the gas phase. Increasing B/C ratio up to a certain limit in feed gas 
decreases the growth rate as well as the surface roughness. The surface smoothness of the film was observed to 
be improving with an additional supply of 1000 ppm of nitrogen in feed gas as shown by a comparison of sample 
BD7 (16,000 ppm of B2H6 and no N2) and BD8 (addition of 1000 ppm of N2) in Figure 2(b) and Figure 2(c). 
However, hillocks were observed on the surface of film with the addition of 2000 ppm of nitrogen in BD9 as 
shown in Figure 2(c). On contrary the growth rate of diamond films were improved by a factor two in 
comparision to that using 1000 ppm of nitrogen as shown in Table 1 of samples BD8 and BD9. The root mean 
square (rms) roughness of the samples measured from contact mode AFM images of the surface are listed in 
parenthesis for each sample Seed (1.6 nm), HD2 (2 nm), BD5 (4 nm), BD6 (1.6 nm), BD7 (1 nm), BD8 (0.8 nm) 
and BD9 (0.9 nm) and was found to decrease with increasing boron concentration. Introduction of 1000 ppm of 
nitrogen during boron doping improved the surface morphology and increased the growth rate of film (sample 
BD8). However, when higher amount of nitrogen (2000 ppm) along with the same B/C ratio (16,000 ppm) was 
used, the film growth rate was shown to increase by twice than that using 1000 ppm of nitrogen with the cost of 
surface quality degradation. When very high B/C ratio (25,000 ppm) or very high methane 10% of total feed gas 
was introduced in the deposition chamber, amorphous carbon and polycrystalline diamond film grew on the seed 
crystal. Hence, it can be argued that an optimal amount of diborane and nitrogen is needed to improve the 
structural quality and the growth rate of boron doped single crystal diamond. The quality of the epitaxial 
diamond film determined using X-ray rocking curve and Raman spectroscopy is shown in Figure 3. A single 
intense peak of (400) was observed in the rocking curve experiment from 30 through 62o omega scans indicates 
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BD8

   

BD8

1 mm  

BD9

   

BD9

1 mm
 

Figure 2(c). Atomic Force Microscopy (AFM-left) and Optical Microscopy (OM-right) images of as deposited 
boron-doped diamond films BD8 and BD9 

 

 
Figure 3. Raman spectra of Seed, undoped (HD2) and doped (BD5, BD6, BD7 and BD8) diamond films. The 

spectra are offset for clarity. The insert (a) and (b) provide peak location of Raman spectrum and Full Width at 
Half Maximum (FWHM) for the zone center Raman mode. The insert (c) shows the X-ray rocking curve for 

sample BD7 
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Figure 4. Four point probe measurement of electrical conductivity of boron doped diamond films BD6, BD7 and 

BD8 as a function of temperature. The observed transition temperature decreases with the increasing boron 
content of the film 

 

4. Conclusions 

Boron-doped single crystal diamonds have been synthesized using MPCVD method and effect of nitrogen 
during the growth process of boron-doped diamond has also been studied. The deposition shows that the color of 
seed crystal is being changed from yellow to pale blue then to dark blue as the boron concentration in the film is 
increased. Supply of 1000 ppm of nitrogen in feed gas improves the surface morphology and increases the 
growth rate of diamond deposition. However, when 2000 ppm of nitrogen was introduced in feed gas, growth 
rate was double than that using 1000 ppm of nitrogen with some non-epitaxial growth on the surface of doped 
film. Hence, it can be argued that an optimal amount of diborane and nitrogen is needed to improve the structural 
quality and the growth rate of boron doped single crystal diamond. A few additional bands along with first order 
Raman line were visible in the lower wavenumber region in Raman spectrum of boron-doped diamond films. 
The downshift and broadening of Raman line was also observed with increasing boron content in the crystal. The 
decrease in width and upward shift of Raman line was also observed in the samples that grew in presence of 
nitrogen. The growth rate of diamond was observed to be decreasing with increasing boron content in the film. 
Temperature dependent resistivity measurements showed that the current conduction mechanism depends upon 
the doping level and obeys semiconductor behaviour in the experimental temperature range of 140 K to 600 K. 
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