
Journal of Materials Science Research; Vol. 2, No. 2; 2013 
ISSN 1927-0585   E-ISSN 1927-0593 

Published by Canadian Center of Science and Education 

1 
 

Drying of Clay Slabs during the Falling Rate Period: Optimization and 
Simulation of the Process Using Diffusion Models 

Wilton Pereira da Silva1, Cleide Maria Diniz Pereira da Silva e Silva1, Laerson Duarte da Silva1 & Vera Solange 
de Oliveira Farias1 

1 Federal University of Campina Grande, Paraiba, Brazil 

Correspondence: Wilton Pereira da Silva, Federal University of Campina Grande, Paraiba, Brazil. Tel: 
55-83-3333-2962. E-mail: wiltonps@uol.com.br  

 

Received: December 17, 2012   Accepted: January 15, 2013   Online Published: January 28, 2013 

doi:10.5539/jmsr.v2n2p1          URL: http://dx.doi.org/10.5539/jmsr.v2n2p1 

 

Abstract 
Mass transfer in clay slabs during drying is described using diffusion models with equilibrium (model 1) and 
convective (model 2) boundary conditions. Drying experiments using hot air were performed for clay slabs with 
initial moisture content of 0.11 (dry basis, db) at 50, 60, 70, 80 and 90 °C. For this initial moisture content, 
drying occurred in falling rate. For the slabs, the one-dimensional solutions referring to models 1 and 2 were 
coupled to optimizers to determine the process parameters in each temperature. Thus, equations can be obtained 
to express these parameters as a function of the drying air temperature. The analyses of drying processes have 
indicated that there is a good agreement between the experimental results and the corresponding simulations 
using the model 2, for all temperatures. 

Keywords: analytical solution, boundary conditions, one-dimensional models, drying kinetics, moisture 
distribution 

 

Nomenclature: 
,a b   Fitting parameters 

nA   Coefficients of the analytical solutions dependent on the position  

nB   Coefficients of the analytical solutions for the average value 

Bi   Mass transfer Biot number (dimensionless) 

D   Effective mass diffusivity (m2 s-1) 

aE   Activation energy (J mol-1) 

h   Convective mass transfer coefficient (m s-1) 

xL   Thickness of the slabs (m) 

M  Moisture content ( -1kg kg , db) 

Mexp  Moisture content obtained experimentally ( -1kg kg , db) 

Mana  Moisture content obtained analytically ( -1kg kg , db) 

n   Index of summations 

R   Universal gas constant (J mol-1 K-1) 
2R   Determination coefficient (dimensionless) 

t   Time (s) 

T   Temperature (oC) 

x   Position in Cartesian coordinates (m) 
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Greek symbols: 
2   Chi-square or objective function 

n   Roots of the characteristic equation for boundary condition of the first and third kind 
2
i1 /   Statistical weight of the ith experimental point 

 

1. Introduction 
In order to describe a drying process, a mathematical model is normally used. For ceramic products, for instance, 
several drying models are available in the literature. Among these models the following can be cited: empirical 
models (Sander et al., 2003); semi-empirical models (Sander et al., 2003); models based on Darcy law (Chemkhi 
& Zagrouba, 2008; Mihoub & Bellagi, 2012) and diffusion models (Sander et al., 2003; Chemkhi & Zagrouba, 
2005; Farias et al., 2012; Silva et al., 2012a, 2012b). Some of these models will be highlighted in the following. 

Sander et al. (2003) studied three drying models for clay slabs: two empirical models and one diffusion model 
with constant diffusivity. The initial moisture content ranged from 0.22 to 0.28 (db). Drying experiments were 
carried out at several temperatures (from 30 to 70 °C); and it was observed two periods for the process. In this 
work, the liquid diffusion model was applied to describe the whole process. According to the authors, a good 
agreement between experimental results and the results predicted by the diffusion model has been found. On the 
other hand, Silva et al. (2012a) described the drying process of roof tiles, shaped from red clay, using diffusion 
models. In their study, the researchers used the first 25 terms of the series that represents the analytical solution 
of the diffusion equation with boundary condition of the first and third kind. To determine the process 
parameters, the authors coupled the analytical solutions to optimizers based on the inverse method. They 
concluded that the boundary condition of the third kind is better than the first kind in the description of roof tiles 
drying. On the other hand, the researchers pointed out the limitations of the models, which use constant process 
parameters, and suggested a numerical solution for a more rigorous study. 

Silva et al. (2012b) described water migration in clay slabs during drying, emphasizing two distinct periods: 
constant and falling rate. For the first period, the process was described by an empirical equation and, for the 
second one, drying was described through the solution of the diffusion equation with boundary condition of the 
third kind. To eliminate some restrictions found in the literature, a three-dimensional numerical approach was 
used to describe the process. This diffusion model enables to eliminate some common restrictions such as 
constant process parameters and representation one-dimensional of the geometry, among others. However, the 
time spent in optimizations processes can be considered very high. In this context, the proposal of a quick model 
to describe drying of clay slabs deserves consideration. 

The main objective of this article is to describe drying of clay slabs during the falling rate period, using 
one-dimensional diffusion models, including optimization and simulation of the process. To this end, optimizers 
were coupled to the one-dimensional analytical solutions with boundary condition of the first and third kind. 
Then, using experimental datasets, the process parameters were obtained and the results were analyzed. 

2. Material and Methods 
2.1 Diffusion Equation 

As is known, the diffusion equation can be used to study drying of clay materials during the falling period (Silva 
et al., 2012b). For infinite slabs, the one-dimensional diffusion equation is written as (Luikov, 1968; Crank, 
1992) 

M MD
t x x

 
 
 

    
,                              (1) 

where M is the moisture content in dry basis (db); D is the effective mass diffusivity (m2·s-1); t is the time (s) and 
x is the Cartesian coordinate of position (m). Figure 1 presents an infinite slab, highlighting its thickness Lx in the 
direction of the main mass flux, where the distributions of moisture will be analyzed. 
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Figure 1. Infinite slab highlighting the thickness Lx where the moisture distribution will be analyzed 

 

In this article, the assumptions to solve Equation (1) are: (1) diffusion is the only transport mechanism inside the 
slab; (2) the thickness Lx does not vary during drying; (3) the initial moisture distribution is uniform; (4) the 
infinite slab is considered homogeneous and isotropic; (5) the process parameters are constant during drying, (6) 
the origin of the axis x is located at the central point of the slab. 

2.2 Analytical Solutions for the Diffusion Equation 

2.2.1 Boundary Condition of the Third Kind 

For an infinite slab, the convective boundary condition is defined in the following way: 

 / /
( , )

( , ) eqLx Lxx 2 x 2
M x t

D h M x t M
x  

  


,                     (2) 

in which h is the convective mass transfer coefficient (m·s-1); M(x,t) is the moisture content (dry basis, db) in a 
position x at time t; Meq is the equilibrium moisture content (db); Lx is the thickness of the infinite slab. 

For an infinite slab with the uniform initial moisture content M0 and the boundary condition defined by Equation 
(2), the analytical solution M(x,t) of Equation (1) is given by (Luikov, 1968; Crank, 1992): 

( , ) ( ) cos( ) exp
/ ( / )

2
n

eq 0 eq n n 2
x xn 1

x
M x t M M M A Dt

L 2 L 2






 
     

 
                (3) 

where the parameter An is given by 

sin

sin( )
n

n
n n

4
A

2 2


 




,                                (4) 

and μn are the roots of the characteristic equation for the infinite slab: 

n
ncot

Bi

  .                                   (5) 

The parameter Bi is the mass transfer Biot number, defined as follows:  

xhL / 2
Bi

D
 .                                   (6) 

The expression for the average moisture content ( )M t  at time t is given by: 

( ) ( ) exp
( / )

2
n

eq 0 eq n 2
xn 1

M t M M M B Dt
L 2





 
     

 
                        (7) 

where the parameter Bn is given by 



www.ccsenet.org/jmsr Journal of Materials Science Research Vol. 2, No. 2; 2013 

4 
 

( )

2

n 2 2 2
n n

2Bi
B

Bi Bi 


 
.                                 (8) 

Equation (5) is a transcendental equation which can be solved for a specified mass transfer Biot number. An 
auxiliary program was written in Fortran, using the bisection method, and the first 16 roots of Equation (5) were 
calculated for 469 values of mass transfer Biot numbers from Bi = 0 (which corresponds to an infinite resistance 
of the water flux at the surface) to Bi = 200 (which practically corresponds to an equilibrium boundary 
condition).  

2.2.2 Boundary Condition of the First Kind 

For the equilibrium boundary condition, the solutions of Equation (1) are also given by Equations (3) and (7). 
However, for an infinite mass transfer Biot number (that is the equilibrium boundary condition) Equation (5) is 
given by 

ncot 0  ,                                      (9) 

which implies in: 

( ) /n 2n 1 2   .                                  (10) 

The coefficients An defined by Equation (4) are now known and the local moisture content at any instant t, 
( , )M x t , can be calculated by Equation (3). On the other hand, when Bi   Equation (8) becomes: 

n 2
n

2
B


 .                                      (11) 

With the coefficients Bn calculated by Equation (11), the average moisture content at instant t, ( )M t , can be 
calculated by Equation (7). 

2.3 Optimizer for the Boundary Condition of the First Kind 

In order to determine the effective mass diffusivity, the optimization algorithm developed by Silva et al. (2009) 
and (2012a) will be briefly reviewed here. The objective function is defined by the chi-square obtained through 
the fit of the analytical solution to the experimental points (Bevington & Robinson, 1992; Taylor, 1997) 

expp ana
2

N
2

ii 2
i 1 i

χ
1[ M M (D)]
σ

  ,                              (12) 

where exp
iM  is the ith experimental point of the average moisture content; ana

iM (D)  is the average moisture 
content given as a function of D at the same point i and is calculated from Equation (7) supposing boundary 
condition of the first kind; 2

i1 / σ  is the statistical weight of the experimental average moisture content at the 
point i and Np is the number of experimental points. The chi-square depends only on the effective mass 
diffusivity, since the mass transfer Biot number is known for the prescribed boundary condition ( Bi  ). If 

2
i1 / σ  was not obtained from the experiment, and is therefore unknown, the same value for the statistical 

weight, for instance 2
i1 / σ 1 , should be attributed to all experimental points. The algorithm to determine D is 

given in the following: 

Initially, ana
iM (D )  is calculated according to Equation (7), using a value stipulated for the number of terms N 

(for instance, 200) and an initial value of D (for instance, 10-20). For the boundary condition of the first kind, the 
values for n  and nB  are given by Equation (10) and (11), respectively. The values of ana

iM (D )  are used to 
calculate χ2 according to Equation (12). Then, the value of D is doubled giving a new value for ana

iM (D ) , which 
is now used to calculate a new χ2. The value of χ2 obtained in the first time is compared with the second value 
obtained for χ2. If the statement the second χ2 is lower than the first χ2 is satisfied, the program will continue the 
previously described procedure, otherwise the program will finish this procedure because a minimum value for 
chi-square is found. The last three values for D and χ2 are then recorded. The recorded D interval, which contains 
the minimal value of χ2, is then divided into n equal parts, and each part of this interval is defined as a step. Thus, 
the χ2 of each step is determined, and a more refined interval that contain the minimum is determined. This 
procedure is repeated until a convergence criterion is satisfied. 
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2.4 Optimizer for the Boundary Condition of the Third Kind 

The optimizer presented in Section 2.3 can be applied for the convective boundary condition if Equation (12) is 
adequately adapted. In this case, the objective function for the minimization becomes (Silva et al., 2010): 

expp ana
2

N
2

ii 2
i 1 i

χ
1[ M M (D, Bi)]
σ

  ,                           (13) 

in which (D, Bi)M
ana
i  is the average moisture content calculated by Equation (7) with n  and nB  given, 

respectively, by Equation (5) and (8). In this case, Equation (7) is a function of D and Bi. Consequently, the 
objective function given by Equation (13) depends on D and also on Bi or, equivalently, on h. However, for a 
specified Biot number, Equation (13) is only a function of D. Thereby, the optimizer presented in Section 2.3 can 
be applied for the minimization of Equation (13), determining an optimum value of D for a specified Bi. The 
minimization procedure can be repeated for all 469 Biot numbers established in the Item 2.2.1 to cover the 
domain from 0 to 200. After a scan of all Biot numbers, the lowest chi-square among the 469 minimums is 
identified.  

2.5 Diffusion Models 

2.5.1 Model 1 

This model involves the analytical solution of the diffusion equation with boundary condition of the first kind, 
and this solution will be coupled to the optimizer presented in Section 2.3. The number of terms of Equation (7) 
was established as 200. 

2.5.2 Model 2 

This model involves the analytical solution with boundary condition of the third kind coupled to the optimizer 
presented in Section 2.4. The number of terms of the analytical solution given by Equation (7) was established as 
16. 

2.6 General Considerations 

Since D and h are determined by the optimization, Equation (3) is used to determine the distribution of the 
moisture content inside the infinite slab as a function of the position x for a given instant t. Moreover, Equation 
(7) is used to simulate the drying kinetics of the slabs. As mentioned earlier, for an optimization process 
involving boundary condition of the first kind, the number of terms stipulated for the summation of Equation (7) 
was 200, while for boundary condition of the third kind this number was equal to 16. A detailed study about the 
number of terms of the summation for the two boundary conditions and the cut-off errors is presented by Silva et 
al. (2012a). Such study shows that the larger the Biot number, the greater must be the number of terms of the 
series so that the truncation errors can be considered negligible, particularly for the initial instants of drying. 

The two optimizers coupled to Equation (7) were developed in a computer Intel Pentium IV with 2 GB (RAM). 
The source codes were compiled by Compaq Visual Fortran (CVF) 6.6.0 Professional Edition, using the 
programming option QuickWin Application under the Windows Vista platform. For the two boundary conditions 
analyzed in this article, the convergence criterion stipulated for the determination of the diffusivity was 1×10-15. 
On the other hand, the determination coefficient R2 and the chi-square χ2 were used as statistical indicators for 
the analysis of the results. 

During drying, as the thermal diffusivity is much greater than the mass diffusivity, it was considered that the 
drying process occurs at isothermal conditions. Thus, the effective mass diffusivity as a function of the drying air 
temperature can be expressed through an Arrhenius-type equation (Nastaj & Witkiewicz, 2009) 

exp
( . )

a
0

E
D D

R T 273 15

 
   

.                              (14) 

In Equation (14), D0 is a pre-exponential factor (m2·s-1), Ea is the activation energy (J·mol-1) and R is the 
universal gas constant (8.314 J·mol-1K-1). The convective mass transfer coefficient can be also given as a 
function of the temperature of the drying air by an Arrhenius-type equation:  

exp
b

h a 
(T 273,15 )

 
   

,                              (15) 

where a and b are fitting parameters. 
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2.7 Experimental Datasets 

Initially, the clay (41.80 % SiO2; 22.09 % Al2O3; 10.43 % Fe2O3; 3.79 % MgO; 2.69 % K2O; 1.25 % CaO and 
others) was dried at 110 ºC, de-agglomerated in a ball mill and sieved through 80–mesh sieve (180m). Then, 
water was added to the powder to form a homogeneous mixture with a moisture content of 0.11 (dry basis) 
approximately. After, the obtained mass was kept standing for 24 hours to improve the plasticity. The clay slabs 
were obtained by extrusion, and the mass shaped as slab was cut by hand. The temperature and the relative 
humidity of the room in which the kiln was placed were on average, respectively, 25 oC and 75 %. 

The behavior of the clay samples during drying was investigated by monitoring and recording the changes in 
weight of the test samples during drying using a kiln at the temperatures of 50, 60, 70, 80 and 90 oC. Among the 
five experimental datasets, three of them were used to determine the process parameters D and h by optimization, 
and the general information about these three datasets are given in Table 1. 

 

Table 1. Drying air temperature (T), initial moisture content (M0), equilibrium moisture content (Meq) and 
thickness (Lx) of the clay slabs used in the optimizations 

T (°C) M0 (db) Meq (db) Lx (m) 

50.0 0.1116 0.0162 6.05x10-3

60.0 0.1086 0.0105 6.02x10-3

90.0 0.1046 0.0024 5.92x10-3

 

The moisture contents were measured by the gravimetric method, and the process took place until the mass 
reached its equilibrium value. At the end of each drying, the kiln temperature was set at 105 ºC and the slabs 
remained there for 24 h, enabling the measurement of dry matter. The thickness Lx of the slabs was measured 
with a digital caliper. 

With the process parameters calculated by optimization at 50, 60 and 90 oC, Equation (14) and (15) can be used 
to estimate D and h at other temperatures. In order to evaluate these results, two other experiments at the 
temperatures of 70 and 80 oC were performed, and their general information is available in Table 2.  

 

Table 2. Drying air temperature (T), initial moisture content (M0), equilibrium moisture content (Meq) and 
thickness (Lx) of the clay slabs used to test the expressions obtained for the process parameters 

T (°C) M0 (db) Meq (db) Lx (m) 

70.0 0.1090 0.0077 5.96x10-3

80.0 0.1129 0.0048 6.13x10-3

 

The experimental datasets for the five drying kinetics in falling rate are presented in Figure 2. 
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Figure 2. Experimental datasets for the falling rate period with drying air temperature T at: (a) 50 oC; (b) 60 oC; 
(c) 70 oC; (d) 80 oC; (e) 90 oC 

 
3. Results and Discussion 
3.1 Model 1: Results 

Using the optimizer presented in Section 2.3 and the experimental datasets characterized in Table 1 and given in 
Figure 2, the results obtained for the model 1 are presented in Table 3 for the temperatures of 50, 60 and 90 oC. 

With the effective mass diffusivities obtained through the model 1, the drying kinetics for the temperatures of 50, 
60 and 90 oC are shown in Figure 3. 

 

     

Figure 3. Drying kinetics of clay slabs using the model 1 at temperatures (a) T = 50 oC; (b) T = 60 oC; (c) T = 90 oC 

 

3.2 Model 2: Results 

3.2.1 Optimizations 

For the boundary condition of the third kind, the process parameters are determined by optimization at 50, 60 
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and 90 oC, and the results are presented in Table 4. 

The results obtained in Table 4 for the process parameters enable to present the drying kinetics at 50, 60 and 90 
oC, as can be seen in Figure 4. 

 

    

Figure 4. Drying kinetics of clay slabs using the model 2 at temperatures (a) T = 50 oC; (b) T = 60 oC; (c) T = 90 oC 

 

3.2.2 Arrhenius-Type Equations 

The statistical indicators supposing convective boundary condition (Table 4) are better than those obtained 
supposing equilibrium boundary condition (Table 3). Thus, using nonlinear regression to fit Equation (14) to the 
data (T,D) given in Table 4, the following result is obtained: 











 

)15.273(

1796
exp1047.1 5

T
D .                        (16) 

 

Table 3. Process parameters and statistical indicators obtained by optimization using model 1 

 D (m2 min-1) 4.38×10-8 

50 °C 2  9.7938×10-5

 2R  0.9912 

 D  (m2 min-1) 5.34×10-8 

60 °C 2  8.7306×10-5

 2R  0.9913 

 D  (m2min-1) 8.35×10-8 

90 °C 2  3.1533×10-5

 2R  0.9963 

 

Comparing Equation (16) with Equation (14), the activation energy is obtained: Ea = 14.9 kJ·mol-1. On the other 
hand, Figure 5 shows the behavior between the effective mass diffusivity and the drying air temperature. 
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Figure 5. Effective mass diffusivity for model 2 as a function of the drying air temperature 

 

Table 4. Process parameters and statistical indicators obtained by optimization using model 2 

 D (m2 min-1) 5.55×10-8 

 h (m min-1) 2.57×10-4 

50 °C Bi 14.0 

 χ2 7.9004×10-5

 R2 0.9941 

 D (m2 min-1) 6.79×10-8 

 h (m min-1) 3.05×10-4 

60 °C Bi 13.5 

 χ2 6.3918×10-5

 R2 0.9944 

 D (m2 min-1) 10.40×10-8 

 h (m min-1) 4.92×10-4 

90 °C Bi 14.0 

 χ2 2.2389×10-5

 R2 0.9979 

 

Using nonlinear regression to fit Equation (15) to the data (T, h) given in Table 4, the following relationship is 
found: 

2 1914
h 9.57 10 exp

(T 273.15 )
  

    
.                         (17) 

Figure 6 shows the relationship between h and T in the interval 50-90 oC. 
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Figure 6. Convective mass transfer coefficient for model 2 as a function of the drying air temperature 

 

3.2.3 Simulations Using the Process Parameters Obtained from Equations (16) and (17) 

Since the Equations (16) and (17) are determined, the optimization process is no longer needed to calculate D 
and h. This calculation can be performed directly from Equations (16) and (17). In order to confirm this 
affirmation, the pairs D and h were calculated through Equations (16) and (17) for the drying air temperatures of 
70 and 80 °C. The following results were obtained: D=7.84×10-8 m2 min-1 and h=3.62×10-4 m min-1 for T = 70 oC; 
and D=9.09×10-8 m2 min-1 and h=4.24×10-4 m min-1 for T = 80 oC. Thus, using Equation (7), the simulations of 
the drying kinetics can be presented together with the experimental datasets characterized in Table 2 and given in 
Figure 2 (70 and 80 °C). The results can be observed in Figure 7. 

 

     
Figure 7. Simulations of the drying kinetics using parameters determined by Equations (16) and (17) with the 

drying air temperatures at: (a) T = 70 oC; (b) T = 80 oC 

 

3.2.4 Moisture Distributions for All Results 

With the process parameters D and h known for the five drying air temperatures, the moisture content 
distribution within the slab can be determined at a given instant t, using Equation (3). As an example, for t = 20 
min, Figure 8 presents the moisture distribution for all drying air temperatures studied herein. 
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(a) (b) 

(c) (d) 

(e)  

Figure 8. Moisture distribution within infinite slab for t = 20 min; at drying air temperatures (a) T = 50 oC; (b) T 
= 60 oC; (c) T = 70 oC; (d) T = 80 oC; (e) T = 90 oC 

 

3.3 Discussion 

While the use of a three-dimensional numerical solution coupled to an optimizer can take several hours to 
determine D and h (Silva et al., 2012b), with a three-dimensional analytical solution and the optimization 
algorithms presented here this time is reduced to few minutes (Silva et al., 2012c). On the other hand, the use of 
these algorithms coupled to one-dimensional analytical solutions reduces the optimization time to few seconds 
(Silva et al., 2009). The simplicity and the time reduction justify the large quantity of works in the literature that 
describe water migration in porous solids using approximated geometries, generally one-dimensional, and 
analytical solutions together with some type of optimization algorithm (Cunningham et al., 2007; Ruiz-López & 
García-Alvarado, 2007; Hacihafizoglu et al., 2008; Mariani et al., 2008).  
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According to Silva et al. (2012a), the use of only the first term of series that represents the analytical solution can 
lead to significant cut-off errors, particularly in the description of the initial instants of the process. Therefore, in 
this article, it was used 16 terms of the series that represents the solution for the boundary condition of the third 
kind, and the obtained results can be considered good. 

With respect to geometry, the samples are parallelepipeds, but the thickness is much smaller than the other two 
dimensions. In this sense, the one-dimensional models are reasonable, despite these models overestimate the 
effective mass diffusivity due to the consideration of the flux only in the two largest surfaces of the 
parallelepiped, ignoring the fluxes in the other four smaller areas. Nevertheless, the results obtained are 
reasonable, and the optimization times are small (only a few seconds). 

An inspection in Tables 3 and 4 indicates that the results obtained with the boundary condition of the third kind 
presents better statistical indicators than the results obtained with the boundary condition of the first kind. 
However, this last boundary condition is also reasonable. A new inspection in Table 4 indicates the reason for 
this fact. The mass transfer Biot numbers for the three temperatures (50, 60 and 90 oC) are approximately 14, and 
this number can be considered very high, indicating only a little resistance at the surfaces of the slabs. 

According to Silva et al. (2012b), once the optimizations have been used for some temperatures of the drying air, 
enabling the obtaining of Equations (16) and (17), these optimizations can be substituted by the idea presented 
here. Equations (16) and (17) can be used, instead the optimizations, to describe a drying kinetics at other 
temperature between 50 and 90 oC. This means that the parameters D and h can be calculated with no 
optimization process, and then the simulations of the drying kinetics can be performed.  

Once the parameters of the drying kinetics have been calculated, Equation (3) makes it possible to determine the 
moisture content at any point within the slab, at an instant previously stipulated. For instance, the contour plots 
with the distribution of the moisture content at instant t = 20.0 min are shown in Figure 8, for all temperatures of 
the drying air. As is known, information on how the moisture content (and temperature) is different in different 
positions within the slabs is important because such differences generate stresses (Collard et al., 1992; Mihoubi 
& Bellagi, 2012) that can damage the product. 

4. Conclusion 

The statistical indicators enable to conclude that the model 2 is better than model 1 in the description of drying 
of clay slabs. The presented optimization algorithm has permitted to determine the process parameters D and h 
for several drying temperatures in the range 50–90 oC. 

It was possible to determine Arrhenius-type expressions to calculate the parameters D and h as a function of the 
drying air temperature. The values calculated from the Arrhenius equations make it possible to simulate the 
drying process in a chosen temperature within the interval 50–90 oC, with no need of new optimizations. The 
comparison between these simulations and experimental datasets enables to affirm that the methodology 
presented in this article is a useful resource in substitution to the optimization processes. 

Model 2 permits to predicts the moisture distribution in a given instant, enabling to study stresses that can 
damage the product. 

Acknowledgments 
We acknowledge partial financial support from the Brazilian organizations Coordenação de Aperfeiçoamento de 
Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico 
(CNPq, protocol number: 301697/2012-4). 

References 
Bevington, P. R., & Robinson, D. K. (1992). Data Reduction and Error Analysis for the Physical Sciences (2nd 

ed.). Boston: WCB/McGraw-Hill. 

Chemkhi, S., & Zagrouba, F. (2005). Water diffusion coefficient in clay material from drying data. Desalination, 
185(1-3), 491-498. http://dx.doi.org/10.1016/j.desal.2005.04.052 

Chemkhi, S., & Zagrouba, F. (2008). Development of a Darcy-flow model applied to simulate the drying of 
shrinking media. Brazilian Journal of Chemical Engineering, 25(3), 503-514. 
http://dx.doi.org/10.1590/S0104-66322008000300008 

Collard, J. M., Arnaud, G., Fohr, J. P., & Dragon, A. (1992). The drying-induced deformations of a clay plate. 
International Journal of Heal Mass Transfer, 35, 1103-1114. 
http://dx.doi.org/10.1016/0017-9310(92)90171-N 



www.ccsenet.org/jmsr Journal of Materials Science Research Vol. 2, No. 2; 2013 

13 
 

Crank, J. (1992). The Mathematics of Diffusion. Oxford, UK: Clarendon Press. 

Cunningham, S. E., Mcminn, W. A. M., Magee, T. R. A., & Richardson, P. S. (2007). Modelling water absorption 
of pasta during soaking. Journal of Food Engineering, 82(4), 600-607. 
http://dx.doi.org/10.1016/j.jfoodeng.2007.03.018 

Farias, V. S. O., Silva, W. P., Silva, C. M. D. P. S., & Lima, A. G. B. (2012). Three-dimensional diffusion in 
arbitrary domain using generalized coordinates for the boundary condition of the first kind: application in 
drying. Defect and Diffusion Forum, 326-328, 120-125. 
http://dx.doi.org/10.4028/www.scientific.net/DDF.326-328.120 

Hacihafizoglu, O., Cihan, A., Kahveci, K., & Lima, A. G. B. (2008). A liquid diffusion model for thin-layer 
drying of rough rice. European Food Research and Technology, 226(4), 787-793. 
http://dx.doi.org/10.1007/s00217-007-0593-0 

Luikov, A. V. (1968). Analytical Heat Diffusion Theory. London: Academic Press, Inc. Ltd.  

Mariani, V. C., Lima, A. G., & Coelho, B. (2008). Apparent thermal diffusivity estimation of the banana during 
drying using inverse method. Journal of Food Engineering, 85(4), 569-579. 
http://dx.doi.org/10.1016/j.jfoodeng.2007.08.018 

Mihoubi, D., & Bellagi, A. (2012). Modeling of heat and moisture transfers with stress-strain formation during 
convective air drying of deformable media. Heat and Mass Transfer. 
http://dx.doi.org/10.1007/s00231-012-1014-x 

Nastaj, J. F., & Witkiewicz, K. (2009). Mathematical modeling of the primary and secondary vacuum freeze 
drying of random solids at microwave heating. International Journal of Heat and Mass Transfer, 52(21-22), 
4796-4806. http://dx.doi.org/10.1016/j.icheatmasstransfer.2007.09.003 

Ruiz-López, I. I., & García-Alvarado, M. A. (2007). Analytical solution for food-drying kinetics considering 
shrinkage and variable diffusivity. Journal of Food Engineering, 79(1), 208-216. 
http://dx.doi.org/10.1016/j.jfoodeng.2006.01.051 

Sander, A., Skansi, D., & Bolf, N. (2003). Heat and mass transfer models in convection drying of clay slabs. 
Ceramics International, 29(6), 641-653. http://dx.doi.org/10.1016/S0272-8842(02)00212-2 

Silva, W. P., Precker, J. W., Silva, C. M. D. P. S., & Silva, D. D. P. S. (2009). Determination of the effective 
diffusivity via minimization of the objective function by scanning: application to drying of cowpea. Journal 
of Food Engineering, 95(2), 298-304. http://dx.doi.org/10.1016/j.jfoodeng.2009.05.008 

Silva, W. P., Precker, J. W., Silva, C. M. D. P. S., & Gomes, J. P. (2010). Determination of effective diffusivity 
and convective mass transfer coefficient for cylindrical solids via analytical solution and inverse method: 
Application to the drying of rough rice. Journal of Food Engineering, 98(3), 302-308. 
http://dx.doi.org/10.1016/j.jfoodeng.2009.12.029 

Silva, W. P., Farias, V. S. O., Neves, G. A., & Lima, A. G. B. (2012a). Modeling of water transport in roof tiles by 
removal of moisture at isothermal conditions. Heat and Mass Transfer, 48(5), 809-821. 
http://dx.doi.org/10.1007/s00231-011-0931-4 

Silva, W. P., da Silva, L. D., Farias, V. S. O., & Silva, C. M. D. P. S. (2012b). Water migration in clay slabs 
during drying: A three-dimensional numerical approach. Ceramics International, 10, 252. 
http://dx.doi.org/10.1016/j.ceramint.2012.10.252 

Silva, W. P., Amaral, D. S., Duarte, M. E. M., Mata-Mário, E. R. M. C., Silva, C. M. D. P. S., Pinheiro, R. M. M., 
& Pessoa, T. (2012c). Description of the osmotic dehydration and convective drying of coconut (Cocos 
nucifera L.) pieces: A three-dimensional approach. Journal of Food Engineering, 115(1), 121-131. 
http://dx.doi.org/10.1016/j.jfoodeng.2012.10.007 

Taylor, J. R. (1997). An Introduction to Error Analysis (2nd ed.). Sausalito, California: University Science 
Books. 

 

 

 


