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Abstract 

The mechanism of polymerization is linking to the structural viscosity η*(t, x) which depends on the time t and a 
controlling parameter x. The controlling factor which influences the aggregation dynamics can be limited to, say, 
the volume  function, the temperature T, the déoxy-HbS, concentration c and obviously a constant shear rate ߛሶ . 
The mathematical model for η*(t, x) need a sub-model for each controlling factor x. This constraint drives to 
derive a rheological model η*(t, x) can be directly taken into account in the parameters base.  

In the present work, we study the influence of these controlling factors on the unsteady viscosity profiles 
obtained during the time course of aggregation process. 

Keywords: deoxyhemoglobin S aggregation, rheological model, unsteady viscosity profiles, influence of a 
controlling factor 

1. Introduction 

During the last three decades, flow properties of dispersions have been a subject of increasing interest owing to 
the great variety of such systems found in nature and industry, especially in the case of highly concentrated 
suspensions of colloidal particles as solutions of deoxyhemoglobin S.  

More precisely, the solution-gel transformation of sickle hemoglobin was first described (Harris & Bensusan, 
1980; Hofrichter, Ross, & Easton, 1974) and it was proposed that molecular aggregation combined with 
orientation of the aggregates formed the basis of the erythrocyte sickling phenomenon (Krieger & Dougherty, 
1959). Only very recently attempts have been made to investigate the kinetics of this transformation by various 
technics (de Kruif, van Lersel, & Vrij, 1985; Quemada & Droz, 1983; Quemada, 1984, 1998a, 1998b; Reynolds, 
1886). 

In the studies reported by (Harris & Bensusan, 1980), on a time-dependent change in the specific viscosity of 
purified deoxyhemoglobin S solutions, we observed a latent period with no detectable increase in viscosity, 
followed by a rapid increase in viscosity to gel formation. The very marked influence that the shear rate ߛሶ  has 
upon the duration of the lag phase is illustrated in Figure (1) reported by (Harris & Bensusan, 1980). 

The controlling factor which influences the aggregation dynamics can be limited to, say, the volume  function, 
the temperature T, the déoxy-HbS, concentration c and obviously a constant shear rate ߛሶ . 

The purpose of this work is to compare the profiles obtained by the influence of controlling factor with results of 
(Harris & Bensusan, 1980). 

1.1 Main Feature of the Rheological Model  

The effective structural viscosity *t, xwhich depends on time and a dimensionless controlling parameter x is 
an important parameter which account for the mechanism of the polymerization. The controlling factor which 
influences the aggregation dynamics can be limited to, say, the volume function , the temperature T, the 
déoxy-HbS concentration, and obviously a constant shear rate ߛሶ . 

In the sequel, for the sake of simplicity we introduce a dimensionless controlling factor x=x/xc, where xc is a 
characteristic value of the variable x. 
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The elaboration of a rheological model for which is more relevant because each of these controlling factors can 
be directly taken into account in the parameters base *(t, ݔഥ ) The analytical function *(t, ݔҧ) which is suitable 
for data fitting reads:  

*(t, ݔҧ)=K [1+αexp(-ct)]/ሾ1 ൅ bexpሺെctሻሿ୬                  (1.1) 

with the following definitions: 

൞

ܽ ൌ ௗሻݐሺ߱݌ݔ݁ߦ
ܾ ൌ ௗሻݐሺ߱݌ݔ݁ߴ

ܿ ൌ ߱
ܭ ൌ ҧሻݔሺߜԦሻݔሺߟ݄

                               (1.2) 

Where  

ω is the frequency of relaxation,  　  

td is delay time,  

η is positive constant. 

The constants a, b, and K depend on the steady structural viscosity ߟሺݔҧሻ.  

Obviously, the constant K has the unit of a viscosity. Moreover, this limiting value K=limt→∞*(t, ݔҧ)=*∞ can 
be directly measured on the tracing. 

It is interesting to observe that (1.1) and (1.2) has the same analytical forms. However, as we can see, the present 
derivation is more relevant for rheological studies. 

However, the detailed functional form of the steady viscosity ߟሺݔҧሻ is still a problem to be determined from 
either theory or experiment. In this case various theoretical approaches have been proposed. Particularly 
(Dejardin & Olatunji, 1985) obtained the following relationship: 　 

(ݔҧ)=∞[1-(1-χ)λeq(ݔҧ)]-n                              (1.3) 

Where 

λeq(࢞ഥ)=
ଵ

ୣ୶୮ ሺܠതሻ
                                 (1.4) 

is the equilibrium value of the structural parameter that depends on the dimensionless controlling factor xx/xc, 
where xc is a characteristic value of the variable x. 

χ=ቀ
஗ಮ

஗బ
ቁ

భ
೙                                  (1.5) 

Expanding exp(ݔҧ) in a Taylor series limited to the first order term we get:  

λeq(࢞ഥ)ൌ
ଵ

ଵାܠത
                                (1.6) 

In (1.2) δ(ݔҧ) is the coefficient of visco-elasticity readily defined by:  

δ(࢞ഥ)=[1+
ସ୮஡Gሺ୶തሻ

஗ሺ୶തሻమ ]1/2                           (1.7) 

where the structural elastic modulus G(ݔҧ) is given by the following relationships: 

ҧሻݔሺܩ ൌ ஶൣ1ܩ െ ሺ1 െ ҧሻ൧ݔ௘௤ሺߣሻߢ
ି௠

                    (1.8) 

with  

ቀ=ߢ
ఎಮ

ఎబ
ቁ

భ
೘                                      (1.9) 
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2. Influence of a Controlling Factor on the Unsteady Viscosity Profile   

2.1 Influence of the Concentration of the Deoxy-HbS 

* Method 

If ݔҧ ൌ ݏ ൌ ܿ/ܿ௘  is the supersaturation ratio introduced by (Hofrichter, Ross, & Easton, 1974) in the 
aggregation kinetics, then the steady state viscosity is given by (1.3), viz : 

ሻݏሺߟ ൌ ஶൣ1ߟ െ ሺ1 െ ߯ሻߣ௘௤ሺݏሻ൧
ି௡

                          (2.1) 

Then we have 
డఎሺ௦ሻ

డሺ௦ሻ
൏ 0 for ߯ ൏ 1. 

It is interesting to observe that this theoretical result is in good agreement with experimental data reported by 
(Harris & Bensusan, 1980).  

According to (1.3), the delay time td(s) on the effective viscosity profiles *(t, S) can be written as:  

ሻݏௗሺݐ ൌ ஶൣ1ݐ െ ሺ1 െ ሻ൧ݏ௘௤ሺߣሻߤ
ି௤

                         (2.2) 

where λeq(s) is given by (1.3) or (1.6). 　 

As can be readily seen, (2.2) shows that the delay time td(s) decreases when the concentration of the deoxy-HbS 
increases. Such a theoretical result agrees with the experimental data.  

More precisely, taking into account the variations of td(s) and η(s) which are the characteristics parameters in the 
(1.1) that define the viscosity η*(t, s) we obviously observe that this function decreases when the concentration c 
increases. 

* Qualitative Numerical Calculations 

For illustration, we used (1.1) to calculate three viscosity profiles with the following values of the concentration 
c.  

c=25mg/l, c=45 mg/l, and c=55 mg/l　 

As show in Figure (1) it is interesting to observe that the theoretical profiles faithfully reproduce the main 
characteristic of the experimental results qualitatively. 

 

 

Figure 1. Influence of the concentration and the viscosity profiles 
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2.2 Influence of the Shear Rate ߛሶ , the Volume Fraction , and the Temperature T 

As indicated, we have found that for the others controlling factors, the study may be rationalized by introducing 
in the parameters base, the dimensionless shear rate defined by the well-known translational Péclet number, viz: 

ҧݔ ൌ ሶߛሺߠ  , ࣘ, ሻࢀ ൌ
଺గఎ௥యఊሶ

఑ಳ்
ൌ ௘ܲ                             (2.3) 

which varies with the solvent viscosity F, the constant shear rate ߛሶ , the particles radius r, the thermal energy 
kBT, where kB is the Boltzmann constant and T the absolute temperature. 

It is interesting to observe that (2.3) can be simply evaluated from kinetic equation for aggregation ֐
 desegregation of structural units viz : 　　 

ௗఒ

ௗ௧
ൌ

ଵିఒ

ఛಲ
െ

ఒ

ఛವ
                                (2.4) 

where, τA and τD are the times characterizing the formation and rupture of the aggregates respectively. More 
generally, these times are associated to either organization or disorganization of the structure, and consequently 
depend on the shear rate ߛሶ . 

In steady state condition dλ/dt, the steady value of the structural parameter λ=λeq(ߛሶ) will be from (2.4):  

λeq(ߛሶ)=
ଵ

ଵାఏሺఊሶ ሻ
                                      (2.5) 

where  

θ(ߛሶ)=߬஺/߬஽                                      (2.6) 

τ being a characteristic time. In (1.9) and (2.3) the parameter ω is a shear dependent frequency of the structure 
which is a symmetrical relation in τA and τD, viz (Goldsmith & Mason, 1916; Krieger & Dougherty, 1959):  

߱ ൌ
ఛಲାఛವ

ఛಲఛವ
                                       (2.7) 

It is interesting to observe that (2.5) obtained by (de Kruif, van Lersel, & Vrij, 1985) is exactly our (1.6) with 
exp(ݔҧ)=θ(). More precisely as indicated, we obtain (2.5) using (1.4), and expanding exp(ݔҧ) in a Taylor series 
limited to the first order term.  

However, it is worthy of note that our nonlinear dynamic model is self- consistent because no particular kinetic 
equation for the structural variable is used as sub-model (Dejardin & Olatunji, 1985), λ(x, t) is used as sub-model 
(Dejardin & Olatunji, 1985), and the steady value given by (1.4) comes directly from the theory. 

Moreover, from (1.4) and (1.6) we obtained as required λeq(0)=1, for complete building up, or λeq(∞)=0 for 
complete breakdown of the structure respectively.  

Now, it is more relevant to give a phenomenological foundation of (2.3). For this purpose, τA can be considered 
as a constant, which is proportional to the Brownian diffusion time for colloidal suspensions of spherical 
particules of radius r. 

This characteristic time is given by (Smoluchowski, 1916) : 

߬஺ ൌ ߚ
ఎிఊయ

௞ಳ்
                                       (2.8) 

with β=6π or β=8π, for translational or rotational diffusion respectively.  

According to (Goldsmith & Mason, 1916), the time τD can be taken as: 　 

τD=ߛሶ ିଵ                                        (2.9) 

Hence, using (2.1) and (2.2) in (1.9), we obtain as desired the translational Péclet number (1.6). 

For practical purpose, it is useful to introduce in (2.3) instead of the particles radius r , the volume fraction : 

πr3n/3                                     (2.10) 

where n is the number density . Hence, we get:  



www.ccsenet.org/jmsr Journal of Materials Science Research Vol. 1, No. 4; 2012 

83 
 

ሶߛሺߠ  , ࣘ, ሻࢀ ൌ
ଽఎಷథఊሶ

ଶ௡఑ಳ்
                                  (2.11) 

Consequently, (1.3), (1.4) and (1.6) become: 

ߤ ൌ ஶൣ1ߤ െ ሺ1 െ ߯ሻߣ௘௤ሺߛሶ  , ࣘ, ሻ൧ࢀ
ି௡

                         (2.12) 

Where 

ሶߛ௘௤ሺߣ  , ሻࢀ ൌ
ଵ

ா௫௣ሾఏሺఊሶ ሻሿࢀ,ࣘ, 
                               (2.13) 

consequently, according to (1.6) we have : 

ሶߛ௘௤ሺߣ  , ࣘ, ሻࢀ ൌ
ଵ

ଵାఏሺఊሶ ሻࢀ,ࣘ, 
                               (2.14) 

Furthermore it is worthy to note that by linearization (n=-1), the general equation (2.12) directly leads to 
(Krieger & Dougherty, 1959) equation, viz: 

ߟ ൌ ஶߟ ൅ ሺߟ଴ െ ሶߛ௘௤ሺߣஶሻߟ  , ࣘ,  ሻ                          (2.15)ࢀ

The relation (2.15) shows that for η0>η∞, the steady viscosity decreases when the temperature increases, in 
accordance experimental data and generally fit by phenomenological equations. For detail see (Briant, 1956). 
Among these phenomenological equations let mentioned the equation given by (Andrade & da, 1934) .  

ߟ ൌ ሺ݌ݔ݁ܽ
௕

்
ሻ                                 (2.16) 

provides that the temperature T is different from zero, a and b being positive constants.  

The second example is the equation giving by (Reynolds, 1886): 

ߟ ൌ  ሻ                             (2.17)ܶߚሺെ݌ݔ݁ܽ

where α and β are two positive constants. 

However, at this stage of modeling, it is worthy of note that our general equation (2.12), also gives result in 
excellent agreement with experimental data. For this purpose, if the controlling factor is the temperature, the 
steady viscosity can be written in the following form: 

η(T)ൌ ஶሾ1ߟ െ ሺ1 െ ߯ሻ݁݌ݔሺെܶܿ/ܶሻሿି௡                   (2.18) 

provides that the temperature is different from zero, Tc being a characteristic temperature After little algebra, we 
obtain:  

ௗఎሺ்ሻ

ௗ்
ൌ െ݊ሺ߯ െ 1ሻ ೎்

்మ

ఎሺ்ሻ௘௫௣ ሺି ೎் ்⁄ ሻ

ଵାሺఞିଵሻ௘௫௣ ሺି ೎் ்⁄ ሻ
                  (2.19) 

Hence, it is readily seen from (2.19) that for χ>1, the structural viscosity (2.18) also decreases when the 
temperature increases. We display in Figure (2) the graphs of the three viscosity models (2.16), (2.17) and (2.18). 

For the viscosity μ(߶) versus volume fraction ߶ relationship, (1.2) leads to a new μ(߶). 
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Figure 2. Temperature dependent models of viscosity 

 
2.2.1 Influence of the Shear Rate ߛሶ  

* Method 

To take into account the influence of the shear rate ߛሶ, on the unsteady viscosity profiles, one may keep and T 
unchanged in (2.5) which for this purpose is written in the 

suitable form: 

ሶሻߛሺߠ=ҧݔ ൌ
ఊሶ

ఊሶ೎
ሶ௖ߛ       ൌ

ଶ௡௞ಳ்

ଽఎಷథ
                       (2.20) 

௖ሶߛ  being a characteristic shear rate. 

* Qualitative Numerical Calculations 

The experimental viscosity profiles obtained by (Harris & Bensusan, 1980) are reported in Figure (4). 

For illustration, we used (1.1) to calculate three viscosity profiles with the following values of the shear rate ߛሶ : 

 ሶ=30sec-1ߛ ሶ=20sec-1 andߛ ,ሶ=10sec-1ߛ

As show in Figure 2 it is interesting to observe that the theoretical profiles faithfully reproduce the main 
characteristic of the experimental results qualitatively: Figure 3.  

More precisely: 

a) the delay time td(ߛሶ) decreases when the shear rate ߛሶ  increases. 

b) the maximum of the viscosity profiles (overshoot) decreases when the shear rate ߛሶ  increases. 

c) The maximum change in viscosity decreases when the shear rate ߛሶ  increases. 

* Experimental Data Fitting 

Based on the time-dependent viscosity values reported by (Goldsmith & Mason, 1916), the mode parameters (a, 
b, c, n) of (2.22) are computed using non linear square method.  

The results are presented in Figures (3) and Figure (4). As can be seen, the analytical function η*(t, ߛሶ ) 
satisfactorily fit the experimental data.  

Consequently, as indicated, we observe that our theoretical model clearly improves on the sufficient and 
necessary conditions for any good model of interpretation (Quemada & Droz, 1983), viz:  
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 he contains a minimum number of parameters 

 he gives a good data fitting  

 the parameters can be readily calculated 

 the parameters have physical significance 

 

 
Figure 3. Influence of shear rate and the viscosity profiles (Goldsmith & Mason, 1916) 

 

 

 
Figure 4. Viscosity profile-data fitting (Goldsmith & Mason, 1916)  

 
2.2.2 Influence of the Volume Fraction  
* Method 

To take into account the influence of the volume fraction on the unsteady viscosity. profiles, one may keep 
ሶߛ  and T unchanged in (2.5) which for this purpose is written in the suitable form: 

ሺ߶ሻߠ=ҧݔ ൌ
థ

థ೎
      ߶௖ ൌ

ଶ௡௞ಳ்

ଽఎಷఊሶ
                          (2.21) 
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c being a characteristic volume fraction. 　 

* Qualitative numerical calculations 

For illustration, we used (1.1) to calculate three viscosity profiles with the following values of the volume 
fraction c 

=0.25, =0.35 and =0.45 

The equilibrium values are respectively: 

=0.74, =0.67 and =0.61 

As show in Figure (5) it is interesting to observe that the theoretical profiles faithfully reproduce the main 
characteristic of the experimental results qualitatively. 

2.2.3 Influence of the Temperature T 

* Method 

To take into account the influence of the temperature T on the unsteady viscosity, profiles, one may keep and 
unchanged in (2.5) which for this purpose is written in the suitable 

form: 

ሺܶሻߠ=ҧݔ ൌ ೎்

்
      ௖ܶ ൌ

ଶ௡௞ಳ

ଽఎಷఊሶ థ
                          (2.22) 

Tc being a characteristic temperature which is now well defined.  

* Qualitative numerical calculations 

For illustration, we used (1.1) to calculate three viscosity profiles with the following values of the temperature : 

T=289.2K, T=299.2K and T=309.2K 

The equilibrium values are respectively: 

Teq1=0.4762K, Teq2=0.4847K and Teq3=0.4929K 

The critical absolute temperature is: Tc=318K.  　  

As show in Figure (6) it is interesting to observe that the theoretical profiles faithfully reproduce the main 
characteristic of the experimental results qualitatively. 

 

 

 

Figure 5. Viscosity profile-data fitting 
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Figure 6. Influence of the volume fraction and the viscosity profiles 

 

Figure 7. Influence of temperature and the viscosity profiles 

 

3. Conclusion  

The effective structural viscosity η*(t, ݔ) which depends on time and a controlling parameterx is an important 
parameter x which account for the mechanism of the polymerization. The controlling factor which influences the 
aggregation dynamics can be limited to, say, the volume function ߶, the hematocrit H, the temperature T, the 
deoxyhemoglobin S, concentration and obviously a constant shear rate ߛሶ . Because the limited applicability of 
the previous mathematical model derived by (Dejardin & Olatunji, 1985) which need a sub-model for each 
controlling factor on unsteady viscosity profiles obtained during the time course of aggregation process.   

Consequently, when the controlling factor x is the shear rate ߛሶ ൌ ௖ݐ ௖ሻ whereݐሶሺߛ  is the duration of the 
perturbations of the system at equilibrium. Our theoretical results are in agreement with the experimental data of 
(Goldsmith & Mason, 1916). 

However, because the limited applicability of this mathematical model which need a sub-model for each 
controlling factor x, the rheological model derived for η*(t, ݔ) is more relevant because each of these controlling 
factor can be directly taken into account in the parameters base. Moreover, it is worthy to note that the 
mathematical model and the rheological model lead for η*(t, ݔ) the same analytical form. For practical purpose, 
and by way of illustration, we study, the effects induced by these controlling factors on the viscosity profiles. 



www.ccsenet.org/jmsr Journal of Materials Science Research Vol. 1, No. 4; 2012 

88 
 

The theoretical profiles faithfully reproduce the main characteristics of the experimental results reported by 
(Goldsmith & Mason, 1916). 
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