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Abstract

Why are there simple metals with positive thermopower? Why are there metals with a negative temperature coefficient
of resistivity? What is the reason for the Mooij correlation and the Giant Hall effect? These are questions that have
not yet been answered with the known transport theories (Mizutani, 2001, pp. 474). However, they can be answered by
considering the phenomenon of phase separation connected with an electron transfer between the phases. In this paper
answers are proposed to these questions mentioned. Answers to other fundamental problems/questions are proposed in
the recently published book (Sonntag, 2023).
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1. Introduction

In 1979 the 2nd edition of the famous book ”Electronic Processes in Non-Crystalline Materials” by Mott & Davis (1979)
was published by Oxford University Press as part of the series Oxford Classic Texts IN THE PHYSICAL SCIENCES. Ten
years later, Sonntag (1989) has added a new aspect to this topic, namely that metallic non-crystalline alloys can consist
of two different phases that differ in short-range order and bonding properties and that between these phases there is an
electron transfer which has an essential effect on the electronic transport. Already in the year 1980 Mangin et al. have
discussed such an ”amorphous phase separation” for amorphous Au1−xSix alloys. This ”amorphous phase separation” was
initially only a hypothesis derived from experimental data on electrical conductivity and Hall coefficients. A few years
later, however, this hypothesis was confirmed by Edwards et al. (1991), Lorentz et al. (1994), Regan et al. (1994) and
Raap et al. (1995) for a series of amorphous transition-metal–metalloid alloys using high-resolution structural analyses.

On the basis of this confirmed hypothesis, a set of formulas was then developed with which the electronic transport
coefficients in phase-separated alloys (short: composites) can be described mathematically. The thermoelectric power
(Seebeck coefficient; thermopower for short) in amorphous Cr-Si alloys calculated with these formulas can be regarded
as an outstanding result that describes the experimental findings with surprising accuracy (Appendix in Sonntag, 2023).

In this context, previously unsolved physical questions could also be answered, for example what is the reason for the
phenomenon of the Giant Hall effect in metal-insulator layers? What is the reason for Mooij’s correlation? What are the
reasons for the different structures in sputtered and vapor-deposited thin layers: amorphous, granular or fractal structures
depending on the composition of the alloy?

Answers also follows to such questions, which basically have nothing to do with ”amorphous phase separation”: Why are
there simple metals with positive thermopower? Why does the electrical conductivity σ of very thin metal layers decrease
exponentially with decreasing layer thickness? Why does the metal-insulator transition occur at a relatively small Ge
concentration in disordered Al1−xGex alloys (xc ≈ 0.44), but at a relatively high Ge concentration in disordered Au1−xGex

alloys (xc ≈ 0.88)?

And further questions related to the Ioffe-Regel criterion could be answered: Is there a finite minimal metallic conductiv-
ity? Are there mobility edges and how can they be calculated? And why does the metal-insulator transition in man-made
(artificially produced) metal-insulator compounds occur at much smaller metal concentrations than it follows from clas-
sical effective medium theory (EMT)?
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In this paper answers are given on the following problems/questions:
Why are there simple metals with positive thermopower?
Why are there metals with a negative temperature coefficient of resistivity, TCR?
What is the reason for Mooij’s correlation?
What is the reason for the Giant Hall effect in metal-insulator layers?

A more detailed representation of this subject including the other open problems/questions mentioned is given and dis-
cussed in the recently published book ”The Influence of Phase Separation on Structure and Electronic Transport in
Solid-State Physics” (Sonntag, 2023).

2. The Physical Background

Until 1989 there was a general consensus that
a) the approximation of nearly free electrons (NFE) is not an appropriate method for description of the electrons in strong-
ly scattering systems, especially if the resistivity ρ increases higher than ≈ 100µΩcm. The same point of view has been
also consolidated regarding the
b) Boltzmann transport equation (BTE): when the mean free path of the carriers, L, becomes comparable with the average
atomic distance, d, the wave number k is no longer a good quantum number for describing the eigenstates, and the BTE
cannot be applied (Mott & Davis, 1979; Mott, 1990). However, in 1989, with the appearance of the publication (Sonntag,
1989) this general consensus was questioned. The main finding from this publication was that many of the alloys under
consideration are composed of different phases and that these must also be treated separately in the transport equations.
In amorphous transition-metal-metalloid alloys there is
(i) amorphous phase separation between two different amorphous phases called phase A and phase B, where each phase
has its “own”short-range order (SRO),
(ii) the amorphous phase separation leads to band separation in the conduction band (CB) and valence band (VB) connect-
ed with the phases A and B, respectively, and the electrons are freely propagating and the corresponding wave functions
are extended with respect to connected phase ranges.
(iii) Between the two coexisting phases there is electron redistribution (electron transfer) which can be described by

n = nA · exp(−β
υB

υA
). (1)

(n is the electron density in the phase with n(0) = nA. υA and υB are the volume fractions of the phases A and B,
respectively. β is a constant for a given alloy, which is determined by the average potential difference between the two
phases, ∆V .) An electron moving through the alloy is not restricted to a single phase, but it can overcome the phase
boundaries, provided both the CB and the VB are incompletely occupied. The crucial point is that in the two different
phases, this electron is exposed to different local band structures (1) with different densities of states at the Fermi level (2)
depending on the local band structure and the distribution of the electrons to the available electronic bands.

In 2009 a formula for the thermopower for composites have been derived (Sonntag, 2009) which received the general final
form ∑

i=A,B,···

υi
σi/S i − σ/S
σi/S i + 2σ/S

= 0 (2)

(Sonntag, 2016). S and σ are the thermopower and conductivity of the composite, respectively. For a two phase composite
S A and S B are the thermopowers, σA and σB the conductivites of the phases A and B, respectively, and υB = 1 − υA.

In 2016 a formula for the Hall coefficient for composites has been derived

R =
σ2

ARA [σB + σ(3υA − 1)] + σ2
BRB [σA + σ(3υB − 1)]

σ(σAσB + 2σ2)
(3)

(Sonntag, 2016a). R, RA and RB are the Hall coefficients of the composite and the phases A and B, respectively.

A comparison has shown that other previously derived thermopower and Hall coefficient formulas for composites are
based on approximations that may produce erreneous results (Sonntag et al., 2019). Therefore, in the following the
Equations (2) and (3) are applyed for a discussion of the previously mentioned unsolved questions/problems.

3. Answers to the Unsolved Problems in Solid State Physics

3.1 Why Are There Simple Metals with Positive Thermopower?

In the past, there have already been some attempts to physically explain the existence of positive thermopower in metals,
for example by peculiarities of the Fermi surface topology and others, Jones (1955), Xu and Verstraete (2014), He et al.
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(2019). Further work on this question is cited by Sonntag (2010) (there Ref. numbers 4 and 12-20). However, these cannot
explain the positive thermopower in liquid simple metals, for which the Fermi surface can be assumed to be spherical. On
the other hand, Equation (2) provides a simple and logical answer:

When one applies Equation (2) to calculate the thermopower of a two-phase composite, where the two phases have
different sign, eB = −eA, one finds that this equation never has real solutions for the entire concentration range υA = 0...1
(respective υB = 1...0), if the classical formula for the thermopower of the phase i

S 0
i =

π2k2
BT (1 + ri)
3eiEF,i

, (4)

is applyed. (kB is the Boltzmann constant, T is the temperature, EF,i and ri are the Fermi energy and the scattering
parameter, respectively, in the phase i. |ei| is the amount of the elementary charge with ei = −|e| and +|e| for electrons
and holes, respectively.) Reason is the fact, because Equation (4) describes the thermopower of the phase i incomplete.
Equation (4) considers only the scattering contribution to the thermopower, but not the effect of band edge shift dEC/dT ,
0 or dEV/dT , 0. EC and EV characterize the band edge of the conduction band (in the phase A) and the valence band (in
the phase B), respectively.

Therefore Sonntag (2010) has introduced an additional term to the thermopower formula which considers the change of
the thermopower by band edge shift,

∆S =

[
1
|e|

dµ
dT

]thermodyn.

J=0
≡

1
|e|

dµ
dT

(5)

justified in the sections 2.2 & 3.1 in (Sonntag, 2010). Consideration of Equation (5) leads to the extended thermopower

S i = S 0
i + ∆S (6)

for the phase i of a composite, and
S = S 0 + ∆S (7)

for a homogeneous alloy. S 0 agrees with the old (but incomplete) definition of the thermopower, which considers only the
scattering of the carriers. S 0

i is the scattering term of the phase i. In fact, S i and S in Equation (2), derived via the electrical
and entropy flux densities, is consistent with Equation (6) (Sonntag, 2009), and in the final form (Sonntag, 2016).

In order to solve Equation (2), dµ/dT is to be calculated. For a two phase composite with different signs of the carriers,
electrons and holes, eB = −eA, it follows that

dµ
dT

=
∂EC,A

∂T
+
∂µ0

A

∂T
−

∂µ0
A

∂T +
∂µ0

B
∂T +

∂EC,A

∂T −
∂EV,B

∂T

1 +
υA

(
∂µ0

B
∂p −|e|

∂ϕB
∂nB

)
υB

(
∂µ0

A
∂n −|e|

∂ϕA
∂n

)
, (8)

where the formulas for the electrochemical potentials of the phases,

µA = EC,A + µ0
A − |e|ϕA, (9)

and
µB = EV,B − µ

0
B − |e|ϕB, (10)

are considered. µ0
i and ϕi are the chemical potential and the electrostatic potential, respectively, in the phase i. p and nB

are the hole density and the total valence electron concentration in the phase B, respectively, where dnB = −dp. (For a
derivation of Equation (8) see Equations (25)-(30) in Sonntag, 2010)

Equation (7) corresponds with the original definition of the thermopower,

S =
∇(µ/e)
∇T

(11)

(∇ is the Nabla operator), which, according to the standard work by Harmann and Honig (1967) (page 47), reduces to

S =
d(µ/e)

dT
(12)
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for physically and chemically homogeneous materials. The new one is the fact that the term ∆S encloses additionally
band edge shifts as well as the influence of the temperature dependence of the chemical potentials µ0

i of the phases i in
composites, mediated via Equation (8). ∆S , especially µ0

i , is also the reason for the Mooij correlation (details in section
3.2).

For an experimental verification of Equation (7), respective Equation (6), see Sonntag et al. (2011).

Now let us make the transition from the thermopower formula for a composite to a homogeneous alloy by setting υB = 0
or υB = 1 in Equations (2) and (8). For υB = 0 the composite degenerates to a homogeneous alloy consisting exclusively
of the phase A. On the opposite side, for υB = 1 we get a homogeneous alloy consisting exclusively of the phase B.

For these two limiting cases the formulas must hold as well. Setting υB = 0, it follows that

dµ
dT

=
∂EC,A

∂T
+
∂µ0

A

∂T
(13)

and

S (+) = S A =
π2k2

BT (1 + rA)
3eAEF,A

+
1
|e|

∂EC,A

∂T
+
∂µ0

A

∂T

 (14)

(section 3.3 in (Sonntag, 2010)).

Analogously it follows for υB = 1 that
dµ
dT

=
∂EV,B

∂T
−
∂µ0

B

∂T
, (15)

S (+) = S B =
π2k2

BT (1 + rB)
3eBEF,B

+
1
|e|

∂EV,B

∂T
−
∂µ0

B

∂T

 . (16)

In other words, the classical formula for the thermopower of a homogeneous metal,

S 0 = −
π2k2

BT (1 + r)
3|e|EF

, (17)

is incomplete. It must be supplemented by the term ∆S represented by the second term in Equation (14). EF and r are the
Fermi energy and the scattering parameter, respectively, in the homogeneous metal.

The second term in Equation (14) can be positiv or negativ. As a trend, positive sign of thermopower will be measured,
if the conduction band edge shifts to higher values with increasing T and if this effect overcompensates for the influence
the scatterring term. Thus, for the crystalline Cu, Ag, Au, and Li the experimental thermopowers also have positive sign;
at 00C they are +1.7, +1.4, +1.1, and +11.5 µV/K, respectively (Schulze, 1967, p. 316).

It is usually to write the thermopower formula as a function of σ(E) according to

S 0 =
π2k2

BT
3e

(∂ lnσ(E)
∂E

)
EF

(18)

(Barnard, 1972, section 3.2., p. 62; Mott & Davis, 1979, section 2.13, pages 52ff). E is the energy. Considering the
additional thermodynamic term in correspondence with Equation (5) and Equation (7), the thermopower formula for a
homogeneous material is to be extended according to

S =
π2k2

BT
3e

(∂ lnσ(E)
∂E

)
EF

+
1
|e|

dµ
dT

. (19)

Corresponding relations as Equation (19) hold separately also for each phase of a composite,

S i =
π2k2

BT
3ei

(∂ lnσi(E)
∂E

)
EF,i

+
1
|e|

dµ
dT

, (20)

where the term 1
|e|

dµ
dT is characteristic for the composite.

Equation (16) has only theoretic meaning; because as we approach υB −→ 1 we obtain a semiconductor if the B phase is
Si or Ge because the number of s2 p2 states in the B phase decreases more and more while the number of sp3 hybrid states
increases more and more (Sonntag, 2023, there section 7.1).
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3.2 What Is the Reason for Negative TCR in Metallic Alloys and the Mooij’s Correlation?

For a long time it was a large mystery that disordered metallic alloys can have negative temperature coefficient of resis-
tivity, TCR,

TCR =
1
ρ

dρ
dT

. (21)

The negative TCR phenomenon is a characteristic feature of a semiconductor with a well-defined energy gap, ρ = 1/σ.
Thus, one may adress a naive question as to why a negative TCR, though its magnitude is small, appears for many liquid
and amorphous alloys, in which the carrier concentration is as high as 1022/cm3 and a well defined Fermi edge exists
without any energy gap. (Mizutani, 2001, pp. 474).

In 1973 Mooij found a correlation between ρ and TCR (Mooij, 1973). Mooij’s correlation says that in disordered metallic
alloys the TCR change sign from positive to negative as the resistivity ρ increases higher than ≈ 100µΩcm. For ρ >≈
100µΩcm the amount of the negative TCR increases with increasing ρ.

The Mooij correlation can be interpreted very convincing, if the phase separation in disordered materials is taken into
account and when the carriers in the two phases have different signs, electrons (phase A) and holes (phase B), as typical
for disordered alloys between a transition-metal and Si or Ge. For these two phases the Fermi statistics is to be applyed
separately. In accordancs with Fermi statistics the chemical potentials µ0

A and µ0
B decrease with increasing temperature,

∂µ0
i

∂T
= −

π2k2
BT

6EF,i
. (22)

Because of Equation (9) and (10) µ0
A has the same sign as µA, but µ0

B has the opposite sign as µB. Therefore, with increasing
temperature, a (small) back-electron transfer takes place from the phase with the lower potential (phase B) to the one with
the higher potential (phase A), because in the alloy a common electrochemical potential µ must be maintained. This back-
electron transfer from the B phase to the A phase leads to an increase of both n and p with increasing T , corresponding
to a negative contribution to the TCR, because ρ decreases with increasing n and p. As follows from Equation (22), this
effect on TCR is the larger the smaller EF,A and EF,B (or the smaller n and p), what correlates with larger ρ. This negative
contribution is in competition to the positive contribution to TCR due to scattering of the electronic carriers. This means
that the negative contribution to TCR due to back-electron transfer dominates more and more the positive contribution due
to scattering as ρ increases. Precise this property is reflected by the Mooij correlation between ρ and TCR.

It should not go unmentioned here that there are also homogeneous disordered metallic alloys with a negative TCR. A
blatant example are (crystalline) Cr1−xAlx alloys, which have extremely high values for ρ and negative TCR with maximum
values for x ≈ 0.23, both atypical for metallic alloys (Chakrabarti & Beck, 1971). This phenomenon is discussed in detail
in the book (Sonntag, 2023, there section 5.6).

3.3 What Is the Reason for the Giant Hall Effect in Metal-Insulator Composites?

The Giant Hall effect (GHE) means that in thin films of metal-insulator composites (M-I composites) near the metal-
insulator transition (M-I transition) the Hall coefficient can be up to 10000 times larger than that in the pure metal (Zhang,
Liu, & Pakhomov, 2000; Pakhomov, Yan,& Zhao, 1995; Zhao & Yan, 1997; Wu, Li, & Lin, 2010; Wen et al., 2005; Miao
& Xiao, 2004; Pakhomov et al., 1997; Zhang et al., 2001; Liu et al., 2004; Denardin et al., 2004; Denardin et al., 2000).
Since M-I composites also consist of two separate phases with phase grains at the nanoscale, it is obvious to ask whether
Equation (1) is reflected in the concentration dependence of the Hall coefficient R of M-I composites as well. Indeed, we
have found that in the metallic regime of Cu1−y(SiO2)y and Ni1−y(SiO2)y thin films, the concentration dependence of R
can be approximated by linear relations

d ln |R| = α′ · dη (23)

with constant slope α′. η = y/(1 − y), where y is the volume fraction of SiO2. This finding is illustrated in Figure 1,
where the absolute R values measured by Zhang et al. (2000), Saviddes et al. (1982) and Pakhomov et al. (1995) are
drawn versus η. The signs of the R values are negative. For Ni1−y(SiO2)y, Figure 1, the extraordinary R values (taken from
Figure 3 in Pakhomov, Yan, & Zhao, 1995) are drawn. For Cu1−y(SiO2)y and Ni1−y(SiO2)y it follows from Figure 1 (upper
grafics), α′ = 7.9 and α′ = 10.3.

Figure 1 (upper graphics) reflects immediately Equation (1) provided that |R| ∝ 1/n (nearly free electrons - NFE). For a
more precise discussion, we have to separate the contribution of the metallic phase to R, which can be done by Equation
(3). For the boundary case ”σB = 0 and σA , 0” we get from Equation (3)
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st

s(0) = 61512 r(0) = 16.257

sA(0) = 62795 rA(0) = 15.925 R: Cu-SiO2 [Savvides et al. (1982); T=4.2K]
nH=-(eRHA)-1

s et al. (1982)] L = sA/(K*nH^2/3); K=0,7867*10-4/O18.9.13/1: 18.9.13/1: (10-5cm³/C) RA(So): RA (C&J): (10^21cm-3)(10^21cm-3)
s/s(0) sA/sA(0) (10 -̂8cm) log(x-xc) RHA* nHA* RH (4.2K) nH=1/(e*RHCu-SiO2 [SaCu-SiO2 [SanHA(So)  [NnHA(C&J)  [N. Savvide

1 1 sA=s(meß)/ L (So) (C&J) (So) (C&J)

0.08459 0.11979 7522 2.80 -0.438 1.112 561.24 1.4 446 0.968 1.1841667 644.63 527

0.07744 0.11074 6954 2.70 -0.444

0.06724 0.09615 6038 2.35 -0.444

0.05635 0.08273 5195 2.28 -0.458 ns = [s(meß)/(C*Φ)]^1,5

0.04324 0.06682 4196 2.32 -0.487

0.02881 0.04743 2978 2.21 -0.523 Φ = [(1 − ζ/2)/(1 + ζ)]
0.01666 0.02924 1836 1.82 -0.560

0.01609 0.02868 1801 1.93 -0.569
0.01422 0.02555 1604 1.78 -0.574
0.01110 0.02071 1301 1.72 -0.596
0.00794 0.01520 954 1.42 -0.612
0.00493 0.00973 611 1.05 -0.631
0.00256 0.00523 328 0.65 -0.650
0.00235 0.00489 307 0.67 -0.663
0.00131 0.00279 175 0.43 -0.677
0.00104 0.00225 142 0.37 -0.688
0.00072 0.00156 98 0.26 -0.691
0.00038 0.00085 54 0.17 -0.710 19.369 32.23 31.0 20 13.554 22.276944 46.05 28
0.00037 0.00083 52 -0.717 MST (?)
0.00013 0.00030 19 -0.738
0.00014 0.00034 22 -0.750
0.00009 0.00021 13 -0.739
0.00003 0.00008 5 -0.769
0.00003 0.00007 4 -0.786
0.00001 0.00003 2 -0.823
0.00001 0.00002 2 -0.816
0.00001 0.00002 1.4 -0.858
0.00000 0.00001 0.7 -0.877
0.00000 0.00001 0.5 -0.910

84.65 10^21cm-3
8.465E+22

/ 63,54g) * 8,93gcm-3
iO2 [Liu et al. 2004; T=300K](Kurzfassung)

über "L":
sA = C*d*(L/d)*n (̂2/3) 
n = [sA*(d/L)/(C*d)]^1.5 über "µ":

C = 7.868E-05 sA = e*µ*n
d = d(Cu) = 2.56E-08 1/Ohm µ = 0.4

r(0) = 1.451 (L/d) = 1.2732406 cm e = #########
s(0) = 689219 r(0) = 1.451

18.9.13/1: sA(0) = 680213 rA(0) = 1.470 (10 -̂8cm) 18.9.13/1: 20.9.13: 20.9.13:
s(interpol.) sA*(RT) s/s(0) sA/sA(0) sA=s(meß)/[1-1,5(1-XA)]; [H. Liu et al. (2004)] n_sA(L) n_sA(L)* n_sA(µ) n_sA(µ)*
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Figure 1: Upper graphics. Experimental Hall coefficient R at 5 K versus y/(1 − y) for Cu1−y(SiO2)y and Ni1−y(SiO2)y

taken from Zhang et al. (2000) (circles), Savvides et al. (1982)(triangles) and Pakhomov et al. (1995) (diamonds). Lower
graphics RA: calculated by RA = R (3υA−1)

2 according to Equation (24), where υA = 1 − y is set.

1
R

=
1

RA

(3υA − 1)
2

, (24)

and for σ,

σ = σA
(3υA − 1)

2
, (25)

following from ∑
i

υi
σi − σ

σi + 2σ
= 0, (26)

derived by Odelevskii (1951) and Landauer (1952), where σA and σB mean the conductivities of phase A and phase B,
respectively.

For RA calculated by Equation (24) applied to the R data of Figure 1, we find that they can be approximated by a relation
similar to Equation (23),

d ln |RA| = β′ · dη, (27)

where β′ is a constant for a given M-I composite: For Cu1−y(SiO2)y and Ni1−y(SiO2)y it follows from Figure 1 (lower
grafics), β′ = 6.5 and β′ = 9.0, respectively. This finding suggests that the colossal increase of |R| is caused by one
(!) effect acting in the complete metallic regime. Inserting |RA| ∝ 1/n (NFE approximation) in Equation (27) leads to
Equation (1), or in differential representation,

−dn = β · n · dζ, (28)

where β ≈ β′. n is the electron density in the metallic phase and ζ = υB/υA. υB and υA are the volume fractions of the
insulator phase (B) and metallic phase (A), respectively. υB and υA are identical with y and 1 − y, respectively, if the
insulating phase consists only of SiO2 and the metallic phase only of Cu or Ni. In this case, β = β′. If, however, a certain
portion of the metalloid atoms is dissolved in the metallic phase and/or a certain portion of the metal atoms is solved in
the insulating phase, then β′ is only an approximation for β.
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Equations (1) and (28) agree with the equations (15a) and (15b), respectively, in the publication by Sonntag (1989) which
describe electron transfer between the phases in amorphous transition-metal–metalloid alloys. There the parameter β was
interpreted to be a constant for a given composite, which is determined by the average potential difference between the
phases, ∆V .1 Phase B is the phase with the deeper potential. Because of this analogy, Equation (27) suggests the following
interpretation of the GHE: The colossal increase of |R| with decreasing metal content is essentilly caused by a decrease
of n due to electron transfer to the insulator phase (SiO2) which can be described by Equation (1), respectively Equation
(28).

Because the Fermi level lies in the energy gap between the valence band and conduction band of the insulator SiO2
phase, the transferred electrons occupy surface states on the SiO2 phase. This is the reason for the granular structure:
spherical metal grains are embedded in the amorphous SiO2 phase (see, e.g., Abeles et al. (1975), there Figures 13-16). A
minimum energy is realized if, firstly, the transferred (pinned) electrons are arranged on spherical surfaces and, secondly,
the insulating phase forms very thin layers around the metal grains providing the largest possible surface to accommodate
the large number of transferred electrons. This electron transfer from the metallic phase to the phase boundaries provides
the logical explanation for the granular structure in M-I composites. Such a granular structure has been found in many
M-I films, Abeles et al. (1975), Zhang et al. (2001), Wu et al. (2010), and Denardin et al. (2003). This proposal applies
to magnetic M-I composites as well. For nonmagnetic M-I composites the parameter C in

RA = −
C
|e| · n

=
µH,A

σA
(29)

(NFE-approximation) is of the order of one, depending slightly on the magnetic field (Kirejew, 1974, p.348). σA and
µH,A are the conductivity and Hall mobility, respectively, of the phase A. For magnetic M-I composites Equation (29)
holds approximately if ” = ” is replaced by ” ∝ ” considering the effect of the additional internal magnetic field due to
the magnetization: An electron sees the effective magnet field Hw = H + Hi, where Hi � H. H is the external field
applied to the specimen and Hi is the internal field produced by the quantum mechanical exchange forces (Schulze, 1975,
p.341). An electron does not distinguish between H and Hi. It moves according to the Lorentz force determined by Hw

and the electrical field E. One can assume that Hw is nearly proportional to H as long as Hi is nearly proportional to
the magnetization produced by H. This assumption is supported by the experimental finding by Xiong et al. (1992) that
(for not too small fields H), in the granular Co-Ag system, the Hall resistivity ρxy is linearly proportional to H. If so, the
measured R values differ from the calculated R values, Equation (29), only by a factor which is nearly constant. Therefore,
we assume that the EMT-formula for R, Equation (3), can be applied to magnetic composites as well.

If the metallic phase of a M-I composite is a noble metal, the NFE-approximation is a good one for the metallic phase,
above all as the Fermi surface moves away from the Brillouin zone boundary as n decreases. For the metallic phase in
Ni-SiO2 the NFE-approximation is surely also a good one, because Ni has only 0.55 4s valence electrons per Ni atom
(Schulze, 1967, p.271).

If the metallic phase of a M-I composite is a transition-metal, the electron transfer is expected to be composed of both
the d and s electrons. As the d density of states at the Fermi level is essentially larger than the s electron density, the
principal share of electrons transferred to the insulating phase, is made up of d electrons, that is, the s electron density in
the metallic phase remains relatively large. Because the electronic transport is determined by the s valence electrons in
the A phase, the effect of the electron transfer on the electronic transport in the metallic phase is expected to be relatively
small, and the increase of RA due to electron transfer should be essentially smaller as in M-I composites containing a noble
metal as metallic phase. For instance, in Mo1−y(SnO2)y (Wu et al. 2010, there Figure 2), we do not find an exponential
change of RA with increasing y/(1 − y): for 0 < y < 0.55 (i.e. 0 < y/(1 − y) < 1.22), the experimental R values (Wu et al.
2010) of Mo-SnO2 fluctuate slightly where the average of RA calculated by Equation (24) remains nearly independent of
y. Only approaching the M-I transition (y > 0.6), RA increases drastically.2

Now the question arizes: why do we find an exponential dependence of n(ζ) in Ni1−y(SiO2)y although Ni is a transition-
metal? X−ray emission spectra of amorphous and crystalline Ni1−ySiy and Pd1−ySiy alloys by Tanaka et al. (1985) have
shown that there are strong bonds between d orbitals (of Ni and Pd) and Si p orbitals leading to a stronger splitting of
the d band into a bonding and antibonding fraction, where the former is lifted, whereas the latter lies below the Fermi
level. Analogously, for Ni1−y(SiO2)y one can also expect strong bonds between Ni d orbitals and Si (and O) p orbitals
which leads to a strong reduction or disappearance of the d density of states at the Fermi level. Therefore, we find an

1The potential difference ∆V is identical with the difference of the electrochemical potentials of the phases, as long as they are not in contact to each
other. Only, when a contact is realized, a common electrochemical potential is realized by electron transfer between the phases.

2In Mo1−y(SnO2)y the carriers are holes (Wu et al. 2010); electron transfer away from the metallic phase can lead to an increase of the hole density
p, but also to a decrease of it depending on the position of the Fermi surface in relation to the Brillouin zones.
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Figure 2: (a) log[σ(y)/σ(0)] versus y/(1−y) for Ni1−y(SiO2)y, Au1−y(Al2O3)y, W1−y(Al2O3)y and annealed W1−y(Al2O3)y

(at 12000C in H2) taken from Abeles et al. (1975)(there Figure 19) and Ag1−y(SiO2)y, Priestley et al. (1975). (b)
log[σA(y)/σA(0)] versus y/(1 − y), calculated by Equation (25) and υA = 1 − y. Inlets in (a) and (b): Cu1−y(SiO2)y and
Ni1−y(SiO2)y, taken from Liu et al. (2004) and Pakhomov et al. (1995) , respectively.

experimental increase of |RA|, Figure 1. Moreover, there is strong evidence for the assumption that the metallic phase does
not consist of Ni alone, but that there is a certain fraction of Si (and O atoms) dissolved in the metallic phase.

In summary, for M-I composites containing a noble metal, we expect an exponential n(ζ) dependence because the electron
transfer is made up entirely of the s electron density. For M-I composites containing a transition-metal, an exponential
n(ζ) dependence can be expected if the d density of states at the Fermi level is strongly reduced, for instance caused by a
hybridization of the d states with the p states of the metalloid.

Comparing granular M-I composites with amorphous transition-metal–metalloid alloys, we state that the exponential
increase of R and the exponential decrease of σ with y (respectively y/(1 − y)) is essentially caused by the same phe-
nomenon: decrease of the electron density in the metallic phase due to electron transfer to the metalloid or insulator
phase. The essential difference between these two material classes is the fact that in the metalloid phase of the amorphous
transition-metal–metalloid alloys an incompletely occupied sp band can exist for accepting the transferred electrons (Son-
ntag 2005, there Section 2.1). In contrast, in the insulator phase of M-I composites only localized states on the surface of
it are available for acceptance of the transferred electrons. This difference is also the reason for the different microscopic
structures of M-I composites and amorphous transition-metal–metalloid alloys. Another, rather quantitative difference is
the fact that the decrease of n in M-I composites is essentially larger than in amorphous transition-metal–metalloid alloys,
as the average potential difference between the phases, ∆V , is essentially larger.

Our electron transfer model is compatible with a series of other experimental findings:

1) The GHE occurs both in magnetic M-I composites and non-magnetic ones suggesting a mechanism independent from
magnetism, Zhang et al. (2001).

2) In M-I composites, σ and σA decrease exponentially with decreasing metal content in correspondence with the ex-
ponential increase of R. For some M-I composites, in Figure 2, log[σ(y)/σ(0)] and log[σA(y)/σA(0)] are drawn versus
y/(1 − y). In the NFE approximation the connection between σA and n is given by

σA = 2
( π

3

)1/3 e2

h
Ln2/3 = |e|µH,An, (30)

where µH,A is the mobiliy of the carriers which is assumed to be equal to the Hall mobility. h is Plancks constant. L is
the (elastic) mean free path of the electronic carriers in the (metallic) phase A. Because of Equation (30) the exponential
concentration dependence of n, Equation (1), is also reflected by the concentration dependence of σA(y)/σA(0) in Fig.2
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if the concentration dependences of L or µA can either be neglected or change exponentially with y/(1 − y) as well. For
W1−y(Al2O3)y we assume that there are strong bonds between W d orbitals and Si (and O) p orbitals, comparable with the
situation in Ni1−y(SiO2)y descussed earlier.

The only exception in Fig.2, where such an exponential concentration dependence of σ, respectively σA, does not oc-
cur, is represented by the annealed W1−y(Al2O3)y samples where grown crystalline phase grains influence the electronic
properties.

3) With increasing y the temperature coefficient of resistivity ρ (= 1/σ), TCR, decreases and changes sign from positive to
negative (Denardin et al. 2003, Zhang et al., 2000, Liu et al., 2004, Pakhomov et al., 1997, Zhao and Yan, 1997, Ren et al.,
2007). The reason is an activation of localized electrons to the conduction band of the metallic phase. This conductivity
contribution by activation is in competition with the positive contribution to the TCR due to scattering. The activation
contribution is the larger the larger the amount of transferred electrons, i.e., the larger y, in correspondence to Equation
(1).

In earlier papers it was suggested ”that the GHE is a result of the drastic reduction of both the effective electron density
and (in case of EHE3) the effective carrier mobility” (Pakhomov et al., 1997) or a drastic reduction of carrier density
(Jing et al., 1996). These two suggestions (Jing et al., 1996; Pakhomov et al., 1997) correspond to our physical model
described. We emphasise, however, that it is not any effective electron density or carrier density (electrons or holes), but
it is the real electron density which is reduced in the M-I composites.

3.4 The Effect of the Grain Size on the GHE

Approaching the M-I transition, the charging energy arising from the positively charged metal ions grows more and more
and one could assume that such ’metal’ phase cannot exist, because the electrostatic contribution by the positive ions
increases more and more as n decreases. However, the growth of the electrostatic energy is not unbounded; decrease of n
is accompanied with a decrease of the sizes of the metal grains. For granular Al1−yGey films, with increasing y the sizes of
the metal grains, DA, decrease from 10-20 nm (on the metallic-rich side) to sizes < 2 nm beyond the MIT (Rosenbaum et
al., 1994, Lereah et al., 1991). This decrease of DA with decreasing metal content even continues in the dielectric regime,
as found for Ni1−y(SiO2)y, Pt1−y(SiO2)y and Au1−y(Al2O3)y thin films (Abeles et al., 1975, there Figure 17), where DA

decreases from 4 nm at y ≈ 0.5 to 1 nm at y ≈ 0.9. For co-sputtered granular Ni1−y(SiO2)y films, Abeles et al. (1975)
found that the average particel size, DA, decreases with Ni content: DA = 14 nm, 9.4 nm, 5.7 nm, and 3.7 nm for 87, 67,
56 and 37 vol % Ni, respectively (Abeles et al., 1975, there Figure 11).

We suppose that the electron transfer described by Equation (1), respectively Equation (28), holds also beyond the M-I
transition. This assumption correlates with the concentration dependence of DA, which decreases continuously through
the M-I transition as cited.

Equation (1), is part and result of a complex energy balance realized during solidification of the alloy, where the sizes
of the phase grains are part of this balance. Equation (1) holds for situations, where atomic diffusion does practically
not play a role because of the high cooling rate during the film deposition process. Because of this suppression of the
long-range diffusion, the EMT provides a more realistic description of the electrical properties of disordered alloys with
phase separation than any percolation description. This is discussed by Sonntag (2005) (there Section 4.1).

On the other hand, at sufficiently high temperatures, appreciable diffusion can take place leading to additional growth
of DA. With increasing DA, for instance due to annealing, the electron transfer to the phase boundaries can no longer
be expected to follow Equation (1). Otherwise, the growth of the electrostatic energy could be shoreless. Therefore,
the GHE decreases or disappears by annealing at sufficiently high temperatures, Liu et al. (2004). This phenomenon is
also reflected by the concentration dependences of σ and σA which can be essentially smaller than before annealing. One
typical example is W1−y(Al2O3)y, Figure 2: Before annealing, log[σ(y)/σ(0)] is approximately linear in y/(1−y), but after
annealing at 12000C it is not. Reason is the fact that after annealing the metallic phase grains are essentially larger than
before, for instance DA ≈ 20 nm for y ≈ 0.47 (Abeles et al. (1975), there Figure 2), whereas DA ≈ 2 nm for the unannealed
samples (Abeles et al., 1975, there Figure 1). Because of the large phase grains in the annealed W1−y(Al2O3)y samples,
the electron transfer (related to n(0)) is essentially smaller than in the unannealed samples. Elsewise, the electrostatic
energy would be too large.

This can also explain the experimental finding by Liu et al. (2004) that the maximum of the enhancement of R in
Zn1−y(SiO2)y is about 60, but 700 in Cu1−y(SiO2)y: the size of the granules in Zn1−y(SiO2)y is much larger (DA ≈ 20nm,
Liu et al., 2004, p.608) than in Cu1−y(SiO2)y, for which DA ≈ 1 nm is given as the minimum value (Liu et al., 2004,

3”EHE” is applyed in (Pakhomov et al., 1997) for the extraordinary Hall effect in magnetic M-I composites.
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p.606). Apparently, in Zn1−y(SiO2)y a certain measure of atomic diffusion has been happen during film deposition, so that
this balance was shifted to smaller electron transfer, i.e., Equation (1) does no longer apply.

4. Summary

Until the end of the twentieth century, it was generally assumed that in amorphous metallic alloys the atoms are arranged
randomly and homogeneously. On this basis a quantitative calculation of the electronic transport coefficients σ, κ4, S and
R applying classical transport theories met with little success. Moreover, there were a series of open questions/problems,
which were unsolved for a long time. Only the realization that many of these amorphous metallic alloys are composites
consisting of different amorphous phases led to a breakthrough and progress and provided the basis for solving a number
of previously unsolved mysteries of solid state physics. Based on this realization a new theory has been developed with
the following key results:

Between the two phases in amorphous alloys and nano-scaled composites there is electron redistribution (electron trans-
fer) which can be described by n = nA · exp(−β υB

υA
).

Formulas have been derived for calculation of the thermopower and the Hall coefficient of composites.

Starting with these key results, a number of previously unsolved physical problems/questions have now been answered,
for example these, which are subject of this paper:
Why are there simple metals with positive thermopower?
Why are there metals with a negative TCR
What is the reason of the Mooij correlation?
What is the reason for the Giant Hall effect?

Answers to a series of other problems/questions are described in the book (Sonntag, 2023), for instance, is there a finite
minimum metallic conductivity σmin as originally proposed by Mott (1972, 1981).
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