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Abstract 
Creep curves of Grade 91 and 92 steels were analyzed by applying an exponential law to the temperature, stress, 
and time parameters to investigate the formation process of the Z-phase, which lowers the long-term rupture 
strength of high-Cr martensitic steel. The activation energy (𝑄), activation volume (𝑉), and Larson–Miller 
constant (𝐶) were obtained as functions of creep strain. At the beginning of creep, sub-grain boundary 
strengthening occurs because of dislocations that are swept out of the sub-grains, and this is followed by 
strengthening owing to the rearrangement of M23C6 and the precipitation of the Laves phase. Heterogeneous 
recovery and subsequent heterogeneous deformation start at an early stage of transient creep near several of the 
weakest boundaries because of the coarsening of the precipitates; this results in the simultaneous decreases in 𝑄, 𝑉, and 𝐶 even in transient creep. Further, this activity triggers an unexpected degradation in strength because of 
the accelerated formation of the Z-phase even in transient creep. The stabilization of M23C6 and the Laves phase 
is important to mitigate the degradation of the long-term rupture strength of high-strength martensitic steel. The 
stabilization of the Laves phase is especially important for Cr-Mo systems because Fe2Mo is easily coarsened at 
approximately 600 °C compared to Fe2W in Grade 92 steel. 
Keywords: creep, Grade 91, Grade 92, MX, M23C6, Laves phase, Z-phase, degradation mechanism, activation 
energy 
1. Introduction 
Grade 91 and 92 steels, which were originally developed by Oak Ridge National Laboratory and Combustion 
Engineering Corporation (Sikka, Cowgill, & Roberts, 1983) and Nippon Steel Corporation (Hasegawa, 2014), 
respectively, exhibit improved efficiencies of power generation, which reduces their negative effect on global 
warming (Masuyama, 2001; Kimura, Sato, Bergins, Imano, & Saito, 2011; Muroki, 2017). Since the development 
of these steels, several critical issues have surfaced over the years. The most significant issues related to these 
steels include the low rupture strength of the welded joints (Abson & Rothwell, 2013) and the unexpected 
degradation of the base metal in long-term rupture strength observed after conducting creep tests longer than 
several tens of thousands of hours (Kushima, Kimura, & Abe, 1999; Sawada, Kushima, Kimura, & Tabuchi, 2007). 
For solving this unexpected reduction in strength of base metal, a considerable number of studies have focused on 
developing new alloys (Abe, 2006a; 2008; 2011; Hashizume et al., 2009; Dudova, Plotnikova, Molodov, 
Belyyakov, & Kaibyshev, 2012), estimating methods for long-term rupture strength (Tamura, 2015a; Maruyama, 
2019), and investigating the unexpected decline in strength metallurgically (Abe, 2006b). The formation of coarse 
Z-phase particles at the expense of finely dispersed MX particles and recovery zones near the primary austenite 
grain boundaries (PAGBs) are considered dominant sources of the unexpected decline in strength (Kushima et al., 
1999; Suzuki, Kumai, Kushima, Kimura, & Abe, 2003; Sawada, Kushima, & Kimura, 2006; Danielsen, 2007; 
Hald, 2008; Kimura, Sawada, Kushima, & Toda, 2013). MX represents the carbonitride with cubic structure, 
where M indicates metallic elements such as Nb, V, and Cr and X indicates C or N, or both. Kimura et al. (2013) 
and Sawada, Kushima, Hara, Tabuchi, and Kimura (2014a) reported the negative effect of Ni contained in the 
specification range of Grade 91 (Ni ≤ 0.40 mass%, hereinafter %) on the long-term rupture strength during the 
formation of Z-phase particles. Sawada et al. (2019a) recently reported the harmful effect of the presence of 
micro-segregation before creep tests on the long-term rupture strength of ASME Grade T91. However, the 
following three issues have not been properly elucidated: i) the number densities of Z-phase particles in the 
ruptured specimens of Grade 91 steel tested at 600 °C are larger than those of Grade 92 steel (Sawada et al., 2006), 
ii) the start time of the Z-phase formation reported by Sawada et al. (2007) does not coincide with the inflection 
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point on the stress-rupture curves in high-strength martensitic steels such as Grade 91 steel (Kushima et al., 1999), 
which was highlighted by Yan, Wang, Shan, and Yang (2013), and iii) Hu et al. (2009) and Di-Gianfrancesco, 
Vipraio, and Venditti (2013) suggest that the direct cause of the unexpected decline in rupture strength may be 
dependent on the stability of the Laves phase, however this proposal is not generally supported. 
For these abovementioned issues, Tamura and Abe (2021a) analyzed creep curves of laboratory-prepared steel of 
9Cr-1W and 9Cr-4W steel by applying an exponential law (Tamura, Esaka, & Shinozuka, 1999, 2000, 2003; 
Kabadwal, Tamura, Shinozuka, & Esaka, 2010; Tamura, Abe, Shiba, Sakasegawa, & Tanigawa, 2013; Tamura & 
Abe, 2015b; Tamura, 2017) to time to rupture 𝑡௥ or time to a specific strain 𝑡ఌ as a function of the test 
temperature 𝑇  and stress 𝜎 . That is, the observed creep variables of 𝑇, 𝜎, and 𝑡௥ or 𝑡ఌ  are converted to 
activation energy 𝑄, activation volume 𝑉, and Larson–Miller constant 𝐶 (Larson & Miller, 1952) without 
using any adjustable parameters. The variations of 𝑄, 𝑉, and 𝐶 (hereinafter, 𝑄𝑉𝐶 for all parameters) as 
functions of creep strain are discussed metallurgically; the following conclusions are obtained: i) Sub-grain 
boundary strengthening by swept-out dislocations (SBSD) is an essential process at an initial stage of creep of 
martensitic steel. ii) Hardening by the dissolution and fine re-precipitation (DFRP) of M23C6 and the 
precipitation of Laves phase are added to SBSD for high Cr martensitic steel; this increases 𝑄. iii) After the 
peaks of 𝑄𝑉𝐶, heterogeneous recovery and simultaneously occurring heterogeneous deformation (HRHD) start 
at a later stage of transient creep near some of the weakest boundaries because of the coarsening of the 
precipitates, and this triggers the unexpected degradation in rupture strength caused by the coarsening of the 
Laves phase. Tamura and Abe (2021a) highlighted that the occurrence of HRHD at a later stage of transient 
creep is the root cause for the degradation in the creep strength of martensitic steel. Therefore, Tamura and Abe 
(2021b) applied this idea of HRHD for the unexpected degradation in the long-term creep strength of Grade 91 
and 92 steels and concluded the following: i) SBSD is an essential process at the initial stage of the creep of 
martensitic steel with high strength. ii) Hardening by the DFRP of fine M23C6 particles and the precipitation of 
the Laves phase are added to the SBSD for high-Cr martensitic steel with high strength, which increases 𝑄 with 
increasing strain. iii) After the peaks of 𝑄𝑉𝐶, HRHD starts at an early stage of the transient creep near several of 
the weakest boundaries in Grade 91 and 92 steels because of the coarsening of the precipitates, and this triggers 
an unexpected degradation in long-term rupture strength because of the accelerated formation of the Z-phase that 
consumes the fine MX particles inside or near the HRHD zone. iv) The stabilization of M23C6 and the Laves 
phase is important for mitigating the degradation in the long-term rupture strength of high-strength martensitic 
steels. v) The online monitoring of creep curves and 𝑄𝑉𝐶 analysis make it possible to detect signs for long-term 
unexpected degradation around targeted conditions within a relatively short time.  
However, there are no detailed discussions regarding why the degree of degradation in the strength of Grade 92 
steel is less severe than that in the strength of Grade 91 or why the rupture strength of Grade 92 steel is stronger 
than that of Grade 91. Therefore, this study aims to identify the origin of the differences between the long-term 
rupture strengths of Grade 91 and 92 steels; the differences in the precipitation behavior during creep between 
Grade 91 and 92 steels are discussed in detail based on the results of the 𝑄𝑉𝐶 analysis. 
2. Analysis Method and Meanings of Parameters 𝑸, 𝑽, and 𝑪 
2.1 Calculation of 𝑄, 𝑉, and 𝐶 
The calculation method was provided in detail in a previous work (Tamura & Abe, 2021a); here, we explain the 
method in brief. The 𝑡௥ or 𝑡ఌ can be expressed as 𝑡௥ or 𝑡ఌ = 𝑡଴expሼ(𝑄 − 𝜎𝑉) 𝑅𝑇⁄ ሽ,                                    (1) 
where, 𝑅 , 𝑇 , and 𝜎  are the gas constant, absolute temperature (K), and applied normal tensile stress, 
respectively (Tamura et al., 1999). When the pre-exponential factor (𝑡଴) of Equation 1 is related to the 
well-known Larson–Miller constant (𝐶), the equation is given by 𝑡଴ = 10ି஼.                                           (2) 
From Equations 1 and 2, we obtain log (𝑡௥ or 𝑡ఌ) = 𝑄 2.3𝑅𝑇 − 𝑉 2.3𝑅 ∙ 𝜎 𝑇 − 𝐶 = [𝑄] − [𝑉]⁄⁄⁄ − 𝐶.                       (3) 
The regression analysis of log (𝑡௥ or 𝑡ఌ) as a function of 1 𝑇⁄  and 𝜎 𝑇⁄  based on Equation 3 yields three 
parameters 𝑄, 𝑉, and 𝐶. In Equation 3, [𝑄] = 𝑄 2.3𝑅𝑇⁄  and [𝑉] = 𝜎𝑉 2.3𝑅𝑇⁄  are absolute numbers, and 
they are used in the subsequent sections. The 𝑄 and 𝑉 in Equation 1 represent the apparent activation energy 
and apparent activation volume for rupture or specific strain, respectively. For simplicity, we refer to them as 
activation energy and activation volume, respectively. Usually, the stress vs. 𝑡௥ data are plotted in a double log 
figure based on the Norton law (Norton, 1929). However, we assume Equation 3, and therefore, a linear 
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relationship for the 𝜎–𝑡௥ is obtained in a semi-logarithmic diagram (x-axis indicates the logarithm of 𝑡௥ or 𝑡ఌ 
and the y-axis, linear stress). Tamura et al. (1999) confirmed that when rupture data for several heat-resistant 
steels are classified into two or three groups based on test conditions, the rupture data for each group satisfy 
Equation 1. A technical merit of applying an exponential law to rupture data is that it is easy to estimate 
long-term rupture strength by extrapolating the linear relationship obtained from a specific data group using 
Equation 1 in a semi-logarithmic diagram to a given test condition beyond the test conditions of the data group. 
Alternatively, the estimation can be performed graphically because the regression lines at different temperatures 
obtained using Equation 3 are approximately parallel with each other. 
Equation 1 is introduced by considering an activation process for dislocation motion (Schoeck, 1980), Orowan 
equation (Orowan, 1940), and Monkman–Grant relationship (Monkman & Grant, 1956). Therefore, when 
Equation 1 is applied to 𝑡ఌ, the linear relationship between 𝜎 and the logarithm of 𝑡ఌ for a given data group 
should be confirmed for a wide range of test conditions. Further, the linear relationship between the minimum 
creep rate (MCR) and 𝑡ఌ in a double logarithmic diagram should be confirmed based on the Monkman–Grant 
relationship. All data studied were checked, and the typical examples were shown in previous work (Tamura & 
Abe, 2021a; 2021b). The validity of applying Equation 1 to the creep data of martensitic steel with high strength 
was already confirmed although the scattering for times to low strains are rather large. 
In the Data Sheet of Grade 92 steel, No. 48B (National Institute for Materials Science: NIMS, 2018), an 
instantaneous strain 𝜀଴, time to 0.5, 1, 2, 5% strain, and 𝑡௥ together with MCR are listed; therefore, the strain 
rate 𝜀ሶ(𝜀௜) at a strain of 𝜀௜, where 𝑖 denotes the order number from the minimum strain reported, is calculated 
as 𝜀ሶ(𝜀௜) = (𝜀௜ − 𝜀௜ିଵ) (𝑡௜ − 𝑡௜ିଵ)⁄ ,                                   (4) 
where 𝑡௜ is the time to the 𝑖௧௛ strain. The accuracy of the strain rate calculated using Equation 4 is not very 
high because strain intervals are rather large. Therefore, creep rates near the MCR should be focused on because 
the strain rate near MCR is rather small and the sign of an increase rate of strain rate changes from negative to 
positive with increasing creep time. Further, creep rates just before rupture are calculated to utilize the data of 𝑡௥ 
and rupture elongation (EL); however, the strain rates are largely affected by necking for 𝑡ఌ 𝑡௥⁄ > 0.9 (Lim et al., 
2011). 
2.2 Metallurgical Meanings of 𝑄, 𝑉, and 𝐶 
2.2.1 Activation energy 
For a model based on crystallography, 𝑄 is defined as the magnitude of the energy barrier that must be 
overcome for a dislocation in an activation process. Conversely, 𝑄 calculated from Equation 3 is the apparent 
activation energy calculated from the measurable and macroscopic variables 𝑇, 𝜎, and 𝑡௥ or 𝑡ఌ, and therefore, 
the value of 𝑄 is obtained assuming that 𝐶 does not depend on 𝑇. Thus, 𝑄 contains not only the magnitude 
of the average creep resistance to mobile dislocations but also the effect of the temperature dependence of 𝐶 
(Schoeck, 1980; Tamura et al., 2000). In addition, 𝑄 contains the effect of the back stress against a moving 
dislocation caused by the grain boundaries, sub-boundaries, and stress field arising from other dislocations and 
precipitates (Tamura et al., 2000). Therefore, the 𝑄 decreases because of the reduction of the back stress, when 
the sub-grains grow, the dislocation density decreases, and the precipitates are coarsened during long-term creep 
at high temperatures. We frequently use the term sub-grain, which indicates the minimum region in which an 
identical slip system is operating. Thus, sub-grains denote the lath martensite, block, packet, and sub-grain itself. 
However, the value of 𝑄 does not decrease without limits. It is established that the value of 𝑄 in the 
high-temperature creep of materials is almost equivalent to the activation energies for self-diffusion (Sherby et 
al., 1953; Tamura, 2017); therefore, the lower limit of 𝑄 approximately approaches that for the self-diffusion of 
the alpha-iron, i.e., 267 kJmol−1 (Oikawa, 1982). The magnitude of the back stress can be also roughly estimated 
using an exponential law; the details are discussed in a previous paper (Tamura & Abe, 2021b). 
2.2.2 Larson–Miller Constant 
The Larson–Miller constant 𝐶 can be calculated as the third term in Equation 3, and it is well-known that the 
value of 𝐶 is ~20 for many heat-resistant steels when the units for the test temperature and 𝑡௥ are Kelvin and 
hours, respectively (Tamura et al. 2013). The Larson–Miller constant is formulated as 𝐶 = log൫𝜌𝜆𝜈௘௙௙𝑏 2𝐶ெீ⁄ ൯ + Δ𝑆 2.3𝑅⁄ ,                               (5) 
where 𝜌, 𝑏, 𝐶ெீ , 𝜆, 𝜈௘௙௙ , and Δ𝑆 denote the dislocation density that contributes creep strain, length of 
Burgers vector, Monkman–Grant constant, maximum distance that a dislocation can move from a starting point 
to the next stable position through the activation process, effective attempt frequency per unit time to overcome 
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the obstacles, and entropy change involved in the activation process, respectively (Tamura et al., 2013). Though 
the 1st term of Equation 5 depends on 𝜌, the value of the 1st term of Equation 5 is approximately 13 for typical 
heat-resistant steels (Tamura & Abe, 2021a; 2021b). Therefore, the 2nd term of the entropy term is roughly 7 for 𝐶 ≅ 20, which corresponds to the entropy change related to the formation and migration of vacancies during 
creep controlled by self-diffusion. High values of 𝐶 > 30 are reported for many martensitic steels with high 
strength. The increase in 𝐶 is caused by an increase in the entropy term of Equation 5 because the increase in 
the 1st term caused by the high dislocation density of martensitic steel with high strength is not so large (Tamura 
& Abe, 2021a). 
Moving dislocations receive not only the applied stress but also the back stress arising from the surroundings. 
Simultaneously, the surroundings receive the effect of the stress and strain fields of the moving dislocations. 
However, these influences and the kinetic energy of the moving dislocations are irrelevant to the observed creep 
strain. Therefore, these energies are treated as heat loss in the system at a constant temperature when we analyze 
creep rate and 𝑡௥ assuming a thermally activated process. The heat loss is accounted for in the formulation of 
the Gibbs free energy as entropy change, i.e., as a part of 𝐶. Further, the influence of the back stress is accounted 
for in 𝑄 as the barrier to be overcome. Therefore, both 𝑄 and 𝐶 increase with increases in dislocation density 
and the formation of finer sub-structures. Consequently, the values of 𝑄 and 𝐶 for martensitic steels are large, 
typically 𝑄 = 800 kJmolିଵ and 𝐶 = 35. Similarly, both 𝑄 and 𝐶 are small when the dislocation density is 
low and the sub-grain size increases after long-term creep. In extreme cases, the values of 𝑄 and 𝐶 for the 
creep of a single crystal of pure iron are calculated as 294.0 kJmol−1 and 12.06, respectively, from the analysis of 
creep data reported by Karashima, Iikubo, Watanabe, and Oikawa, (1971). The values of 𝑄 and 𝐶 for the 
creep of the polycrystals of pure iron are calculated as 259.2 kJmol−1 and 10.94, respectively from the creep data 
reported by Karashima, Iikubo, and Oikawa, (1972). Moreover, the values of 𝑄 = 259.2 kJmolିଵ  and 𝐶 = 18.56 for 0.2% carbon steel (Tamura et al., 2013) and 𝑄 = 418 kJmolିଵ and 𝐶 = 20.99 as the average 
for 3 heats of 0.5Cr-0.5Mo steel (Tamura et al., 1999) are obtained. For many heat-resistant steels, 𝐶~20 is 
confirmed. The value of 𝐶 for the creep of the studied martensitic heat-resistant steels is considerably larger, i.e., 𝐶 > 30. This is because martensitic steels contain many dislocations and possess very fine sub-structures. 
Therefore, energy loss, i.e., an increase in entropy, becomes very large for the movement of dislocations. The 
changes in 𝐶  can largely be regarded as changes in the entropy term of Δ𝑆 2.3𝑅⁄  in Equation 5 when 
martensitic sub-structures are maintained even after the long-term creep of high Cr martensitic steel with high 
strength. 
2.2.3 Activation Volume 
From Equation 3, 𝑉 is formulated as 𝑉 = −2.3𝑅𝑇(𝜕log𝑡௥ 𝜕𝜎⁄ )்.                                  (6) 
Thus, the magnitude of 𝑉 is visually understood in a semi-logarithmic diagram of the 𝜎 − log𝑡௥ relationship 
because 𝑉 is inversely proportional to the magnitude of the slope of the 𝜎 − log𝑡௥ relationship at constant 
temperature. The term, 𝜎𝑉 in Equation 1 is equal to the work performed by a specimen on a loading system in 
an activated state or the potential drop of the loading system (Esherby, 1956; Mura & Mori, 1976). In addition, 
the potential drop is equal to the force on a dislocation 𝜏𝑏 times the area swept out of the dislocation in an 
activated state, where 𝜏 denotes a shear stress on a slip plane and is proportional to 𝜎. The 𝑉 generally 
increases after long-term creep because the swept-out area by dislocation motion increases in the sub-grain when 
the size of the sub-grain increases or the densities of obstacles for a dislocation decrease due to recovery 
(Tamura et al., 2000). 
2.2.4 Inter-Relationships among 𝑄, 𝑉, and 𝐶 
Although 𝑄 is an important parameter for creep strength, creep strength is not always high when 𝑄 is large. 
This is because Equations 1 and 2 indicate that 𝑡௥ is the product of a very large value, i.e., expሼ(𝑄 − 𝜎𝑉) 𝑅𝑇⁄ ሽ 
and a very small value of 10ି஼. Since 𝑄 is large compared to 𝜎𝑉, 𝑄 and 𝐶 should have a strong positive 
correlation (Tamura & Abe, 2021a; 2021b). However, note that 𝑄 and 𝐶 have different meanings. 
On the one hand, 𝑄 denotes the magnitude of the barrier that must be overcome for a moving dislocation 
caused by nearby precipitates, dislocations, boundaries, and the entire specimen. On the other hand, 𝑉 is an 
important parameter in creep, but 𝑉 is a factor reflecting the movable area for a dislocation. That is, 𝑉 is a 
parameter that only relates to the microstructures inside sub-grains, which is essentially different from 𝑄. 
3. Heterogeneous Deformation 
We assumed uniform deformation in the previous sections. However, Kushima et al. (1999) reported that the 
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extremely recovered zone in the vicinity of PAGBs with a width of approximately 1 μm was formed in a 
ruptured specimen of Grade T91 steel tested at 600 °C under 100 MPa (𝑡௥ = 34 141 h), where the unexpected 
drop in rupture strength was clearly confirmed. Such heterogeneously recovered zones (HRZs) are observed in 
the ruptured specimens of not only Grade 91 steel, but also Grade 92 steel (Sawada & Kimura, 2019b). Further, 
the HRZ is already formed at an early stage of accelerating creep, near the MCR point of Grade 91 steel (Kimura, 
Suzuki, Toda, Kushima, & Abe, 2002). 
Strain concentration should occur in these HRZs or the HRZ will deform locally. The strain rate in the HRZ is 
expected to be higher than the observed creep rate. Consequently, the stress and strain concentrations should 
occur around or inside the HRZ. This phenomenon is referred to as HRHD (heterogeneous recovery and 
heterogeneous deformation). 𝑡௥ corresponding to the higher strain rate in the HRZ decreases based on the 
Monkman–Grant relationship (Monkman & Grant, 1956). Sawada et al. (2006) and Sawada, Kushima, Tabuchi, 
and Kimura (2011) reported that strain promotes the formation of the Z-phase that consumes finely dispersed 
MX with cubic structure. Therefore, when the HRHD occurs, the formation of the Z-phase is accelerated 
compared to that during homogeneous deformation. Once the HRHDs occur, the rupture strength of martensitic 
steel with high strength is lowered unexpectedly. 
The changes in 𝑄𝑉𝐶 for the cases of the occurrence of stress and strain concentrations in an HRHD zone can be 
simulated using Equation 1. The results showed that 𝑄𝑉𝐶 decrease simultaneously with an increase in strain 
(Tamura & Abe, 2021b). The simultaneous decreases in 𝑄𝑉𝐶 are observed from the later stage of transient 
creep of 9Cr-4W steel and from the early stage of transient creep of Grade 91 and 92 steels at approximately 
600 °C under low stresses; for these cases, HRHD should start to occur although a microstructural investigation 
is not yet performed (Tamura & Abe, 2021a; 2021b). 
A similar phenomenon is confirmed in the creep behavior of the welded joints of martensitic steel; in this case, 𝑄𝑉𝐶 decrease simultaneously as compared with those of the base metal (Tamura & Abe, 2021a). 
4. Materials 
In the previous work (Tamura & Abe, 2021b), creep curves of all types of 9Cr martensitic steel with high 
strength were not analyzed because of the limitations of capacity for each manuscript (< 8 MB). In this study, 
the creep curves of the plate material, ASME Grade 91, is analyzed and the root cause of the degradation of the 
9Cr martensitic steel with high strength is studied by combining the results of ASME Grades P92, T92, and T91 
shown in the previous work. Table 1 summarizes the form of the product, heat treatment conditions, chemical 
composition, prior austenitic grain size number, and hardness of the materials tested (Rockwell hardness number: 
HRC); the precipitates before and during the creep tests are also listed (NIMS, 2007; 2014; 2018). In Table 1, 
MJP, MJT, MGC, and MgC represent the reference code numbers for single heat used in NIMS. Further, 
P92/MJP, T92/MJT, T91/MGC, and pl-91/MgC indicate the steels in this study, and the abbreviated names MJP, 
MHT, MGC, and MgC are also used for some cases. When we refer to previous work or generally describe 
scientific facts, we use Grade P92 or T92 and Grade T91 or 91 according to the ASME standard. Further, we use 
Grade 91 steel and Grade 92 steel to provide the general descriptions for 9Cr-1MoVNb and 
9Cr-1.8W-0.5MoVNbB steels, respectively. The major differences between T91/MGC and pl-91/MgC are the Ni 
content and stress-relief annealing. The major differences between P92/MJP and T92/MJT are the hardness and 
Si content; MJP is rather soft compared to MJT, and the Laves phase is considered less formed in the MJP 
because its Si content is smaller than that of MJT (Hosoi, Wade, Kunimitsu, & Urita, 1986). 
Microstructural changes in high-Cr martensitic steels during creep are summarized in detail in the previous paper 
(Tamura & Abe, 2021b) and individual research works are referred to in the later sections as necessary. 
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Table 1. Materials analyzed and their characteristics. The chemical composition is presented in mass %. The steel 
plate of pl-91/MgC was stress-relief-annealed at 730 °C for 8.4 h after tempering. 

Steel P92/MJP T92/MJT T91/MGC pl-91/MgC 

Product form Pipe Tube Tube Plate 

Austenitizing / °C 1070 1100 1050 1060 

Tempering / °C 780 780 765 760 

PAGS number 7.3 7.8 9.2 8.7 

HRC 14 16 18 17 

C 0.11 0.098 0.09 0.10 

Si 0.10 0.29 0.29 0.24 

Ni 0.17 0.13 0.28 0.04 

Cr 9.26 9.50 8.70 8.74 

Mo 0.42 0.36 0.90 0.94 

W 1.67 1.74 - - 

V 0.16 0.19 0.22 0.21 

Nb 0.057 0.062 0.072 0.076 

N 0.0462 0.0462 0.044 0.0582 

B 0.002 0.002 - - 

Before test M23C6, MX, BN M23C6, MX 

During creep M23C6, MX, Laves phase, Z-phase, BN M23C6, MX, Laves phase, Z-phase 

PAGS: Prior austenite grain size. 

 
5. Results 
5.1 Time to Rupture and Analysis of Creep Curves for pl-91/MgC Steel 
The results of the analysis for P92/MJP, T92/MJT, and T91/MGC have already been reported in a previous work 
(Tamura & Abe, 2021b). Therefore, only the results for pl-91/MgC are explained below. Figure 1 shows the σ − 𝑡௥ relationship for pl-91/MgC (NIMS, 2014). The data were classified into 6 groups, Grs.I–IIIb. In the 
classification, the 𝜎– 𝑡௥ relationship of of T91/MGC, a steel similar to pl-91/MgC (Tamura & Abe, 2021b) was 
referred. However, a data point at 700 °C and 40 MPa could not be classified into any group. The stress vs. 𝑡𝜀 
diagrams were obtained using the digital data of pl-91/MgC (NIMS, 2014) and were also referred, where 𝜀 = 0.2 − 5%. Here, the creep data at 5% strain is converted from the 𝑡 − 𝜀ሶ diagrams and the 𝑡 − 𝜀 diagrams 
in the data sheet (NIMS, 2007). The typical diagrams for 𝜀 = 0.2 and 0.5% are shown in Appendix, Figures A1 
and A2. The regression analyses for each data group were conducted using Equation 3 and the regression lines 
are shown in Figures 1, A1, and A2 for each temperature in each group using the 𝑄𝑉𝐶s obtained. 
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Figure 1. Stress vs. time to rupture relationship for pl-91/MgC. Definitions of Gr.I etc., are explained in the text. 

Creep tests were conducted at 25 °C intervals; however, the test temperatures are only shown in every 50 °C  
 
Figure 1 indicates that, at 550 ℃, the 𝑡𝑟s of Gr.II are longer than the extrapolated 𝑡𝑟s of Gr.I for the stresses in 
Gr.II; however, the rupture data of Gr.I is lacking, i.e., 𝑡𝐼𝐼 > 𝑡𝐼, but 𝑡𝐼𝐼𝐼 𝑜𝑟 𝑡𝐼𝐼𝐼𝑎  < 𝑡𝐼𝐼 at lower stresses, where 𝑡𝑋 denotes the creep time for Gr.X at a specific condition. The 𝜎 − 𝑡௥ relationship at 550 ℃ in Figure 1 
shows that the change to an S-shape or the hardening in the rupture strength occurs after approximately 200 h, 
which corresponds to Gr.II or a degradation in rupture strength occurs after approximately 20 000 h, which 
corresponds to Gr.III or Gr.IIIa. This trend is also confirmed at 600 °C and the degradation in rupture strength is 
observed more clearly in Gr.IIIa. The degradation behaviors at 550 °C along the S-shape were confirmed in the 𝜎 − 𝑡଴.ହ, 𝑡ଵ, 𝑡ଶ, and 𝑡ହ diagrams and the 𝜎 − 𝑡଴.ହ relationship is shown in Figure A2 as an example although 
the data are lacking for Gr.IIIa. However, the 𝜎 − 𝑡଴.ଶ diagram changes to an inverse J-shape as shown in 
Figure A1, or the degradation in strength is not confirmed at 0.2% strain in Gr.III. This indicates that the 
degradation in strength is initiated in the strain range of 0.2 − 0.5% at 550 °C in Gr.III. Further, the inverse 
J-shape relationship is observed at 600 °C in plain 9Cr-1W steel and at 550 °C and 𝜀 = 0.2 % in MGC. The 
S-shape relationship in 𝜎 − 𝑡௥, 𝑡𝜀 diagrams at a constant temperature is frequently observed at 600‒650 °C 
in MJP, MJT, MGC, and 9Cr-4W steel accompanying degradation in the long-term creep strength (Tamura 
& Abe, 2021b). 
We find another data group, Gr.IIIb, instead of Gr.IIIa in a higher temperature and lower stress range. Both 
Grs.IIIa and IIIb are also found in the 𝜎 − 𝑡௥ relationship of T91/MGC (Tamura & Abe, 2021b). The slope of 
an extrapolated regression line to 600 °C of Gr.IIIb is clearly slower than that for Gr.IIIa as seen in Figure 1. The 
test conditions where the breakdown in strength is a critical issue in Grade 91 and 92 steels correspond to 
Grs.IIIa and IIIb (Kushima et al., 1999; Sawada et al., 2011). 

 
Figure 2. Average NSR vs. strain relationship for pl-91/MgC 
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Figure 2 shows the relationship between the strain and the average normalized strain rate (NSR) plotted in a 
double logarithmic diagram, where the strain rate at a specific strain is divided by each MCR and then the NSRs 
are averaged for each group. In Figure 2, the number of data for both Grs.IIIa and IIIb are only one and the strain 
in the far right for each group is the average of the EL. Further, the changes in the average NSR for MgC shown 
in Figure 2 are qualitatively similar to those of P92/MJP, T92/MJT, and T91/MGC shown in the previous work 
(Tamura & Abe, 2021b). In Figure 2, the characteristics of each group are clearly shown: the average NSRs for 
Grs.III and IIIa at an early stage of transient creep are rather high compared to those of Grs.I and II followed by 
rapid hardening (the slope, ∆log(average 𝑁𝑆𝑅) ∆log𝜀⁄ , is steep). Strains for the MCRs for each group in Figure 
2 range between 1 ‒ 2%. Under accelerating creep, the average NSRs for Grs.III, IIIa, and IIIb become large. 
The rapid strain hardening in transient creep for Grs.III and IIIa seems to trigger the subsequent increase in the 
creep rate during accelerating creep, which leads to the breakdown in rupture strength as indicated in Figure 1. 

 
Figure 3. Results of 𝑄𝑉𝐶 analysis as functions of creep strain for each group of pl-91/MgC steel; a) activation 
energy, b) activation volume, and c) Larson–Miller constant. Arrows indicate strains corresponding to the start 

time of the formation of the Z-phase (Gr.IIa and Gr.III) 
 
Figure 3 shows the variations of 𝑄𝑉𝐶 as functions of strain for each group, but the 𝑄𝑉𝐶s during creep for 
Grs.IIIa and IIIb were not obtained because of an insufficient number of data. The Z-phase is formed during the 
creep of Grs.IIa, III, IIIa, and IIIb (Strains for the initiation of the Z-phase formation are indicated by arrows for 
Grs.IIa and III in the figure). The values of 𝑄 at ruptures for Grs.III, IIIa, and IIIb where the breakdown in 
rupture strength is observed (Figure 1) are lower than 500 kJmolିଵ and larger than the 𝑄 for the self-diffusion 
of alpha-iron (Oikawa, 1982); however, the values of 𝐶  are approximately 20, which means that the 
microstructure is considerably recovered. On the other hand, 𝑄 > 700 kJmolିଵ and 𝐶 > 30 are obtained for 
Grs.1, II, and IIa at rupture, which implies the hard microstructure is maintained until rupture. 
5.2 Characteristic Features of Each Data Group 
5.2.1 Gr.I 
The average test conditions for Gr.I of pl-91/MgC are 486 °C, 331 MPa, 𝑡଴.ଶ = 15 h, 𝑡଴.ହ = 279 h, 𝑡ଵ =1883 h, 𝑡ଶ = 5554 h 𝑡ହ = 8989 h, and 𝑡௥ = 9808 h. The 𝑄𝑉𝐶 shown in Figure 3 increase up to 𝜀 = 1%, 
and then decrease. This behavior is the same as those of P92/MJP, T92/MJT, T91/MGC expect that the peak 
strains are 2% or larger. The Z-phase is not formed for Gr.I, which is the same as that for these steels. The 
average test temperature for pl-91/MgC is low compared to the other steels listed in Table 1 because the creep 
data tested at 450 °C are included. The initial increase in 𝑄𝑉𝐶 is caused by SBSD and grain boundary 
strengthening resulting from M23C6 being similar to those of each Gr.I of P92/MJP, T92/MJT, and T91/MGC 
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(Tamura & Abe, 2021b). Although the peak value of 𝑄 = 816.6 kJmolିଵ of MgC is lower than 𝑄 = 854.7 
and 917.7 kJmolିଵ for Grs.I of MJT and MGC (both are tubular products), respectively, the value of 𝑄 is 
comparable to 806.1 kJ/mol-1 for MJP; this is attributed to the differences in the initial hardness for each (see 
Table 1). However, it cannot be denied that the precipitation of the Laves phase assists grain boundary 
strengthening in the transient creep of MGC and MgC (both are Grade 91 steel) because the Laves phase 
possibly precipitates for Gr.I of the similar steel of T91/MGC to pl-91/MgC (Tamura & Abe, 2021b). After 𝜀 > 1%, the 𝑄𝑉𝐶 gradually decrease. However, MCR occurs at 𝜀 = 2%, and therefore, the recovery inside 
sub-grains and the coarsening of precipitates occurs heterogeneously between the 1 − 2% strain. Thus, HRHD 
is already initiated from the later stage of the transient creep. The occurrence of HRHD in the transient creep is 
confirmed in MGC, but is not observed in Gr.I for both MJP and MJT (Tamura & Abe, 2021b). After the MCR 
point though the 𝑄𝑉𝐶 gradually decrease up to rupture because of recovery, the 𝑄𝑉𝐶 values at the rupture are 
rather high. Therefore, the hard microstructure of martensitic steel still holds at rupture. 
5.2.2 Gr.II 
The average test conditions for pl-91MgC are 550 °C, 216 MPa, 𝑡଴.ଶ = 12 h, 𝑡଴.ହ = 202 h, 𝑡ଵ = 1190 h, 𝑡ଶ = 4150 h 𝑡ହ = 9820 h, and 𝑡௥ = 11 208 h. The 𝑄𝑉𝐶 increase up to 𝜀 = 1%, and then decrease. This 
behavior is similar to those for P92/MJP, T92/MJT, and T91/MGC except that the peak strains for MJP are 2%. 
The initial increase in 𝑄 and 𝑉 is caused by SBSD and the grain boundary strengthening is caused by M23C6 
and Laves phase similar to the cases for Gr.II of MJP, MJT, and MGC because the Laves phase is considered to 
form from approximately 2000 h (1.1% strain) under the average condition for Gr.II of pl-91/MgC based on the 
TTP diagram for the Laves phase using a 9Cr-1MoVNb steel plate (Tamura, Hayakawa, Yoshitake, Hishinuma, 
& Kondo, 1988). The 𝑄𝑉𝐶 behavior along the strain axis of Gr.II is similar to the behavior for Gr.I, but each 
value is larger than each of Gr.I through the entire duration of creep, and therefore, it is reasonable to consider 
that a similar creep phenomenon to Gr.I occurs more remarkably in Gr.II by increasing the temperature and that 
HRHD doubtlessly occurs between 1 − 2% strain. In the accelerating creep, precipitation hardening by the 
Laves phase is superior to the recovery of the martensite structure and coarsening of M23C6 and the Laves phase. 
Moreover, the Z-phase does not form at the average temperature of 550 °C (Sawada et al., 2007), and therefore, 
the Z-phase is considered to not be found through the entire duration until rupture and the strengthening particles 
of XM are not consumed. The average temperature for Gr.II of MgC is lower than those for each Gr.II of MJT 
and MJP. This is because the nose temperature of the TTP curve of Fe2Mo is lower than that of Fe2W (Tamura et 
al., 1988). The maximum value of 𝑄 = 910.5 kJmolିଵ for Gr.II of MgC is higher than that for Gr.I. This value 
is comparable to that of MGC and is smaller than those for MJP and MJT, 𝑄~1000 kJmolିଵ (Tamura & Abe, 
2021b). This can be attributed to the lower amount of Laves phase precipitated for MgC and MGC compared to 
those for MJP and MJT, which is inferred from the total amount of Mo and W for each steel (based on atomic 
fraction). Therefore, the strengthening effect in T91/MGC and pl-91/MgC is not as great as those for Gr.II of 
Grade 92/MJP and MJT. Further, the characteristic feature of Gr.II in the martensitic steel listed in Table 1 is 
similar to hardening caused by the precipitation of the Laves phase, which is promoted as compared to the case 
of Gr.I. This hardening initiates from the early stage of creep (𝑡଴.ହ = 202 h), and this trend is similar to the other 
three steels (𝑡ଵ = 139 h, 𝑡଴.ହ = 19 h, and 𝑡଴.ଶ = 7.8 h for P92/MJP, T92/MJT, and T91/MGC, respectively) as 
reported in the previous work (Tamura & Abe, 2021b). 
5.2.3 Gr.IIa 
Average test conditions for pl-91/MgC are 630 °C, 115 MPa,  𝑡଴.ଶ = 53 h , 𝑡଴.ହ = 457 h , 𝑡ଵ = 1747 h , 𝑡ଶ = 4336 h 𝑡ହ = 6939 h, and 𝑡௥ = 5834 h. The reason for 𝑡௥ < 𝑡ହ is that the short-term rupture data are 
included at 625 °C although the 𝑡ఌs are not indicated. The MCR occurs at approximately 2% strain on average. 
The Z-phase forms in an accelerating creep according to the TTP diagram for Grade T91 (Sawada et al., 2007) 
obtained using ruptured specimens of T91, while neglecting the effect caused by the difference between T91 and 
pl-91/MgC. According to the TTP diagram of Laves phase using the aged specimens of a 9Cr-1MoVNb steel 
plate (Tamura et al., 1988), the Laves phase starts to form near the MCR point. Therefore, the formation of the 
Z-phase and the coarsening of the Laves phase may induce negative effects on the accelerating creep. Neither the 
Laves phase nor the Z-phase forms in each Gr.IIa of the other three steels listed in Table 1; however, the Z-phase 
forms in a later stage of the accelerating creep of T91/MGC and the Laves phase forms in the later stage of the 
accelerating creep of P92/MJP based on each TTP diagram (Sawada et al., 2007; Tamura et al., 1988). These 
microstructural changes differ from pl-91/MgC; however, the 𝑄𝑉𝐶 behavior with the creep strain of the four 
types of steel listed in Table 1 are roughly the same as each other even though their test conditions and 𝑄𝑉𝐶 
values are different. The values of the 𝑄𝑉𝐶s are rather large and decrease gradually throughout the entire 
duration of creep except for each initial stage of transient creep, or the 𝑄𝑉𝐶 of all steels listed in Table 1 
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decrease simultaneously even in transient creep. In the case of pl-91/MgC, 𝑄 and 𝐶 increase slightly up to 𝜀 = 0.5% and decrease. 𝑉~1000 cmଷmolିଵ is already attained at 𝜀 = 0.2%, and then, it decreases. The high 
value of 𝑉 indicates that a highly recovered state with the growth of sub-grains continues through the entire 
duration of creep. However, up to 0.5% strain of transient creep, 𝑄 and 𝐶 increase and 𝑉 decreases; this 
strain range corresponds to transient creep, which shows that HRHD with the DFRP mechanism for M23C6 
occurs. After 𝜀 > 0.5% and up to the MCR point, the 𝑄𝑉𝐶 decrease simultaneously. These facts indicate that 
HRHD occurs in addition to the recovery in the transient creep, and the occurrence of the HRHD is necessary to 
maintain transient creep. Further, similar phenomena are found in Gr.IIa of P92/MJP, T92/MJT, and T91/MGC 
(Tamura & Abe, 2021b) 
5.2.4 Gr.III 
The average test conditions for pl-91/MgC are 544 °C, 198 MPa, 𝑡଴.ଶ = 48 h, 𝑡଴.ହ = 975 h, 𝑡ଵ = 5217 h, 𝑡ଶ = 18 942 h 𝑡ହ = 35 412 h, and 𝑡௥ = 32 830 h. The reason for 𝑡௥ < 𝑡ହ is the same as that for Gr.IIa. MCR 
occurs at 𝜀~2%, and the Z-phase does not form during the entire duration of creep at an average temperature of 
544 °C according to the TTP diagram for T91/MGC (Sawada et al., 2007). However, it is considered that the 
Laves phase is formed after approximately 2200 h according to the TTP diagram of the Laves phase using the 
aged specimens of a 9Cr-1MoVNb steel plate (Tamura et al., 1988) while neglecting the minor difference 
between the two alloy systems. Here, 2200 h corresponds to 𝜀~1.2% and it is in transient creep. The 𝑄𝑉𝐶 
values decrease from an initial stage at 𝜀 = 0.2% largely up to the MCR point and then decrease moderately or 
are flat up to rupture for each. Although the initial hardening behavior is not observed for Gr.III in Figure 3 as 
confirmed for those of Grs.II and IIa, the initial value of 𝑄 for Gr.III is sufficiently high and comparable to 
those for the peak value of 𝑄 for Gr.II. Therefore, SBSD with the DFRP of M23C6 is already completed up to 𝜀 = 0.2% or the grain boundary strengthening by Laves phase may already operate under a creep circumstance 
up to 𝜀 = 0.2%, though the later consideration is opposite to the estimation from the TTP diagram of Laves 
phase (Tamura et al., 1988) as mentioned above. Figure 3b) clearly shows that 𝑉 decreases from the initial stage 
of the creep up to the MCR point of 𝜀 = 0.5%. Even if the laves phase forms at an early stage of creep, the 
newly formed Laves phase particles precipitate only on the boundaries and not inside sub-grains under the creep 
conditions for Gr.III (Sawada et al.,1999; Panait, Bendick, Fuchsmann, Gourgues-Lorezon, & Besson, 2010a; 
Yan et al., 2013). Alternatively, the precipitation of the Laves phase on the boundaries does not decrease the 
moving area of dislocations, and therefore, the decrease in 𝑉 should not be affected by the hardening caused by 
the Laves phase. Therefore, HRHD (Tamura & Abe, 2021b) occurs from 𝜀 = 0.5% through transient creep 
accompanying the DFRP mechanism for M23C6 and the grain boundary strengthening by the Laves phase. Indeed, 
the degradation in strength for Gr.III is confirmed from 𝑡଴.ହ = 975 h <  𝑡ெ஼ோ, as shown in Figure A2, where 𝑡ெ஼ோ indicates the time to reach an MCR point and 𝑡ெ஼ோ ~ 𝑡ଶ = 18 942 h. In addition, for the other steels 
P92/MJP, T91/MJT, and T91/MGC, the degradation in strength for each Gr.III is confirmed in a strain range of 
0.5–1% in the transient creep (Tamura & Abe, 2021b) although the test conditions for the three steels listed in 
Table 1 are not the same. However, the Z-phase is considered to form at 𝜀 = 1.5% for each steel according to 
the TTP diagram (Sawada et al., 2007). The abovementioned facts may indicate that the formation of the Z-phase 
is not always necessary; however, the formation and subsequently occurring coarsening of the Laves phase is 
necessary for the degradation in strength. Indeed, the degradation in strength is confirmed in 9Cr-4W steel 
without the Z-phase wherein only the M23C6 and Laves phase form during creep (Tamura & Abe, 2021a). The 
possible occurrence of HRHD and the degradation in the strength during transient creep are similar issues to 
understand the creep of martensitic steel especially in transient creep. 
5.2.5 Gr.IIIa 
The average test conditions for pl-91/MgC are 581 °C, 128 MPa, and 𝑡௥ = 33 762 h. The 𝑄𝑉𝐶 values at the 
rupture are 432.4 kJmolିଵ, 318.2 cmଷmolିଵ, and 19.28, respectively. The average times to a specific strain are 
not obtained for Gr.IIIa because creep data are reported only under the conditions of 600 °C, 110 MPa, and 𝑡௥ = 35 420 h. Therefore, the 𝑄𝑉𝐶 values are not displayed as functions of creep strain, as shown in Figure 3. 
Creep rates at 600 °C and 110 MPa are calculated using Equation 4 and the results are shown in Figure 2. 
According to this curve, the MCR occurs at 𝜀 = 1% (10 400 h). The Laves phase starts to form at a very early 
stage of transient creep (𝜀 = 0.3% and approximately for 2000 h) according to the TTP diagram of Laves phase 
using the aged specimens of a 9Cr-1MoVNb steel plate (Tamura et al., 1988), which neglects the minor 
difference between the two alloy systems. The Z-phase starts to form near the MCR point (𝜀 = 1.2% and 
approximately for 12 500 h) according to the TTP diagram for Z-phase using the ruptured specimens of Grade 
T91/MGC (Sawada et al., 2007) neglecting the minor differences between MGC and MgC. The 𝑄𝑉𝐶 values at 
rupture are 432.4 kJmolିଵ, 318.2 cmଷmolିଵ, and 19.28, respectively. These values are comparable to those of 
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Gr.III for each and comparable to those of the lowest values among the 𝑄𝑉𝐶 values for all data groups 
including the 𝑄𝑉𝐶𝑠 for all specific strains shown in Figure 3. Indeed, the degradation in long-term rupture 
strength is a critical issue for Gr.IIIa of not only high Cr martensitic steel reported in the previous work (Tamura 
& Abe, 2021b) but also pl-91/MgC, although the test conditions for each Gr.IIIa are not completely the same. 
The 𝑄𝑉𝐶 values for Gr.IIIa at an initial stage of the creep of the other three steels than MgC listed in Table 1 
are rather high, and they decrease largely with an increasing creep strain up to approximately each MCR point 
and then they are roughly flat. The Laves phase is inferred to form at a very early stage of creep and the Z-phase 
is considered to start to form near the MCR point for P92/MJP, T92/MJT, and T91/MGC (Tamura & Abe, 2021b) 
according to the TTP diagrams of the Z-phase shown in the previous work (Tamura et al., 1988; Sawada et al., 
2007). If pl-91/MgC in a Gr.IIIa-condition is assumed to show similar precipitation behavior to that for MJP, 
MJT, and MGC, the initial 𝑄𝑉𝐶 values of MgC are considered rather high and decrease largely up to the MCR 
point; therefore, HRHD occurs at the initial stage of the transient creep, although the calculated data are absent. 
5.2.6 Gr.IIIb 
In Figure 1, Gr.IIIb is clearly different from Gr.IIIa; however, the 𝑡ఌ data are not reported. The average test 
conditions are 642 °C and 60 MPa (average 𝑡௥ = 60 435 h) and Gr.IIIb is positioned at a higher temperature and 
lower stress site than those for Gr.IIIa. The NCRs for pl-91/MgC are calculated using a single creep curve tested 
at 650 °C, 50 MPa, and  𝑡௥ = 58 451 h, and the results are shown in Figure 2. The MCR point is at 𝜀 = 1%. 
The 𝑄𝑉𝐶 values at the rupture are 368.6 kJmolିଵ, 422.9 cmଷmolିଵ, and 14.92, respectively. The value of 𝑄 
is slightly larger than that for the self-diffusion of 𝛼-Fe and the value of 𝑉 is larger than that for Gr.IIIa. In 
addition, the value of 𝐶 is lower than that of Gr.IIIa. The start time of the Laves phase and Z-phase formation is 
approximately 4000 h at the average temperature, and therefore, the 𝑡௥s in Gr.IIIb are affected by the formation 
of the Laves phase and the Z-phase. Therefore, referring to the low values of 𝑄 and 𝐶, the microstructure in a 
gauge portion at rupture must be recovered considerably. The value of 𝑉 is larger than that of Gr.IIIa; further, 
the degree of HRHD is not as remarkable as that compared of Gr.IIIa, and thus, the breakdown in strength tends 
to be moderated. According to the regression line at 600 °C for Gr.IIIb given in Figure 1 indicated using a broken 
line, the abrupt breakdown in the strength experienced in Gr.IIIa can be mitigated if the creep test is performed at 
600 °C under a lower stress compared to that performed for Gr.IIIa. 
5.3 Factorial Analysis 
Figure 1 shows that 𝑡௥ in Gr.II are longer than those estimated from Gr.I and that in Gr.III are shorter than those 
estimated from Gr.II. Thus, it is necessary to investigate the relationship between these facts and metallurgical 
reactions. The 𝑡ఌs and 𝑡௥s for both Grs.I and II under the conditions of the average temperature and stress of 
Gr.II were calculated (these variables are symbolized as 𝑡ூ  and 𝑡ூூ , respectively); [𝑄], [𝑉], and 𝐶  were 
calculated according to Equation 3 for each case; and the differences between the obtained values of [𝑄], [𝑉], 
and 𝐶 (∆[𝑄], ∆[𝑉], ∆𝐶 hereinafter) were also calculated. Results for each strain are summarized in Table 2. In 
the table, the differences between logarithmic 𝑡ூ and 𝑡ூூ, i.e., log(𝑡ூூ 𝑡ூ⁄ ) are also shown. The detrimental 
factors for log(𝑡ூூ 𝑡ூ⁄ ) are shown in bold italics. Here, the negative values for [𝑉] and 𝐶 are listed to set the 
summation of the above three in each column equal to log(𝑡ூூ 𝑡ூ⁄ ). Further, Table 2 indicates that, in all 
examined strain ranges, an increase in 𝑄, i.e., ∆[𝑄], is the detrimental term for the hardening in Gr.II and 
caused by the precipitation of the Laves phase and DFRP of M23C6. This is reasonable when referring to the 
previous work (Tamura & Abe, 2021b). 
Similar calculations were performed for Grs.II and III; the results are summarized in Table 3. Further, Table 3 
indicates that in all strain ranges examined excepting for 𝜀 = 0.2%, a decrease in ∆[𝑄] is the detrimental term 
for the degradation in the strength for Gr.III, which is caused by the HRHD accompanying the coarsening of the 
Laves phase. The Z-phase does not form until 𝜀 = 5% in Gr.III of pl-91/MgC, which refers to the TTP diagram 
of the Z-phase using ruptured specimens of T91/MGC (Sawada et al., 2007). Therefore, the Z-phase is not 
considered to largely affect the degradation of the Gr.III of pl-91/MgC. 
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Table 2. Factorial analysis for 𝑡௥  and 𝑡ఌ  of Grs.I and II under the average test conditions for Gr.II of 
pl-91/MgC steel (550 ℃, 216 MPa) and the detrimental terms for log(𝑡ூூ 𝑡ூ⁄ ) are shown in bold-italics. 
Strain (%) 0.2 0.5 1 2 5 27 ∆[𝑄] 7.02 8.85 5.79 6.53 6.08 5.19 −∆[𝑉] -1.91 -2.69 -2.32 -2.19 -1.74 -1.58 −∆𝐶 -4.94 -5.74 -3.19 -3.98 -4.05 -3.32 log(𝑡ூூ 𝑡ூ⁄ ) 0.16 0.42 0.45 0.35 0.29 0.28 

 
However, it is not denied that the Z-phase forms at an early stage of transient creep because of the occurrence of 
HRHD. These considerations are feasible referring to the previous work on P92/MJP, T92/MJT, and T91/MGC 
(Tamura & Abe, 2021b). Table 3 also shows that 𝑡ூூூ <  𝑡ூூ for 𝜀 = 0.2% and the determinant term(s) are ∆[𝑉] and ∆𝐶, or ∆[𝑉] + ∆𝐶 > 0 and is not ∆[𝑄]. Figure A1 shows that, at 𝜀 = 0.2%, the 𝑡ூூூs are longer 
than the estimated 𝑡ூூs. This is because the reliability of the 𝑄𝑉𝐶 values at 𝜀 = 0.2% is rather as low as 𝑡௥ at 
500 °C and 300 MPa is short as compared with the other data in Gr.I. 
 
Table 3. Factorial analysis for 𝑡௥ and 𝑡ఌ of Grs.II and III under the average test conditions for Gr.III of 
pl-91/MgC steel (544 ℃, 198 MPa) and the detrimental terms for log(𝑡ூூூ 𝑡ூூ⁄ ) are shown in bold-italics. 
Strain (%) 0.2 0.5 1 2 5 26 ∆[𝑄] 15.16 -11.85 -18.90 -28.44 -18.96 -21.58 −∆[𝑉] -1.57 2.14 2.93 3.86 2.92 3.34 −∆𝐶 -13.72 9.57 15.82 24.51 15.85 18.06 log(𝑡ூூூ 𝑡ூூ⁄ ) -0.13 -0.13 -0.15 -0.08 -0.20 -0.18 

 
5.4 [𝑄௦], [𝑉௦], and 𝐶௦ Analysis 
The strain rate is an important parameter reflecting the state of microstructure at a given strain; however, in the 
above analyses, 𝑄𝑉𝐶 are obtained using 𝑡௥ and 𝑡ఌ and not the strain rates at a specific strain. This is because 
the rupture data are most popular, the number of 𝑡௥ accumulated is very large, and the creep rates near rupture 
calculated using Equation 4 are remarkably affected by the necking of a specimen. However, for analyzing the 
creep behavior of transient creep and key factors that promote the accelerating creep in detail, 𝑄௦, 𝑉௦, and 𝐶௦ 
should be evaluated again using the strain rates at a specific strain calculated using Equation 4, instead of using 𝑡௥ and 𝑡ఌ. An equation similar to Equation 3 is obtained by referring to Equations 1 and 2, and the regression 
analyses were made. log𝜀ሶ = −[𝑄௦] + [𝑉௦] + 𝐶௦,                                  (7) 
where the square brackets denote the same meanings as in Equation 3. The results of 𝑄௦, 𝑉௦, and 𝐶௦ for Gr.II of 
pl-91/MgC steel were drawn as the functions of strain, and it was found that the variations in 𝑄௦, 𝑉௦, and 𝐶௦ 
were very similar to those shown in Figure 3 although the figures are omitted for simplicity. Instead, the 
relationship between the changes in 𝑄௦, 𝑉௦, and 𝐶௦ with increasing strain and changes in the corresponding 
strain rate were analyzed. Table 4 shows differences in the [𝑄௦], [𝑉௦], 𝐶௦, and log𝜀ሶ in Equation 7 between two 
adjacent strains, ∆[𝑄௦], ∆[𝑉௦], ∆𝐶௦, and ∆log𝜀ሶ at an average temperature and under an average stress for Gr.II 
of MgC. Note that the negative values for ∆[𝑄௦] are listed in Table 4 to set the summation of the above three in 
each column equal to ∆log𝜀ሶ and the determinant terms for the strain rate are indicated in bold italics. We think 
that changes in ∆log𝜀ሶ can be explained by the changes in ∆[𝑄௦] when we look only at the changes in 𝑄௦, i.e., 
the magnitude of resistance to the mobile dislocations. However, this is not the case. Table 4 indicates that an 
MCR point is near 𝜀 = 2%, which coincides with Figure 2. The determinant term for 𝜀ሶ up to 𝜀 = 1% 
increases in [𝑄௦], and it is caused by the grain boundary strengthening because of the dislocations that are swept 
out, M23C6, and the Laves phase. Further, between 𝜀 = 1% and the MCR point, 𝜀 = 1 − 2% decreases in [𝑉௦] + 𝐶௦ are the determinant terms while [𝑄௦] surely decreases in this strain range. In an accelerating creep, a 
decrease in [𝑄௦] is the unique determinant term, which is caused by the progress of recovery and coarsening of 
microstructure. Table 5 lists similar results for Gr.III. An MCR point is near 𝜀 = 2%. Table 5 indicates that 
although at an early stage of transient creep, 𝜀 = 0.2 − 0.5%, an increase in [𝑄௦] is certainly the determinant 
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term in a strain range of 0.5 − 2%; up to an MCR point, −∆[𝑄௦]+∆[𝑉௦] or ∆[𝑉௦] + ∆𝐶௦ are the determinant 
terms. In accelerating creep, a decrease in ∆[𝑄௦] or −∆[𝑄௦]+∆[𝑉௦] is the determinant term; however, the effect 
of necking may be considered in a strain range of 𝜀 > 5%. 
 
Table 4. Changes in 𝑄௦, 𝑉௦, 𝐶௦, and log(𝜀ሶ) between two adjacent strains for Gr.II of pl-91/MgC steel 
Strain range [0.2 ‒ 0.5%] [0.5 ‒ 1%] [1 ‒ 2%] [2 ‒ 5%] [5% ‒ tr] −∆[𝑄௦] −4.47 −1.96 0.75 7.30 6.47 ∆[𝑉௦] 0.48 0.16 −0.15 −1.25 −0.67 ∆𝐶௦ 3.04 1.33 −0.81 −5.90 −4.35 

log(𝜀ሶ, %/h) −0.95 −0.46 −0.21 0.15 1.44 

 
Tables 4 and 5 indicate that ∆𝑉௦ < 0 with increasing strain is essentially necessary to hold transient creep, even 
though [𝑄௦] starts to decrease with an increase in strain or recovery becomes remarkable in the later stage of 
transient creep. Thus, HRHD occurs in this strain range. Similar phenomena are confirmed in P92/MJP, T92 MJT, 
and T91/MGC (Tamura & Abe, 2021b). For these steels, the Z-phase certainly form within time to reach each 
MCR point, and therefore, an HRHD zone is easily formed as discussed in the previous work (Tamura & Abe, 
2021b). In the case of pl-91/MgC, there is insufficient time to form the Z-phase in transient creep thermally. 
However, not only the coarsening of the Laves phase but also the possible formation of Z-phase need to occur in 
an HRHD zone for Gr.III of pl-91/MgC because the metallurgical reactions are easily accelerated with an assist 
of straining.  
 
Table 5. Changes in 𝑄௦, 𝑉௦, 𝐶௦, and log(𝜀ሶ) between two adjacent strains for Gr.III of pl-91/MgC steel 
Strain range [0.2 ‒ 0.5%] [0.5 ‒ 1%] [1 ‒ 2%] [2 ‒ 5%] [5% ‒ tr] −∆[𝑄௦] −5.19 −0.83 14.55 23.96 1.86 ∆[𝑉௦] 1.74 −0.70 −2.98 −3.53 0.30 ∆𝐶௦ 3.04 0.81 −11.89 −19.83 −0.56 

log(𝜀ሶ, %/h) −0.41 −0.72 −0.33 0.60 1.60 

 
6. Discussion 
6.1 Degradation in 100 000 h Rupture Strength of 9Cr Martensitic Steel with High Strength 
The rupture strengths of Grade 91 and 92 steels decrease unexpectedly after tens of thousands of hours at a 
specific temperature between 600–650 °C (Kushima et al., 1999; Sawada et al., 2007; Tamura & Abe, 2021b). 
Figure 4 shows a comparison between the rupture strengths of P92/MJP, T92/MJT, T91/MGC, and pl-91/MgC at 
600 °C (Figure 1 and Tamura & Abe, 2021b). The rupture strength at 600 °C decreases along Gr.I → Gr.II → Gr.III → Gr.IIIa (Gr.IIIb) in the S-shape for all steels. In Gr.II, the steels are strengthened by the Laves phase. 
In the Gr.IIIa region of Figure 4, the strengthening effect of MX is partially diminished by the formation of the 
Z-phase, and as a result, the degradation in strength occurs for these steels. The rupture data of 𝑡௥ > 100 000 h 
for Grade P91 (Panait et al., 2010b) is plotted in Figure 4 (symbolized as P91/Panait). The rupture data of 
P91/Panait lies on a regression line for Gr.IIIa of pl-91/MgC, and therefore, the rupture data of P91/Panait is 
considered to belong to Gr.IIIa although the data for shorter time are absent. The behavior of Gr.III lies between 
that of Grs.II and IIIa for all steels. The 100 000 h rupture strength at ~600 °C can be estimated from rupture 
data in Gr.IIIa regions and the maximum allowable tensile strength is determined with reference to the 100 000 h 
rupture strength at a specific temperature. Although the test conditions for Gr.IIIa are not defined strictly, Gr.IIIa 
for many high Cr martensitic steel with high strength are observed in a similar temperature and stress range. 
Rupture strengths for 100 000 h of these steels are estimated from Equation 1 while substituting 𝑄𝑉𝐶 values 
obtained for each steel and a specific temperature; the results are summarized in Table 6. The rupture strength of 
pl-91/MgC at 625 °C is not obtained because of the lack of long-term data shown in Figure 1. In the calculation, 
the regression line for the appropriate data group when the regression lines around 100 000 h become 
complicated is selected by considering the following scenarios: (i) the rupture strength decreases in the S-shape 
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for all steels investigated and (ii) there is a tendency for the slope of the 𝜎 − log 𝑡௥ relationship to become 
gentler beyond 100 000 h compared to that of Gr.IIIa.  

 
Figure 4. Comparison between the 𝜎 − 𝑡௥ relationships at 600 ℃ of P92/MJP, T92/MJT, T91/MGC, and 

pl-91/MgC. Rupture data for P91/Panait is presented by Panait et al. (2010b) 
 
The rupture strengths for steels at 600 °C follow the order MJP > MJT ≫ MgC > MGC; those for Grade 92 
steel are naturally higher than those for Grade 91 steel. In most cases shown in Table 6, the 100 000 h strengths 
are calculated using the data in Gr.IIIa, where the degradation in rupture strength is a critical issue. Tamura 
(2015a) showed that the estimation method based on an exponential law introduced here is appropriate compared 
to methods based on the power law (Kimura, 2009) that is generally employed by analyzing long-term rupture 
data of Grade 122 (NIMS, 2013). Further, Tamura (2015a) also indicated that long-term rupture data are 
necessary to ensure the high accuracy of the estimation for the 100 000 h rupture strength. If the longest rupture 
data of high strength steel is limited to within 10 000 h, the effect of the Laves phase strongly reflects the 
estimated 100 000 h rupture strength, which results in over estimation. For estimating the 100 000 h rupture 
strength of high-strength martensitic steel with high accuracy, rupture data longer than approximately 70 000 h 
are required because microstructures change unexpectedly around the Gr.IIIa region. Further, the applied load in 
actual functional power plants is far lower than the 100 000 h rupture strength, and therefore, it is difficult to 
estimate either the microstructure or the related mechanical behavior or both, although changes in the 
microstructure are considered moderated compared to those of Gr.IIIa. Table 6 and Figure 4 indicate that there 
are certain levels of differences not only between Grade 91 and Grade 92 steels, but also among heats belonging 
to the same steel grade. Such differences are confirmed in the other heats of Grade 91 and 92 steels than those 
summarized in Table 6 (NIMS, 2007; 2013; 1014; 2018). The reasons for these differences have been studied 
(Kimura et al., 2013; Sawada, Kushima, Tabuchi, & Kimura, 2014b; Sawada et al., 2014a; 2019a); however, they 
have not been sufficiently clarified. Thus, although the creep strength of Grade 92 steel is considered to 
sufficiently credible, there is room for further improvement. 
 
Table 6. Estimated rupture strength for 100 000 h at temperatures indicated for P92/MJP, T92/MJT, T91/MGC, 
and pl-91/MgC. Symbols in parentheses denote each corresponding data group used for the estimation 

MPa MJP MJT MGC MgC 

600 °C 109.4 (IIIa) 108.5 (IIIa) 65.9 (IIIa) 85.1 (IIIa) 

625 °C 84.4 (IIIa) 78.9 (IIIa) 46.3 (IIIb) - 

650 °C 59.5 (IIIa) 52.6 (IV) 43.9 (IV) 40.3 (IIIb) 
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6.2 Causes of Degradation 
6.2.1 A Question 
Sawada et al. (2006) indicated that the number density of the Z-phase (𝜌௓) in a gauge portion is higher than that 
of a grip portion of a ruptured specimen, and therefore, the larger EL of T91/MGC causes a higher 𝜌௓, which 
leads to severe degradation in T91/MGC compared to that of T92/MJT, as shown in Figure 4. 
The degradation in creep strength for Gr.IIIa is similar to the degradation in rupture strength as shown in Figure 
4 is already confirmed at a smaller strain (0.5%), as indicated in Figure A2 for MgC and the corresponding 
figures for MJP, MJT, and MGC in the previous work (Tamura & Abe, 2021b). Further, Sawada et al. (2011) 
reported that the number density of MX decreases with increasing creep strain in response to the increase in the 𝜌௓  using creep-interrupted specimens of T91/MGC tested at 600 °C under 70 MPa (Gr.IIIa conditions). 
Therefore, it is interesting to compare the relationships between the 𝜎 − 𝑡ଵ relationships at 600 °C for MJP, 
MJT, MGC, and MgC; the results are shown in Figure 5. 𝑡ଵ for P91/Panait is read from creep curves obtained at 
600 °C under 80 MPa (Panait et al., 2010b), and it is indicated by a cross mark in Figure 5. Only a single 
regression line is drawn for Gr.II of MgC in Figure 5 because of the insufficient number of data at 600 °C. Clear 
differences in creep strength in Grs.III and IIIa for the same 𝑡ଵ, or the same nominal strain of 1%, between 
Grades 91 (MGC) and 92 (MJP and MJT) can be clearly observed in Figure 5 regardless of the differences in 
rupture elongation between Grades 91 (MGC) and 92 (MJP and MJT). This trend that the creep strengths in 
Grs.III and IIIa for 𝑡ଵ under the same nominal strain of Grade 92 steel are higher than those for Grade 91 steel 
is confirmed in pl-91/MgC and P91/Panait; however, the number of data points for MgC and P91/Panait are 
limited.  

 
Figure 5. Comparison between the 𝜎 − 𝑡ଵ relationships at 600 ℃ of P92/MJP, T92/MJT, T91/MGC, and 

pl-91/MgC 
 
The values of the start time of the Z-phase formation at 600 °C for T92/MJT and T91/MGC are approximately 
8000 and 10 000 h, respectively (Sawada et al., 2007), and each time is near the border line of each Gr.IIIa 
region in Figure 5. The 𝑡ଵs for Gr.IIIa of MJT and MGC are 27 220 and 29 527 h, respectively (Tamura & Abe, 
2021b). Therefore, the Z-phase is considered to have already been formed within the time duration of 1% strain 
in the Gr.IIIa of both steels. The 𝜌௓s for the 𝑡ଵs of MJT and MGC can be estimated as follows: The 𝜌௓ of 
MGC in a specimen crept to a 1% strain at 600 °C and 70 MPa (𝑡ଵ =52 581 h, 𝑡௥ =80 737 h), a member of 
Gr.IIIa, and it can be read as 2E11 mିଶ from the figure shown in the previous work (Sawada et al., 2011). 
Although the 𝜌௓ of creep-interrupted specimens of MJT is not yet investigated, the 𝜌௓ of a ruptured specimen 
tested at 600 °C and 130 MPa (𝑡ଵ =14 900 h, 𝑡௥ =39 540 h; NIMS, 2018) can be read as 1.4E11 mିଶ (Sawada 
et al., 2006). These data are a member of Gr.IIIa in this study and 𝑡௥ is the longest among the specimens with 
the observed 𝜌௓. We can infer that the 𝜌௓ value of MJT crept to 1% strain at 600 °C for the similar duration as 
that for MGC is estimated not to exceed this value (1.4E11 mିଶ) assuming that 𝑡௥ = 39 540 h for MJT is 
almost the same temporal time as 𝑡ଵ =52 581 h and considering that creep strain promotes the precipitation of 
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the Z-phase (Sawada et al., 2006). Under the same specific strain condition of 1%, the 𝜌௓ of T91/MGC is 
higher than that of T92/MJT, which should be correlated to the degradation in creep strength shown in Figure 5. 
Therefore, if the reasons for the degradation in strength for 𝑡௥ and 𝑡ଵ in each Gr.IIIa shown in Figures 4 and 5 
are similar, it is insufficient to consider that the larger EL is responsible for the formation of a larger amount of 
the Z-phase, which leads to lower rupture strength of Grade 91 steel than Grade 92 steel, while considering the 
variations of 𝜌௓ mentioned above. Instead, it is natural that the Z-phase forms easily during creep in Grade 91 
steel compared to Grade 92 steel, which leads to degradation in the long-term creep strength shown in Figures 4 
and 5. Thus, a new model is required to explain the degradation in the long-term rupture strength of martensitic 
steel. 
6.2.2 Modeling of Microstructural Variations during the Creep of Gr.IIIa 
Many researchers (Kushima et al., 1999; Suzuki et al., 2003; Sawada et al., 2006; Danielsen, 2007; Hald, 2008; 
Kimura et al., 2013) agree that the main cause of unexpected degradation in the long-term rupture strength is the 
partial disappearance of strengthening factors of MX caused by the formation of the Z-phase. Sawada et al. 
(2007) indicated that the TTP curves of the Z-phases for Grade 91 and 92 steels are very similar. Further, Kocer, 
Abe, and Soon (2009) reported that the Cr content is the main driving force for the formation of the Z-phase that 
is secondarily impacted by the Nb, V, and N of the alloy system. Therefore, considerations based on the 
thermodynamic stability and TTP diagram for the Z-phase in martensitic steel indicate few differences in the 
degree of degradation in the rupture strength of Grade 91 and 92 steels caused by the amount of the Z-phase 
formed. The differences in the degree of degradation in the strength for each Gr.IIIa shown in Figure 4 need to 
be explained by considering the formability of the Z-phase, and not by the thermal stability of the Z-phase. 
 
Table 7. Comparison of the time to rupture at 600 ℃ under the stress indicated, the number density of Z-phase in 
a ruptured specimen (𝜌௓), rupture elongation (EL), and activation volume for Gr.IIIa among the steels indicated. 
Creep data of P91/Panait is presented by Panait et al. (2010b) 

Steel Stress / MPa tr / h ρz / 1E11/ m-2 EL (%) V/ cm3mol-1 

P92/MJP 130 38 067 (1.3) 20 505.1 

T92/MJT 130 39 539 1.4 11 348.5 

T91/MGC 
100 34 141 3.3 22 

256.4 
70 80 737 7.6 33 

pl-91/MgC 90 78 237 1.9 28 318.2 

P91/Panait 80 113 431 (a few) 7.3   

 
Equation 6 shows that 𝑉 is inversely proportional to the slope of the 𝜎 − log𝑡௥ relationship, and therefore, the 
slope denotes that the rate of degradation in strength ∆𝜎 ∆log𝑡௥⁄  in the Gr.IIIa region is inversely proportional 
to 𝑉 (Tamura & Abe, 2021a; 2021b). Though 𝑡௥ in the Gr.IIIa region is affected not only by the slope of the 𝜎 − log𝑡௥ relationship but also by the hardening process in the Gr.II region as shown in Figure 4, the 𝑡௥ in the 
Gr.IIIa region should be correlated with the value of 𝑉 in the Gr.IIIa region itself. The lower 𝑉 may evoke a 
higher 𝜌௓ in the Gr.IIIa region of the high Cr martensitic steel containing MX. Therefore, the 𝑡௥ at 600 °C 
under a stress indicated in the Gr.IIIa region, 𝜌௓, 𝑉, and EL for each steel are listed anew in Table 7; the creep 
related data are shown in the literature (NIMS, 2014; 2018). The 𝑉s for MJP, MJT, and MGC are reported in 
the previous paper (Tamura & Abe, 2021b) and the 𝑉 for MgC are shown in Figure 3. The 𝜌௓s for T92/MJT 
and T91/MGC (100 MPa) are reported by Sawada et al. (2006). The 𝜌௓s for MGC (70 MPa) and MgC are read 
from a graph reported by Sawada et al. (2014a). The 𝜌௓ for MJP is not reported yet; however, it can be inferred 
to be 1.3E11 m−2 from a graph reported by Sawada et al. (2006) that ignores differences between MJT and MJP. 
For the data of P91/Panait (Panait et al., 2010b), 𝜌௓ is not yet investigated; however, 𝜌௓ is reported to be lower 
than that of MX, and the EL is estimated from the creep curves shown in their paper. Table 7 indicates a 
tendency that 𝜌௓ is higher, and thus, 𝑡௥ is shorter for steels with higher EL values. However, when we compare 
the upper three data in Table 7 with 𝑡௥ = 30 000 − 40 000 h among MJP, MJT, and MGC, this tendency 
observed between 𝜌௓ and EL does not always hold true. The ELs for MJP and MGC (100 MPa) are larger than 
that for MJT, but the 𝑡௥s for these three steels are comparable. Instead, the corresponding values of 𝑉 for 
Gr.IIIa listed in Table 7 seem to depict a better correlation among 𝑉, 𝜌௓, and 𝑡௥. Indeed, the tendency of 
correlation between 𝑉 and 𝑡௥ may be true under lower stresses although the correlation between 𝑉 and 𝑡௥ 
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under 130 MPa is not so good for MJP and MJT. 𝑡௥ ≈ 45 486 h can be estimated for T91/MGC at 600 °C 
under 90 MPa using the data under 70 and 100 MPa shown in Table 7. This value is obviously shorter than the 
observed value, 𝑡௥＝78 237 h for pl-91/MgC tested at the same conditions; 𝑉 for MGC is smaller than that for 
MgC. Further, 𝑡௥ is short when the 𝑉 is small (Table 7), which suggests that the HRHD is expected to occur in 
the Gr.IIIa region when referring to the document in Section 3; in addition, HRHD easily occurs in Grade 91 
steel compared to that in Grade 92 steel. 
 
Table 8. Average temperature, time to rupture, 𝑄𝑉𝐶௠௔௫, and MCR for each data group of P92/MJP, T92/MJT, 
and T91/MGC. The minimum creep time for detectable degradation as compared with an adjacent shorter time 
data group (MTD) and start time for the Z-phase formation (TZF). Strains corresponding to each time are shown 
in % in each parenthesis 

Steel Items 
Time /h (strain, %) 

Gr.II Gr.III Gr.IIIa 

P92/MJP 

Av. Temp. / ℃ 640 634 634 

Av. tr / h 2974 18 618 62 811 

QVCmax 1015 (2) 1857 (1) 4968 (0.5**) 

MTD - 9453 (2) 27 074 (1) 

MCR 2658 (5) 9453 (2) 27 074 (1) 

TZF 3500 3700 3700 

T92/MJT 

Av. Temp. / ℃ 637 613 622 

Av. tr / h 5136 25317 49 878 

QVCmax 174 (1) 220 (0.5**) 4815 (0.5**) 

MTD - 1990 (1) 27 220 (1) 

MCR 4608 (5) 14 733 (2) 27 220 (1) 

TZF 3600 4700 4300 

T91/MGC 

Av. Temp. / ℃ 610 580 583 

Av. tr / h 3709 24 613 58 699 

QVCmax 830 (1) 7288(1*) 1260 (0.2**) 

MTD - 17 420 (2) 12 377 (0.5**) 

MCR 2197 (2) 17 420 (2) 29 527 (1) 

TZF 6200 13 500 13 500 

Pl-91/MgC 

Av. Temp. / ℃ 550 544 581 

Av. tr / h 11 208 32 830 58 415 

QVCmax 911(1) 473 (0.2**) - 

MTD - 975 (0.5) - 

MCR 4150 (2) 18 942 (2) 10 400 (1***) 

TZF 28 000 37 000 12 433 

Bold-italics: shorter time than TZF 

* Strain for Vmax is 0.5% and time to 0.5% strain is 1614 h. 

** No available data below the indicated strain. 

*** Based on a single creep curve tested at 600 °C and 110 MPa 

 
The variations in 𝑄𝑉𝐶  during creep of P92/MJP, T92/MJT, T91/MGC, and pl-91/MgC were explained 
previously for each data group based on metallurgical observations. The degradation in strength for Grs.IIIa of 
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P92/MJP and T91/MJT and Grs.IIIa and IIIb of each T91/MGC and pl-91/MgC is a critical issue. In these data 
groups, the formation of the Z-phase is common at 600 °C, and therefore, we need to be able to construct a 
metallurgical model of microstructural variations for the degradation in strength through the creep behavior of 
these four steels. In addition, the formation of the Z-phase is confirmed for Grs.II and III at 600 °C. Therefore, 
the average temperature, average 𝑡௥, time to the 𝑄𝑉𝐶௠௔௫, MTD, MCR, and TZF for Grs.II, III, and IIIa of MJP, 
MJT, MGC, and MgC, respectively, are surveyed, and the results are listed in Table 8, where MTD denotes the 
minimum creep time for the detectable degradation at 600 °C when compared to an adjacent shorter time data 
group that was determined using both the average 𝑡ఌ,௥ − 𝜎 and 𝑡 − 𝜀 diagrams for each data group; further, 
TZF represents the start time for the Z-phase formation estimated from Sawada’s work (Sawada et al., 2007). In 
Table 8, the corresponding creep strains to each time are listed in parentheses. 

Figure 6. Schematic for microstructural degradation during creep for Gr.IIIa of high Cr martensitic steel with 
high strength 

 
Based on the information obtained in Section 5.2 and Table 8 and the possible occurrence of HRHD deduced 
from Table 7, the microstructural degradation processes during creep in Gr.IIIa of high Cr martensitic steel with 
high strength is explained as follows: From the beginning of transient creep, SBSD and grain boundary 
strengthening by M23C6 and the Laves phase occur and the 𝑄𝑉𝐶 reach the maximum value for each. When 
HRHD occasionally occurs near the weakest boundaries, the 𝑄𝑉𝐶 subsequently start to decrease simultaneously. 
At that time, the M23C6 and Laves phase on or near boundaries are quickly coarsened; therefore, 𝑄 decreases 
because the diffusion of atoms becomes active based on an increase in creep strain in an HRHD zone. 
In addition, in a heavily deformed HRHD zone, some strengthening particles of MX need to be temporally 
dissolved into the matrix and transported towards the nearby boundaries by gliding dislocations. When the 
dislocations reach near the boundaries, more stable compounds of the Z-phase with tetragonal structure instead 
of MX with cubic structure are newly formed from the super-saturated matrix with the constituent elements of 
MX (i.e., N, Nb, and V) along with an abundant supply of Cr from near the boundaries; alternatively, the excess 
N, Nb, and V atoms are used to coarsen the pre-existing Z-phase, and the 𝑄 decreases further because of the 
recovery and coarsening of precipitates in the HRHD zones. As a result of these sequential reactions, the creep 
strength at a strain in transient creep of Gr.IIIa becomes lower compared to that of Gr.III. Even when 𝑄 
continues to decrease in this manner with increasing nominal strain, the transient creep holds if ∆[𝑉௦] + ∆𝐶௦ <∆[𝑄௦] (< 0) is satisfied, as indicated in Tables 4 and 5. When 𝑄 decreases further because of the increase in 
the formation of the Z-phase accompanying the consumption of some MX particles, and the decrease in [𝑄௦] is 
equal to the decrease in [𝑉௦] + 𝐶௦, and the creep rate reaches an MCR point and then the accelerating creep starts. 
In accelerating creep, an increase in the sub-grain size, the coarsening of the Z-phase consuming some MX 
particles, and the coarsening of both the Laves phase and M23C6 are progressing, and eventually, 𝑡௥ is shortened 
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in Gr.IIIa unexpectedly. These degradation processes are illustrated schematically in Figure 6. Two points are 
significant in the illustration: First, SBSD followed by HRHD processes indicate the essence of the transient 
creep of high Cr martensitic steel with high strength, and second, the degradation in strength starts to occur even 
in the transient creep region because the Z-phase starts to form dissolving some MX particles with the aid of 
straining within a heavily deformed HRHD zone. This model denotes that a chronological sequence for the 
events in Gr.IIIa is roughly expressed as SBSD, DFRP of MଶଷC଺, Laves phase ≤ 𝑄𝑉𝐶௠௔௫ ≤ HRHD ≤ 𝑇𝑍𝐹 ≤ 𝑀𝑇𝐷 ≤ 𝑀𝐶𝑅 < 𝑡௥.           (8)  
This model can clearly explain the mechanism for the degradation in strength. The value of time indicated in 
Table 8 for Gr.IIIa roughly satisfied Equation 8. However, there are still some questions about this model 
concerning the existence of the peaks of 𝑄𝑉𝐶, and the formation of the Z-phase at a small nominal strain, which 
is not larger than an MCR point as much as degrading the strength and existence of an HRHD zone.  
6.2.3 Existence of Peaks in 𝑄𝑉𝐶 in Gr.IIIa 
The 𝑄𝑉𝐶 do not clearly peak in Gr.IIIa for all steels investigated as shown in Table 8. This problem can be 
explained as follows: Figure 7 compares the relationships between 𝜀 and 𝑄 for Grs.III and IIIa (IIIb) of MJP, 
MJT, MGC, and MgC. As shown in Figure 7, the hardening process caused by SBSD, M23C6, and Laves phase is 
not confirmed for Gr.IIIa like a process (b) in Figure 6. However, we believe the existence of the hardening 
process at a very early stage of transient creep in Gr.IIIa. The first reason is that the value of 𝑄௠௔௫ for each 
Gr.IIIa is as large as those for not only Gr.III of all steels discussed here but also Gr.III of 9Cr-4W steel, where 
the hardening in transient creep is caused by dislocations, M23C6, and Laves phase as explained in Section 5 for 
MgC and in the previous work for the other steels (Tamura & Abe, 2021a; 2021b). The second reason is that we 
can infer the existence of peaks in 𝑄 for Gr.IIIa of all steels discussed by analogy: In the adjacent data group of 
Gr.III, we can easily believe the existence of a peak in 𝑄 for MJT at a small strain below 0.5% like those for 
MJP and MGC because the creep behavior for all steels discussed is similar with each other as explained in 
Sections in 5.2. However, the peaks in 𝑄𝑉𝐶 are lacking for MJT, and moreover, the degradation behavior 
during creep for Gr.IIIa of all steels discussed are similar to the behavior of Gr.III to some extent although the 
SBSD is weak in Gr.IIIa because of a higher recovery rate under low stresses. Further, other evidences for the 
real existence of the boundary hardening process in an early stage of transient creep for Gr.IIIa are presented 
below.  

 
Figure 7. Comparison among the activation energy during creep for Grs.III, IIIa, and IIIb of MJP, MJT, MGC, 

and MgC 

 
As listed in Table 8, the 𝑄௠௔௫ for Gr.IIIa of MGC occurs at 𝜀 = 0.2% for 1260 h on average. However, it can 
be evaluated by analyzing the individual creep data of T91/MGC tested at 600 °C and 70 MPa (Sawada et al., 
2011), which is a member of Gr.IIIa in this study, that a creep strain of 0.2% at 600 °C and 70 MPa for 𝑄௠௔௫ 
corresponds to a creep time of approximately 4000 h (Tamura & Abe, 2021b). At this time, the dislocation 
density inside the sub-grains of a crept specimen at 600 °C and 70 MPa tends to decrease, but the hardness does 
not change as compared with that before the test (Sawada et al., 2011). Thus, grain boundary hardening, i.e., 
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SBSD, M23C6, and the Laves phase should occur because the Laves phase is very fine (approximately 100 nm at 
600 °C for 1000 h) near the condition where 𝑄 shows the maximum for Gr.IIIa of MGC (Suzuki, Kumai, 
Kushima, Kimura, & Abe, 2000). The above-mentioned combination of 𝜀 = 0.2%, 600 °C, 70 MPa, and 4000 h 
for MGC is estimated from the published data of a 𝑡 − 𝜀ሶ diagram. When we estimate the corresponding time 
using a 𝑡 − 𝜀 diagram, approximately 1000 h are obtained for 𝑡଴.ଶ instead referring to the data 𝑡଴.ଶ = 261 ℎ 
under 100 MPa (Tamura & Abe, 2021b). In this case, grain boundary hardening with the recovery of the inside 
sub-grains is inferred to be accomplished. Therefore, the estimated microstructure for the 𝑡଴.ଶ of a crept 
specimen of MGC at 600 °C under 70 MPa possibly supports the existence of a peak in 𝑄 at a very early stage 
of transient creep for Gr.IIIa of T91/MGC. 
6.2.4 Formation of HRHD zone 
A concept of HRHD was proposed by investigating the creep behavior of 9Cr-4W steel in the previous work 
(Tamura & Abe, 2021a), and it was evoked from the following two points of views: the three parameters of 𝑄𝑉𝐶 
decrease after 𝑄𝑉𝐶௠௔௫ simultaneously in a later section of transient creep as confirmed in Figure 3 for 
pl-91/MgC and in the previous work (Tamura & Abe, 2021b), which imagines that recovery should occur within 
a small nominal strain range after remarkable strain hardening by SBSD, DFRP of M23C6, and precipitation of 
fine Laves phase at the beginning of creep. The second one is that the 𝑄𝑉𝐶 for welded joints are small 
compared to those of the base metal, as explained in the previous work (Tamura & Abe, 2021a). Hence, we 
explained the creep phenomena of the martensitic steel on the assumption that HRHD occurs by analogy when 𝑉 decreases. We can easily assume the strain concentration in this area if we assume the existence of a locally 
recovered zone; therefore, we can determine that the formation of Z-phase is promoted in an HRHD zone based 
on the experimental results that creep strain promotes the formation of the Z-phase (Sawada et al., 2006; 2011). 
Therefore, the accelerating formation of the Z-phase in an HRHD zone is believed even within a small nominal 
strain not larger than a strain at an MCR point. The formation of the Z-phase near an HRHD zone progresses 
with the dissolution or disappearance of a strengthening factor of MX, and this results in the degradation in 
strength for Grs.IIIa even in a small strain of 1% as shown in Figure 5. Further, there is no contradiction in the 
above explanation of the creep phenomena of martensitic steel, and therefore, we believe the existence of HRHD. 
We confirmed that 𝑉 decreases for the welded joint as shown in the literature (Tamura & Abe, 2021a), and 
therefore, small values of 𝑉 observed in the transient creep of martensitic steel evoke the occurrence of local or 
heterogeneous deformation like a welded joint and the decrease in rupture strength. Sawada, Bauer, Kauffmann, 
Mayr, and Klenk (2010) reported that the 𝜌௓’s in the HAZ of the ruptured specimens at 600 °C of the welded 
joints of Grade E911 are approximately one order of magnitude larger than those for the base metal, and this 
depends on 𝑡௥ and the location of sampling in HAZ. The 𝜌௓ of base metal is approximately 1.7E10 mିଶ, and 
it is similar to that of T92/MJT (Sawada et al., 2006). The increase in 𝜌௓ for the welded joints compared with 
the base metal were explained because of the effects of the increased precipitation site for the Z-phase and the 
multiaxial stress in HAZ. They showed rupture data only at 600 °C, and therefore, although the values for 𝑄 
and 𝐶 cannot be calculated, the value of 𝑉 calculated from their data using Equation 6 are 298 cmଷmolିଵ for 
up to 10 000 h and 73 cmଷmolିଵ for 10 000–35 000 h, respectively. These values of 𝑉 are extremely low 
compared to the 𝑉s~500 − 800 cmଷmolିଵ for Grade 92 steel and the 𝑡௥’s are considerably shorter than those 
for T92/MGC (Tamura & Abe, 2021b). These data indicate that the local deformation of the welded joint causes 
a decrease in 𝑉, an increase in 𝜌௓, and thus, a decrease in 𝑡௥; further, these data also satisfy a sufficient 
condition for the existence of HRHD during the creep of high Cr martensitic steel. 
Via experiments, a locally recovered zone is observed in the ruptured specimens of T91/MGC (Kushima et al., 
1999) and T92/MJT (Sawada & Kimura, 2019b) tested under each condition of Gr.IIIa and in the crept 
specimens for an accelerating creep of MGC including a strain near an MCR point tested under a condition of 
Gr.IIIa (Kimura et al., 2002). However, any locally recovered zone is yet to be reported in the grip portions of 
specimens tested under various conditions. Therefore, a locally recovered zone, i.e., an HRHD zone, is certainly 
formed by creep straining and not by thermal aging; however, a locally recovered area in the crept specimen to a 
small strain in transient creep is yet to be confirmed. As shown in Figure A2 and reported in the previous work 
(Tamura & Abe, 2021a; 2021b), the degradation in strength for the conditions of Gr.IIIa is confirmed during 
transient creep. Therefore, an HRHD zone must be surely formed with a small strain in transient creep. However, 
not only the size, shape, and distribution, but also the degree of straining of a locally recovered zone, i.e., the 
characteristics of an HRHD zone, are yet to be investigated systematically. These factors can influence the 
formability of the Z-phase near HRHD zones, and therefore, the degradation in strength. When such information 
on an HRHD zone is clarified, variations in the degradation in strength for Gr.IIIa as shown in Figures 4 and 5 
can be explained more deeply, and they should thus be controlled. Morooka, Tomoda, Adachi, Morito, and 
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Kamiyama (2008) observed heterogeneous deformation inside a sub-block of a martensitic structure by 
employing both an electron back-scattered diffraction method and a neutron diffraction method; therefore, the 
characterization of an HRHD zone during creep shall be clarified more deeply in the future. 
6.2.5 Formation of Z-Phase under Low Stresses 
Danielsen (2007) and Danielson and Hald (2009) proposed a new model for the formation of Z-phase particles 
by Cr diffusion onto an MX particle from the high Cr martensite matrix. Cipolla et al. (2010) supported the 
Danielsen’s model and provided experimental evidence using a model alloy of carbon-free 
Fe-12Cr-1.3Ni-NbVN alloy aged at 600–700 °C for a maximum of 10 000 h. However, simple calculations on 
T91/MGC indicate that the diffusion distance of Cr in alpha-iron at 600 °C is more than one order of magnitude 
larger as compared with the estimated inter-particle distance of MX: Sawada et al. (2011) reported that the 
number density of MX (𝜌ெ௑) of as received T91/MGC is approximately 8E12 mିଶ , and therefore, the 
inter-particle distance of MX is estimated to be ඥ1 𝜌ெ௑⁄ = 0.35 μm. The diffusion distance of Cr in the 
alpha-iron is 4.1 μm at 600 °C for 1000 h. Here, the calculation of the diffusion distance for Cr atom, i.e., 2√𝐷𝑡, is performed assuming 𝐷଴ = 0.00023 mଶsିଵ, 𝑄 = 238.8 kJmolିଵ(Oikawa, 1982), 𝑡 = 1000 ∗ 3600 s, 
and T=873 K in 𝐷 = 𝐷଴exp(−𝑄 𝑅𝑇⁄ ). Therefore, the diffusion distance of Cr is considerably larger than the 
inter-particle distance of MX during the creep of T91/MGC even for the conditions of 600 °C for 1000 h. The 
inter-particle distance of MX increases by not only increasing creep time and temperature, but also the amount of 
Z-phase formed; however, the diffusion distance of Cr in alpha-iron increases with increasing time and 
temperature. The inter-particle distance of MX in a ruptured specimen of T91/MGC at 600 °C and 70 MPa 
(𝑡௥ = 80 737 h) is estimated as ඥ1 𝜌ெ௑⁄ = 1.41 μm (Sawada et al., 2011), and the corresponding diffusion 
distance becomes 37.1 μm. Except below 10 h at 600 °C, the diffusion distance of Cr in alpha-iron is always 
larger than the inter-particle distance of MX at 600 °C. Therefore, according to Danielsen’s model (2007), fine 
particles similar in composition to the Z-phase, (Cr,Nb,V)X, must be easily formed within a very short time 
duration, e.g., several tens of hours, because the Z-phase is thermodynamically more stable than MX (Kocer et 
al., 2009). However, such particles are not observed until at least ~10 000 h at 600 °C (Sawada et al., 2007). 
These facts suggest that the interfacial energy of a Z-phase particle with a tetragonal structure in the martensitic 
steel matrix, which is usually observed on or near the boundaries in high Cr martensitic steel with high strength, 
is considered to be substantially larger than that of the MX phase with cubic structure based on the classical 
nucleation and growth theory of precipitation (Turnbull & Fisher; 1949). Therefore, numerous Nb and V atoms 
are expected to be transported to the large-angle boundaries with the help of moving dislocations such as PAGBs 
and to pre-existing Z-phases where the tetragonal structure is formed. An alternative interpretation is also 
possible: Even if the fine particles of (Cr,Nb,V)X can be formed within a short time duration based on 
Danielsen’s model, provided that their structure is cubic and their interfacial energy is low, these structures are 
unstable because of interactions with the dislocations (Tamura, Iida, Kusuyama, Shinozuka, & Esaka, 2004). 
Thus, the number density of the (Cr,Nb,V)X particles remains extremely low even if the (Cr,Nb,V)X particles 
can be formed. In addition, when the size is below 20 nm, these fine particles are not detected by the elemental 
mapping method as Z-phase particles, which is a method adopted by Sawada et al. (2007) to determine the TTP 
diagram of the Z-phase. Sawada, Kubo, and Abe (2003) demonstrated that when TEM was used, the number 
density of MX particles < 20 nm decreases to a very low level after aging for 727 h at 700 °C when compared 
with that of the as-received specimen. Therefore, even if (Cr,Nb,V)X particles could be formed, the particles 
would grow rapidly. Although Danielsen’s model is simple and straightforward, it is not easily accomplished in 
high-strength 9Cr martensitic steel with high strength. 
Sawada et al. (2011) demonstrated that the number density of MX particles in T91/MGC decreases during creep 
at 600 °C and reaches < 10% of the initial value at rupture (𝑡௥ = 80 737 h). Furthermore, the massive Z-phase is 
formed near the boundaries by consuming nearby MX particles. The 𝜌௓ increases with an increase in the strain 
up to a comparable value to that of the MX at rupture. This is clear evidence that the formation of the Z-phase is 
the main reason for the degradation in the long-term creep strength. We can obtain the relationship between 𝜌௓ 
and 𝜀 by combining these data with the 𝜌௓ values for the grip portions (Sawada et al., 2014b) and utilizing the 
relevant creep curves (Sawada et al., 2011). The results are shown in Figure 8, which indicate that 𝜌௓ increases 
steeply with an increase in strain for 𝜀 ≤ 0.5%. The 𝜌௓ in the gauge portion is definitely larger than that in the 
grip portion, even though the differences are not so large. The 𝜌௓ in a gauge portion increases gradually with an 
increase in the logarithm of the creep strain for 𝜀 ≥ 1%, and it is approximately three times larger than that of 
the grip portion. In other words, the majority of the Z-phase was not formed thermally, but it formed readily with 
the aid of the creep strain. The observed creep range, 𝑡 ≥ 10 000 h and 𝜀 ≥ 0.26%, corresponds to accelerating 
creep because MCR is estimated to occur at 6585 h and 𝜀 = 0.23% from the creep curves reported in the 
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literature (Sawada et al., 2011). The rate of increase in 𝜌௓ decreases during accelerating creep (when 𝜀 ≥ 1%), 
which may be attributed to the coarsening of the Z-phase. There are no data confirming the Z-phase formation in 
transient creep of MGC at 600 °C under 70 MPa. Instead, the Z-phase formation is estimated to start 
approximately near the MCR point, i.e., 6585 h. This estimation does not contradict the observation that the 
Z-phase starts to form in ruptured specimens between 𝑡௥ = 3415 (140 MPa) and 𝑡௥ = 12 859 h (120 MPa) 
(NIMS, 2007; Sawada et al., 2007). Therefore, Equation 8 must be interpreted as 𝑆𝐵𝑆𝐷 ≤ 𝑄௠௔௫ ≤ 𝐻𝑅𝐻𝐷 ≤𝑇𝑍𝐹 ≈ 𝑀𝐶𝑅 < 𝑡௥ for MGC at 600 °C under 70 MPa, although the existence of both 𝑄௠௔௫ and HRHD are not 
yet experimentally confirmed. Under stresses considerably lower than 70 MPa of T91/MGC, 𝑡଴.ଶ becomes 
longer than 10 000 h (Tamura & Abe, 2021b). Thus, the Z-phase is formed within the time 𝑡଴.ଶ even though we 
cannot confirm whether 𝑡଴.ଶ belongs to the transient creep. The occurrence of HRHD is expected to promote the 
formation of the Z-phase. However, because the sub-grains grow at the same time, the HRHD effect, i.e., the 
effect of strain concentration on the formability of the Z-phase, will be mitigated. 

 
Figure 8. Number density of Z-phase as a function of creep strain for the gauge and grip portions of T91/MGC 

tested at 600 ℃ and 70 MPa 
 
We are yet to observe any definite evidence for the formation of the Z-phase in the transient creep after the peak 
of 𝑄𝑉𝐶 for Gr.IIIa of MGC along with Grs.III and IIIa of Grade 91 and 92 steels. However, if we assume the 
existence of an HRHD zone, it can be reasonably believed that the concentrated strain generated in an HRHD 
zone increases the transportation velocity and volume of solute atoms, which promotes the dissolution of MX 
and the local formation of the Z-phase. The average creep behaviors for Grs.III and IIIa of MJP, MJT, MGC, and 
MgC under this scenario are summarized in Table 8. 
Even though we reasonably deduce the existence of the local Z-phase formation in an HRHD zone during 
transient creep, the distribution of the Z-phase may not necessarily be heterogeneous. This does not imply that 
the observed values of the 𝜌௓  shown in Figure 8 are inaccurate. Our deduction does not contradict the 
experimental results provided by Sawada (2007), and thus, the formation of the Z-phase in transient creep is 
possible. The size of an HRHD zone formed in the transient creep may be smaller than the size of the primary 
austenite grains from the following microstructural viewpoints: The inter particle distance of the Z-phase is 
estimated from Figure 8 to be 2–3 μm (0.5–1% strain, 30 000–50 000 h), which corresponds to the scenario 
wherein several particles ~100 nm in diameter of the Z-phase (Suzuki et al., 2003) are on the PAGBs for each 
primary austenite grain ~10 μm in diameter (NIMS, 2014). Such scenarios are frequently confirmed in 
high-Cr martensitic steel (Sawada et al., 2007). Moreover, the size of an HRZ observed near PAGBs (Kushima et 
al., 1999; Sawada & Kimura, 2019b; Kimura et al., 2002) is extremely small (several micrometers at most). 
6.2.6 Dislocation-Assisted Acceleration of Precipitation Phenomena 
Sawada et al. (2006; 2014b) reported that the 𝜌௓ in the gauge portion at the rupture of T91/MGC is larger than 
that in a grip. Moreover, the 𝜌௓ in the gauge portion of T91/MGC is higher than that of T92/MJT with a shorter 
EL. This accelerated formation of the Z-phase in T91/MGC is attributed to a creep strain (Sawada et al., 2006; 
2014b). However, Table 7 suggests that an increase in 𝜌௓  in the ruptured specimen is not satisfactorily 
explained only by a value of EL. Further, the role of creep strain in the reactions involved in the formation of the 
Z-phase are yet to be successfully elucidated. 
Z-phase particles are massive and are formed on or near boundaries in high-Cr martensitic steel with high 
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strength (Suzuki et al., 2000; Kimura et al., 2002; Sawada et al., 2006; 2007; Sawada, Suzuki, Kushima, Tabuchi, 
& Kimura, 2008). It is well known that boundary precipitates grow faster than those inside grains (Brailsford & 
Aaron, 1969). The coarsening of Z-phase particles on the boundaries is similarly understood based on the model 
that boundary diffusion is faster than lattice diffusion (Shewmon, 1963). Models for the coarsening of grain 
boundary precipitates are constructed by combining lattice diffusion and boundary diffusion (Hori & Saji, 1981; 
Hassan & Corney, 2017). Solute atoms are transported onto boundaries by lattice diffusion, and then, they 
migrate to targeting precipitates by grain boundary diffusion. Numerous dislocations inside the sub-grains in 
martensitic steel and the consequent pipe diffusion through these dislocations (Shewmon, 1963) may assist in the 
transportation of solute atoms. Within a short duration, a solute-depleted zone of slower atoms or a precipitation 
free zone is formed near boundaries. However, this is not the case for creep. 
The size of the boundary precipitates in a gauge portion becomes larger than those for a grip during long-term 
creep; for example, the sizes of the M23C6 carbides in a gauge portion in the crept specimens of Grade P92 are 
larger than those for a grip (Ennis, Zielinska-Lipiec, & Czyrska-Filemonowicz, 2000; Ennis & 
Czyrska-Filemonowicz, 2003). The sizes of the Laves phase in a gauge portion in ruptured specimens are larger 
than those for a grip in ruptured specimens of a low-carbon 9Cr-3Co-2W-0.4MoVNbMB steel (Fedorova, 
Kipelova, Belyakov, & Kaibyshev, 2013). In these phenomena, creep deformation changes the shape of the 
boundaries and consequently promotes boundary diffusion, which can cause larger precipitates on boundaries in 
a gauge portion. If creep strain can assist in the transportation of solute atoms in addition to lattice diffusion, the 
coarsening of boundary precipitates is also prompted. According to the abovementioned model, the total amount 
of precipitates on the boundaries should be controlled by the total amount of constituent elements transported 
from inside the grains because the diffusion velocity inside grains is slower than that along the boundaries at 
average temperatures at which creep tests are conducted. In a gauge portion, excess dislocations inside 
sub-grains are fewer than those in a grip because of the recovery, and therefore, the increase in the amount of 
mass transportation caused by pipe diffusion in a gauge portion do not exceed than those in a grip. Therefore, the 
total amount of precipitates in a gauge portion should not exceed that in a grip even though sizes of the 
precipitates are promoted because of creep deformation in a gauge portion. 
Murata et al. (2009) showed that the volume fractions of M23C6 in a grip portion of creep ruptured specimens 
crept at 650 ℃ for 8000–40 000 h of 9.5Cr-3.6W-3CoVNbBN and 10.5Cr-3.6W-3CoVNbBN steels are similar 
to that before test; further, these values are comparable only to the calculated values using a thermodynamic 
calculation software. This indicates that the total amount of M23C6 in a gauge portion is not promoted by creep 
deformation when the precipitation is completed thermodynamically before the creep test. In this case, only the 
redistribution or refining on the sub-boundaries, i.e., DFRP, and the coarsening on large angle boundaries occur. 
The precipitation of MX is approximately completed before test and the coarsening on large angle boundaries 
occurs. Further, the redistribution of MX inside sub-grains occurs with the aid of moving dislocations. In the 
case of the Laves phase, the precipitation of the Laves phase is approximately completed for up to 10 000 h at 
600 °C (Suzuki et al., 2003 for T91; Haetterstrand & Andren, 2001 for Grade 92 steel). Therefore, for 𝑡 > 10 000 h, only the coarsening on the boundaries occurs with the aid of creep deformation. However, for 𝑡 < 10 000 h, not only hardening caused by the Laves phase but also the enhancement of precipitation and 
growth or coarsening of the Laves phase in high Cr martensitic steel are observed (Cui, Kim, Kang, & 
Miyahara,2001). These authors investigated the precipitation behavior of the Laves phase in Fe-10Cr-6W-(3Co) 
alloys and demonstrated that the number densities of the Laves phase in the alloys with the stress of 80 MPa at 
600 °C for 200 h are larger than those aged under the same temperature and duration, respectively; in addition, 
the TEM images show that the size for the crept specimen is larger than that for the aged one. These results on 
the number density and TEM observation suggest us that the total amount and size of the Laves phase in the 
crept specimen are considered larger than those for the aged one when the precipitation is not completed yet. 
For the Z-phase, Sawada et al. (2006; 2014b) reported that 𝜌௓s in the gauge portion at the rupture of T91/MGC 
at 600 ℃ (𝑡௥ = 34 141 and 80 737 h) are larger than those in a grip, and 𝜌௓ is correlated with the total amount 
of the Z-phase formed by referring to the data on 𝜌ெ௑ and neglecting the changes in the size of MX. Murata et 
al. (2009) reported that the volume fractions of the Z-phase in the gauge portions of the above mentioned 9.5Cr 
and 10.5Cr steels are largely increased as compared to those for grips at 650 ℃, respectively. The results on T91 
indicate that the amount of the Z-phase in a gauge portion is larger than that for a grip even under long-term tests. 
Therefore, in addition to the lattice diffusion inside grains, other transport systems toward boundaries other than 
pipe diffusion for the constituent elements of the Z-phase should operate during creep. Further, there are still 
many excess dislocations in the sub-grains of martensitic steel with high strength, not only in the gauge portion 
but also in the grip portion after long-term testing (Panait et al., 2010b; Fedoseeva, Dudova, & Kaibyshev, 2016). 
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Therefore, the existence of excess dislocations or the role of pipe diffusion is not essential for explaining the 
accelerated formation and coarsening of Z-phase particles in the gauge portion of high-strength martensitic steels. 
Instead, straining itself or the role of moving dislocations during creep must be considered when explaining the 
observable accelerating formation of the Z-phase in the gauge portion of high-strength martensitic steel.  
Figure 9 illustrates feasible mechanisms to accelerate the boundary precipitation including the Z-phase. Lundin, 
Norell, Andren, and Nyborg (1997) provided the evidence for latent creep resistance proposed by Glen (1958), 
which is a type of dynamic strain aging. They observed clusters of Cr, V, and N along a dislocation using an 
atom-probe field ion microscope in a creep-interrupted specimen of 11Cr-1Mo-1W-VNbN steel. The concept of 
latent creep resistance is supported by Kubon, Foldyna, and Vodarek (1998), Kubon, Foldyna, Hajduk, and 
Simecek (2000), and Azuma, Miki, Tanaka, and Ishiguro (2002) as one of the strengthening mechanisms for 
high-strength martensitic steel. The rapid transportation of these segregated solute atoms along a dislocation to 
the grain boundaries by pipe diffusion is a potential mechanism to increase the total amount of solute atoms to be 
transported because the dislocations near the boundaries are possibly connected to boundaries and many 
dislocations stagnate near boundaries of the Cr-W steel when compared with those of plain Cr steel (Abe et al., 
1992). 

 
Figure 9. Schematic illustration for accelerating formation and coarsening of boundary precipitates in high Cr 

martensitic steel with high strength 
 
Cui et al. (2001) suggested that the observed enhanced precipitation and growth of the Laves phase are caused by 
the dragging effect of moving dislocations for W atoms. Hayakawa, Terada, Yoshida, Nakashima, and Goto 
(2003a; 2003b) and Hayakawa, et al. (2007a; 2007b) showed that applying the rapid stress change tests on 
several Cr-Mo steels cause dislocations to move while dragging solute atoms Mo during creep; the dragging 
solute atoms is the rate-controlling process for the creep of Cr-Mo steels. Further, they suggested that the 
effective stress to the drag of solute atoms is estimated to be, at most, 10% of the applied stress, whereas the 
remaining is the back stress for the moving dislocations. The magnitude of the equivalent back stress can be 
estimated in this study; however, the estimated back stress using the exponential law is significantly greater than 
the applied stress. There could be a clear gap between the above two lines of approach. However, there is no 
discrepancy, as discussed in the previous work (Tamura & Abe, 2021b), and therefore, I do not deny but instead 
support the drag mechanism proposed by Cui et al. (2001) and Hayakawa et al. (2003a; 2003b; 2007a; 2007b). 
The solute atoms of Mo dragged by the dislocations arrive near grain boundaries along with the dislocations 
during creep. When the dislocations are annihilated because of recovery, Mo atoms are segregated on the 
boundaries, which promotes the formation, growth, or coarsening of the Laves phase. The solute atoms of W, Cr, 
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V, Nb, C, N, and B can also interact with the dislocations. Hence, these solute atoms including Mo are 
potentially swept out to the grain boundaries during creep. Consequently, the formation, growth, coarsening, 
re-precipitation, or all of them of the Cr23C6, MX, Laves phase, and Z-phase are promoted on boundaries based 
on the drag mechanism by moving dislocations when the precipitation is not completed.  
There is plenty of Mo, W, and Cr atoms that can form the Laves phase in the matrix among the above-mentioned 
solute atoms; therefore, these atoms are scarcely exhausted in the accelerated segregation reactions on the 
boundaries. However, Nb and V are the constituent elements of the Z-phase and the solubility limits for each are 
thought to be considerably small in high-Cr high-strength martensitic steels. Moreover, the total amount of Nb 
and V is not so large; thus, these elements are easily exhausted in the matrix. Therefore, a special mechanism 
other than pipe diffusion, lattice diffusion, and simple dragging of solute atoms by moving dislocations is 
required to continue the accelerating formation of the Z-phase with increasing creep strain. 
Tamura et al. (2004) observed that, in low-carbon 7Cr-0.4V-0.09N martensitic steel, the soluble V in the matrix 
discontinuously increases and then decreases over a short time during tempering at 740–800 °C for up to 100 h, 
even though the precipitation of VN is approximately complete after 20 h at least. A similar phenomena occurs 
for NbC in a 9Cr-1Mo-0.18V-0.085Nb system. Tamura, Nakamura, Shinozuka, and Esaka (2008) showed that, 
in a low-carbon 7Cr-0.1V-0.06Nb-0.077N system, the amount of MX decreases gradually at the macroscopic 
scale during tempering at 750 °C, whereas that of Cr2N increases and the V and Nb contents in MX increase, and 
the Cr content does not. During the tempering of this steel up to 1000 h, discontinuous changes in the chemical 
compositions of MX are clearly observed at least three times by accompanying the discontinuous changes in the 
amount and size. Here, the chemical composition of MX with the highest Cr content, i.e., 50Cr-35V-15Nb in at%, 
corresponds to that of the Z-phase (Suzuki et al., 2003; Sawada et al., 2006 and 2007). However, the MX 
particles with high Cr content have a cubic structure rather than a tetragonal structure of the Z-phase. Therefore, 
(Cr,M)X particles with high Cr content are not the Z-phase. Cipolla et al. (2010) demonstrated that the transient 
compound with the hybrid structure composed of the cubic MX and the tetragonal Z-phase are formed in a 12% 
Cr model steel during aging at 650 °C for up to 1000 h. However, such a compound is not found during the 
tempering of the low-carbon 7Cr-0.1V-0.06Nb-0.077N steel. If particles with 50Cr-35V-15Nb were the Z-phase 
with the tetragonal structure, the Cr content of the particles with 50 at% Cr would never decrease because the 
Z-phase with the tetragonal structure is the thermodynamically stable phase (Kocer et al., 2009). 
Discontinuous changes in the precipitation reactions mentioned above are interpreted by combining the 
information on hardness and the analytical results of XRD. The MX particles formed on the sub-boundaries 
remain in the original positions for a while when the sub-grains are newly formed or grown during tempering. 
Isolated MX particles become energetically unstable and dissolve into the matrix, and then, they re-precipitate on 
nearby stable sites such as dislocations and newly formed sub-boundaries. Similar processes are feasible to 
operate for MX particles precipitated on dislocations in a stress-free specimen because internal stresses always 
act on the dislocations, even in tempering. In this case, the change induced for each event may be too small to 
detect. However, there are numerous dislocations in martensitic steel to be annealed out, and in some cases, the 
numerous dislocations are annealed out dramatically when several sub-grains were simultaneously and newly 
born, which enables the changes to appear or to be detected as though they occur discontinuously against time. 
Similar DFRP of MX particles should occur, even for an extended period of creep time for the martensitic steel 
containing V and Nb because the applied stress, in addition to the internal stress, always act on the moving 
dislocations during creep. In such cases, where moving dislocations interact with MX particles, the soluble V, 
Nb, and N contents in the matrix can maintain a higher level for each, compared to those calculated using a 
thermodynamic calculation software (Tamura et al., 2004). High levels of 0.15 and 0.02% for V and Nb, 
respectively, are certainly confirmed after tempering a 7Cr-0.4V-0.09N system at 740 °C for 90 h and a 
9Cr-1Mo-0.18V-0.085Nb system at 740 °C for 4 h, respectively (Tamura et al., 2004; 2008). 
Tamura et al. (2011) also found a new and unbelievable phenomenon that some finely dispersed particles of a 
stable phase of Ti2Y2O7 are temporally decomposed into the matrix. Consequently, TiO2 and Y2O3 are formed 
when mechanically alloyed Cr-W steel with Ti2Y2O7 is austenitized and then air cooled. In these processes, 
Ti2Y2O7 should never thermally be decomposed; however, they can be decomposed with the aid of dislocations 
introduced through the γ to α transformation of the matrix. Again, fine particles of Ti2Y2O7 are reproduced 
after further tempering because the introduced dislocations are annealed out during tempering. These sequential 
reactions indicate that the existence of dislocations allows solute atoms in a supersaturated state to segregate on 
the dislocations. 
Therefore, it is natural to consider that high levels of soluble Nb and V are maintained continuously during creep 
because many moving dislocations are always supplied in a gauge portion during creep, especially within an 
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HRHD zone; therefore, a sufficient amount of Nb and V can be always supplied on the boundaries to form 
Z-phase during creep. Thus, it can be said that, when HRHD occurs during the creep of high Cr martensitic steel 
containing V and Nb, many moving dislocations in an HRHD zone assist in transporting the solute atoms to the 
boundaries quickly through several processes mentioned above, which leads to enhanced formation and the 
subsequent occurrence of the coarsening of precipitates for the Z-phase in a gauge portion. 
6.3 Roles of Precipitates 
6.3.1 Laves Phase 
The formation of the Z-phase is undoubtedly responsible for the degradation in the strength in Gr.IIIa; further, it 
is distinctly observed that the number density of the Z-phase increases with an increase in the creep strain 
because of the consumption of MX particles (Sawada et al., 2011). The trend in Table 7 indicates that the larger 
the EL, the larger is the degradation in strength for Gr.IIIa at 600 °C. This trend is considered approximately 
accurate to some extent. However, as seen in Figure 5, the distinct differences in the degradation in strength can 
be confirmed, even for a specific creep strain of 1%. It is essential for us to know the degree of strain within an 
HRHD zone and not a nominal strain to explain the differences in the degree of degradation shown in Figure 5 
because at 1% strain, 𝑉 for Gr.IIIa already starts to decrease and the HRHD is inferred to start as summarized 
in Table 8. However, unfortunately, to the best of our knowledge, no investigations have been performed within 
an HRHD zone. Therefore, until the aforementioned investigation can be realized, another approach is required 
to explain the degradation in strength. To solve this problem, we consider the hint that even though the nose 
temperatures of the TTP curve of the Z-phase for Grades T91 and T92 are similar (~650 °C), the average 
temperatures of Grs.IIIa of MJP and MJT are 634 and 622 °C, respectively, whereas those for T91/MGC and 
pl-91/MgC are much lower (583 °C and 581 °C, respectively), as shown in Table 8. There is a distinct difference 
between the average temperatures of Grs.IIIa between the Grades 92 and 91 steels, i.e., Fe-Cr-W and Fe-Cr-Mo 
systems, respectively. The major differences in the chemical compositions of Grades 92 and 91 steels are 
attributed to the Mo and W contents, which are not considered to impact the formation of the Z-phase directly. 
Instead, it is more reasonable that the above-mentioned differences in the average temperature of Gr.IIIa are 
attributed to the formation temperature of the Laves phase in the Grade 91 and 92 steels. Tamura et al. (1988) 
reported the TTP curves for Fe2Mo and Fe2W in 9Cr-1MoVNbN steel and 8Cr-2WVTa steel plates, respectively. 
The aforementioned curves indicate that the nose temperatures for Fe2Mo and Fe2W are 575 and 654 °C, 
respectively. The information pertaining to the nose temperatures for Laves phases, average temperatures of 
Gr.IIIa for Grade 91 and 92 steels, and degradation in strength for Grs.IIIa of P92/MJP, T92/MJT, T91/MGC, 
and pl-91/MgC are shown in the previous paper (Tamura & Abe, 2021b) and Figure 1 in this paper. These 
features suggest that the degradation in the long-term rupture strength of high-Cr high-strength martensitic steel 
is related to the coarsening of the Laves phases and the consumption of several MX particles caused by the 
formation of the Z-phase. Figures 4 and 5 show that considerable degradation is observed for T91/MGC (and 
pl-91/MgC) at a temperature of 600 °C (~several thousands of hours), which is higher than the nose temperature 
for Fe2Mo. At high temperatures, the diffusion rate is high and the nucleation rate of the precipitates is low. 
However, at low temperatures, the opposite is true. A nose temperature is determined by the diffusion-nucleation 
balance. These kinematical characteristics of the precipitation phenomena around the nose point of a TTP curve 
are well understood both experimentally and theoretically (Arai, 1970; Medina, 1997; Milkereit, Giersberg, 
Kessler, & Schick, 2014). Therefore, when Laves phase particles in T91/MGC and pl-91/MgC readily grow and 
are coarsened at 600 °C, grain boundary strengthening by the Laves phase becomes incomplete, even after a 
small strain under low stress. This causes HRHD and strain concentration to occur in an HRHD zone. Therefore, 
the vicious cycle of the coarsening of the Laves phase, HRHD, and formation of the Z-phase by consuming MX 
particles occurs even from a small nominal strain, and this leads to serious degradation in strength for the Gr.IIIa 
of MGC and MgC at 600 °C compared to the P92/MJP and T92/MJT. 
Figure 10 shows changes in the average diameter of the Laves phase observed in the gauge portion of ruptured 
specimens of Grade T91 (Suzuki et al., 2000) and Grade 92 steel (Jiang, Zhu, & Wang, 2013; Dudko, Belyakov, 
Molodov, & Kaibyshev, 2013; Nie et al., 2014). In this figure, creep-interrupted data are distinguished by thrash 
marks and the data at 650 °C for P911 (3Co) steel (Kipelova, Belyakov, & Kaibyshev; 2012) are added. Broken 
and solid lines in the figure represent regression lines for Grade 91 and 92 steels at 600 °C, respectively. 
Combining data in the grip portions and aged specimens with data for both creep-interrupted and ruptured 
specimens, the following trends were deduced (related figures are omitted for simplicity): i) The Laves phase is 
coarsened by increasing the aging temperature (Haetterstrand & Andren, 2001); ii) straining promotes the growth 
of the Laves phase (Nie et al., 2014); and iii) the addition of boron suppresses the growth of the Laves phase 
(Azuma et al., 2002). As shown in Figure 10, the growth rate of the Laves phase (slope of the line) in Grade 92 
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steel appears to be lower than that in Grade 91 steel at 600 °C despite the lack of long-term data for Grade 92 
steel. The growth rate of the Laves phase in Grade 92 steel at 600 °C is controlled by the diffusion rate of 
constituent elements at that temperature or 600 °C because the test temperature is below the nose temperature for 
Fe2W (~650 °C) and the diffusion rate of W in α − Fe is slower than both of Mo and the self-diffusion of α − Fe (Oikawa, 1982). Therefore, the Laves phase particles of Fe2W are finer than those for Grade 91 steel. 
Further, the total amount of Mo and W is approximately 1.4 times larger than that for Grade 91 steel in atomic 
ratio causes clear Laves phase hardening observed in Gr.II of Grade 92 steel. In addition, in the case of Gr.IIIa of 
Grade 92 steel, the strengthening effect caused by the Laves phase may be observed at a small strain. Thus, 
HRHD is more difficult to achieve for Grade 92 steel than it is for Grade 91 steel, and this resulted in less 
degradation in strength for Grade 92 steel, as indicated in Figures 4 and 5. 
 

 
Figure 10. Average diameters of Laves phases in Grade 91 steel, Grade 92 steel, and P911 steel in a gauge 
portion of ruptured specimens. Creep interrupted specimens are investigated and distinguished by thrash 

 
The above discussion indicates that the stability of the Laves phase under a given condition is considered the 
underlying cause for breakdown in strength, even though the direct reason is the partial consumption of MX 
caused by the formation of the Z-phase. In other words, the growth and coarsening of the Laves phase triggers 
the beginning of HRHD, which promotes the formation of the Z-phase because of a high local strain in the 
HRHD zone. The Laves phase shows a positive effect on grain boundary strengthening that delays the beginning 
of HRHD. However, the positive effect is easily lost when the Laves phase particles grow, which promotes the 
formation of the Z-phase, and ultimately, the rapid degradation in strength. Therefore, it is very important to 
improve the stability of the Laves phase together with M23C6 to delay the occurrence of HRHD and the 
formation of the Z-phase. Hashizume et al. (2009) showed that a small addition of Re to 9Cr-4W-3Co-NbVN 
steel remarkably suppresses the growth of the Laves phase and increases the rupture strength at 650 °C. Kunieda, 
Murata, Morinaga, and Koyama (2004) and Kunieda et al (2006) suggest that Re retards the diffusion rate of W 
in α − Fe. The Laves phase in P911(3Co) is fine, even at 650 °C, as shown in Figure 10. However, they did not 
completely discuss their results in their paper. Further, Fedoseeva, Nikitin, Dudova, and Kaibyshev (2019) 
showed that the addition of 0.17% Re to 10Cr-3Co-3W martensitic steel is effective to suppress the coarsening 
rate of the Laves phase and the typical size is 200 nm in a ruptured specimen at 650 °C for ~10 000 h. The 
temperature of 650 °C is close to the nose temperature for Fe2W; therefore, the growth rate may be 
predominantly controlled by the nucleation rate rather than the diffusion rate at ~650 °C. Thus, it is considered 
that reducing the interfacial energy by controlling the amount of microalloying elements may be effective to 
stabilize the Laves phase for Grade 92 steel at 650 °C. However, no literature on the aforementioned issue has 
been identified as yet. 
6.3.2 M23C6 
M23C6 particles formed on PAGBs and sub-boundaries play an important role in maintaining the strength of 
martensitic steel and preventing the growth of sub-grains. M23C6 particles remain moderately sized throughout 
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long-term creep deformation using the DFRP phenomena. Besides the stability of the Laves phase, the DFRP 
reaction of M23C6 is very effective in delaying the occurrence of HRHD around the strain for 𝑄௠௔௫. Figure 11 
shows the relationship between the size of M23C6 and 𝑡௥ for Grade 91 and 92 steels. Data shown in the figure 
with thrash marks indicate the results from the creep-interrupted specimens (Dudko et al., 2013). The size of 
M23C6 for a creep-interrupted specimen is between those for a gauge and a grip of the ruptured specimen because 
the size in a ruptured specimen is larger than that of a grip (Haetterstrand & Andren, 2001; Ennis & 
Czyrska-Filemonowicz, 2003; Dimmer et al., 2003, Dudko et al., 2013). Nie et al. (2014) reported the size of the 
M23C6 of Grade P92 steel ruptured at 700 °C; however, because the exact 𝑡௥ could not be ascertained in their 
paper, the data were omitted. The lines for Grade 91 and 92 steels are guidelines for a lower limit; these are not 
the regression lines. Under the assumption that all data are valid, the following trends were deduced: i) the size at 
650 °C is coarser than that at 600 °C, except for the data reported by Jiang et al. (2013); ii) the time exponent for 
Grade 92 steel (𝑛 = 0.16) seems to be smaller than that for Grade 91 steel (𝑛 = 0.2); and iii) the growth or 
coarsening rate, or both, for Grade 92 steel appears slower than that for Grade 91 steel, which may be attributed 
to the W and B contents in Grade 92 steel, although there was no data directly comparing Grade 91 and 92 steels 
presented in a single paper. However, the difference between the time exponents 𝑛 = 0.16 − 0.2 may not be so 
significant because of the large scattering for both steels. We can observe the large difference between the time 
exponents of Grade 91 and 92 steels for the Laves phase as shown in Figure 10 because the rate-determining 
processes for the growth or coarsening of the Laves phase for these steels differ from each other. However, the 
rate-determining process for M23C6 is the same at ~600 °C for both grades and the diffusion of constituent 
elements is a rate-controlling process because the nose temperature of the corresponding TTP curve is higher 
than the tempering temperature. Thus, from the above-mentioned metallurgical considerations, the time exponent 
for Grade 92 steel should be slightly smaller than that for Grade 91 steel. The size of the M23C6 formed on the 
PAGBs is considerably larger than that on the sub-boundaries (Abe, 2008; 2009); however, the variations in the 
size of the M23C6 systematically investigated for Grade 91 and 92 steels during creep are not yet ascertained.  

 
Figure 11. Relationship between time to rupture and average diameter of M23C6 formed at 600 and 650 ℃ in 
Grade 91 and 92 steels. Slashed marks correspond to creep interrupted specimens and the data by Jiang et al. 
(2013) are marked by gray, the details of which are explained in the text. A dotted and real lines are drawn for 

the lower limits to Grade 91 and 92 steels, respectively, using naked eyes 
 
Cr23C6 is stabilized by dissolving Fe, Mo, and W (Yi, Xu, Xia, Gang, & Chen, 2017; Sanhueza et al., 2019). The 
diffusion of constituent elements of the M23C6 particles is required for the nucleation and growth of the particles. 
The diffusion rate in α-Fe at ~600 °C increases in the order of 𝐷ெ௢ > 𝐷஼௥ > 𝐷ி௘ > 𝐷ௐ, where the suffixes 
denote each constituent element (Oikawa, 1982). Therefore, Mo may not suppress the growth of M23C6 through a 
diffusion process. However, Mo has been utilized in many heat-resistant steel for an extended duration, and 
therefore, Mo appears to stabilize M23C6 through a nucleation process. Further, W definitely suppresses the 
growth rate of M23C6 because the diffusion of W is slower than other constituent elements of M23C6. Thus, the 
growth and coarsening rates of M23C6 in Grade 92 steel are expected to be slower than those in Grade 91 steel. 
Yoshizawa, Igarashi, and Nishizawa (2005) showed that the coarsening rate of M23C6 in the W-containing 
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martensitic steel is lower than that of W-free steel; they explain this phenomenon semi-quantitatively by 
assuming Ostwald ripening (Lifschitz & Siyozov, 1961; Wagner, 1961).  
The average chemical composition of the M23C6 of ruptured specimens for Grade 91 steel at 600 °C is 
64.4Cr-21.8Fe-9.9Mo-NbVSi. Cr is slightly enriched during long-term tests; however, the compositional range 
varies steadily during creep (Suzuki et al., 2000; Kimura et al., 2002). The chemical composition of M23C6 in 
Grade 92 steel is rarely reported: 46.1Cr-23.6Fe-27.3W-2.2Mo-0.9V at 600 °C for 𝑡௥ = 9755 h (Ennis, 
Zielinska-Lipiec, Wachter, & Czyrska-Filemonowicz, 1997), 6.3Cr-8.7Fe-46.3W-7.7Mo at 600 °C for 𝑡௥ = 8472 h (Nie et al., 2014), and 63Cr-19Fe-12W-4.4Mo aged at 700 °C for 2000 h (Gao et al., 2017). This 
seems to imply that the compositional range of M23C6 in Grade 92 steel could be wider than that for Grade 91 
steel because of the microsegregation of W. Maruyama, Sawada, and Koike (2001) reported that the addition of 
Ni to 12Cr-0.5Mo-VNb steel increases the size of the M23C6 particles during creep at 600 °C. Further, Ni is not a 
constitutional element of M23C6, and therefore, this phenomenon can be explained as follows: The addition of Ni 
decreases an α − γ transformation temperature (Fujita, Yamashita, & Miyake, 1980), which promotes the 
recovery and diffusion of the matrix. Thus, the size of M23C6 increases with the addition of Ni. However, there is 
no report on the effect of a small amount of Ni on the size of M23C6 in Grade 91 and 92 steels. The addition of 
small amounts of boron to high-Cr martensitic steel is confirmed to suppress the coarsening of M23C6 and 
improve the rupture strength (Azuma et al., 2002; Danielsen, 2007; Abe, 2008, 2009, 2011). This technique is 
explained as follows: After boron is segregated on grain boundaries during normalizing, the segregated boron 
atoms on the PAGBs move towards the newly formed M23C6 during tempering and stabilize with the M23C6 
particles for an extended duration (Abe, 2008, 2009, 2011; Liu, Fors, Golpayegani, Andren, & Wahnstrom, 2012). 
However, a majority of boron in the typical Grade 92 steel is used to form massive BN particles, which reduce 
the reduction of area (Tamura & Abe, 2021b). Therefore, boron is not used effectively in Grade 92 steel. Liu et al. 
(2012) and Sanhueza et al. (2019) attempted to explain the time rule for the precipitated M23C6 during the creep 
of martensitic steel containing boron based on Ostwald ripening; unfortunately, they were unsuccessful in their 
attempts. The time exponents shown in Figure 11 are approximately close to 1/3; however, this does not 
necessarily indicate that the coarsening process is Ostwald ripening. The diffusion of constitutional elements of 
M23C6 is very important for the growing process of M23C6 because the creep temperature of martensitic steel is 
far below the nose temperature of the respective TTP curve of martensitic steel. However, the M23C6 during the 
creep of martensitic steel is in a nucleation and the growth process, as opposed to in a simple coarsening process. 
This lends credibility to the DFRP process of M23C6 on the sub-boundaries during creep, and the rearrangement 
of the M23C6 arising from HRHD, which occurs from the early stage of creep as explained in the previous work 
(Tamura & Abe, 2021a) or as briefly explained in Section 1. Therefore, the average composition of M23C6 should 
continuously change during creep, although the experimental results for Grade 92 steel have not been obtained 
sufficiently. The segregation of boron onto M23C6 is presumed to occur after the nucleation of M23C6 from the 
boron profile across an M23C6 particle (Abe, 2011). Moreover, there are several types of precipitation sites in 
martensitic steel. These facts indicate that the interfacial energy between M23C6 and the matrix during creep of 
martensitic steel cannot be regarded as constant as the Ostwald ripening in liquids. 
6.4 Comparison between Grade 91 and Grade 92 steels 
The rupture strengths of Grade 92 steel (~600 °C, 100 000 h) are larger than those of Grade 91 steel; however, 
there is a heat-to-heat variation in the strength in each grade. This difference is attributed to the consumption of 
finely dispersed MX particles caused by the formation of the Z-phase, as indicated by Sawada et al. (2011). 
However, this difference in strength—the amount of Z-phase formed at 600 °C for longer than several tens of 
thousands hours—is not directly related to EL but with the alloy system itself, i.e., Fe-Cr-W or Fe-Cr-Mo system. 
At ~600 °C, the Fe2Mo particles are coarsened easily compared to Fe2W particles (Figure 10), which causes 
the HRHD to initiate at a smaller strain, consequently forming a larger amount of the Z-phase. Figure 12 shows 
the relationship between the average NSR and the strain for Gr.IIIa of the four steels of Grade 91 and 92 steels. 
Clear differences in the transient creep are confirmed between Grade 91 and 92 steels. The average NSRs for 
Grade 91 steel are smaller than those for Grade 92 steel in the transient creep, which indicates that Grade 91 steel 
is more easily hardened than Grade 92 steel. This difference is attributed to the formation of the Laves phase 
particles being faster in Grade 91 steel (Fe2Mo) than that in Grade 92 steel (Fe2W) in the transient creep. In the 
accelerating creep, the average NSRs through 1–5% for Grade 91 steel appear slightly larger on average than 
those for Grade 92 steel. This can be explained as follows: Table 8 shows that finer Laves phase particles are 
readily formed in an Fe-Cr-Mo system (Grade 91 steel), and consequently, 𝑄𝑉𝐶௠௔௫ is obtained at a smaller 
strain followed by the decrease in 𝑄 and the occurrence of HRHD accompanying a faster growth of the Laves 
phase (Figure 10). This causes a faster formation of the Z-phase and a faster recovery even in the transient creep 
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of Gr.IIIa, when compared with those for an Fe-Cr-W system (Grade 92 steel). These sequential phenomena are 
passed more severely from the transient creep to the accelerating creep, and ultimately, the 𝑡௥ for Grade 91 steel 
becomes shorter than that of Grade 92 steel.  
Hasegawa, Ohgami, and Muraki (2003) and Hasegawa et al. (2004) reported that the Laves phase together with 
M23C6 can strengthen the block boundaries during the creep of Grade P92. Kipelova, Belyakov, and Kaibyshev 
(2012) confirmed that fine Laves phase particles are formed on the lath boundaries of the crept specimen by 1% 
strain at 650 °C (𝑡ଵ = 374 h) of P911(3Co) steel. Moreover, Zeng, Jia, Cai, Dong, and Wang (2018) recently 
reported that the Laves phase not only forms on the PAGBs and lath boundaries but also finely precipitates 
inside the lath martensite at a scale of 100 nm order for a reheater tube of P92 served for 9854 h in an actual 
power plant operated at 603 °C and under 5.87 MPa. These facts indicate that creep strength of Grade 92 steel at 
around 650 °C is superior to that of Grade 91. 
However, the growth rate of the Laves phase is high and the sizes become approximately 200 and 300 nm in the 
necked portions of the ruptured specimens of P92 tested at 600 and 649 °C for about 5000 h, respectively (Nie et 
al., 2014). Much larger sizes of 300 and 700 nm are reported for the aged specimens of P92 at 600 and 650 °C 
for 5000 h, respectively (Haetterstrand & Andren, 2001). The precipitation site of the Laves phase after 
long-term creep is on the PAGBs (Yan et al., 2013). These massive Laves phase particles are frequently observed 
in P92 near the coarse M23C6 particles (Dimmler, Weinert, Kozeschnik, & Cerjak, 2003; Dudko, Belyakov, 
Molodov, & Kaibyshev, 2013; Nie et al., 2014; Xu et al., 2015; Maddi et al., 2016; Zielinski, Golanski, & Sroka, 
2016). However, these information do not yet been reflected in Figures 10 and 11. Therefore, special attention 
needs to be paid to the degradation in long-term rupture strength of Grade 92 at around 600 °C caused by the 
interaction between Laves phase and M23C6. 

 
Figure 12. Comparison among the average NSRs for each Gr.IIIa of P92/MJP, T92/MJT, T91/MGC, and 

pl-91/MgC as functions of creep strain 
 

7. Conclusions 
The long-term creep curves of four types of Grade 91 and 92 steels were analyzed by applying an exponential 
law to 𝑇, 𝜎, and 𝑡௥  or 𝑡ఌ  for clarifying the root cause of degradation in long-term rupture strength of 
martensitic steel with high strength. Observed creep variables of 𝑇, 𝜎, and 𝑡௥, or 𝑡ఌ are converted to the 𝑄, 𝑉, 
and 𝐶 without using any adjustable parameters. The variations in 𝑄, 𝑉, and 𝐶 as functions of creep strain are 
discussed metallurgically and the following conclusions are obtained: 
1) Remarkable degradation in the rupture strength of Grade 91 and 92 steels is observed at approximately 600 °C 
for hundreds of thousands of hours and the degree of degradation tends to be mitigated for further longer-term 
tests because of the growth of sub-grains and the rearrangement of M23C6. 
2) At the initial stage of creep, the sub-boundaries of high Cr and high strength martensitic steel are strengthened 
by dislocations swept out of sub-grains, DFRP of fine M23C6 particles, and precipitation of the Laves phase, 
which increases 𝑄, 𝑉, and 𝐶. 
3) Under the test conditions for the remarkable degradation in the rupture strength, some boundaries start to be 
weakened because of the coarsening of boundary precipitates (Laves phase) from a small strain (ex. 0.5%). 
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Consequently, HRHD starts near several of the weakest boundaries. As a result, 𝑄, 𝑉, and 𝐶 start to decrease 
simultaneously while increasing strain even in transient creep. 
4) Large straining inside an HRHD zone promotes the decomposition of microstructure, i.e., further coarsening 
of the Laves phase and formation of the Z-phase consuming finely dispersed MX particles, which results in 
further decreases in 𝑄, 𝑉, and 𝐶 with increasing nominal strain even in transient creep. 
5) Further decrease in 𝑄 causes the start of the accelerating creep and the degradation in rupture strength. The 
heterogeneous coarsening of the Laves phase particles induces the occurrence of the HRHD, which triggers an 
unexpected degradation in rupture strength because of the accelerated formation of the Z-phase consuming the 
MX particles nearby an HRHD zone. 
6) Transportation of solute atoms by moving dislocations inside the HRHD zone based on a drag mechanism 
promotes the accelerating formation of coarse particles of the Laves phase and Z-phase consuming a 
strengthening factor of MX particles nearby an HRHD zone. 
7) Long-term rupture strength of Grade 91 steel is lower than that of Grade 92 steel at approximately 600 °C. 
This is attributed to the Laves phase that is easily coarsened in an Fe-Cr-Mo system compared with that of an 
Fe-Cr-W system, i.e., Grade 92 steel, because a temperature of 600 °C is higher than the nose temperature of the 
TTP curve of Fe2Mo, 575 °C on the other hand the nose temperature for Fe2W, 654 °C, is higher than 600 °C. 
Stabilizing not only the Laves phase but also M23C6 is very important to mitigate the degradation in strength. 
List of Symbols and Abbreviations 𝜀  Strain 𝜀ሶ  Creep rate 𝜆  Maximum distance that a dislocation can move from a start point to the next stable position 𝜈௘௙௙  Effective attempt frequency per unit time to overcome the obstacles 𝜌  Dislocation density 𝜌௭  The number density of Z-phase 𝜎  Applied stress 𝛥𝑆  Entropy change in the activation process 
ASME The American Society of Mechanical Engineers 𝑏  Length of the Burgers vector 𝐶  Larson-Miller constant  𝐶௦  Larson-Miller constant calculated based on strain rate 𝐶ெீ  Monkman-Grant constant 
DFRP Dissolving and finely re-precipitation  
EL  Rupture elongation 
HRC  Rockwell hardness number 
HRHD Heterogeneous recovery and heterogeneous deformation 𝑀𝐶𝑅 Minimum creep rate 𝑀𝑇𝐷 Minimum creep time for detectable degradation as compared with the shorter time data group. 
MX  Carbonitride of (Cr,Nb,V)(C,N) type 
NIMS National Institute for Materials Science in Tsukuba, Japan 𝑁𝑆𝑅  Normalized strain rate, Strain rate at a specific strain is divided by each MCR  
PAGB Prior austenitic grain boundary 𝑄  Activation energy 𝑄௦  Activation energy calculated based on strain rate [𝑄]   𝑄 2.3𝑅𝑇⁄  [𝑄]௦  𝑄௦ 2.3𝑅𝑇⁄  
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𝑄𝑉𝐶  𝑄, 𝑉, and 𝐶 𝑅  Gas constant 
SBSD Sub-grain boundary strengthening by dislocations  𝑇  Temperature in K 𝑡ఌ  Time to a specific strain 𝑡௥  Time to rupture 𝑡௑  Time to a specific strain for Gr.X 
TEM Transmission electron microscopy 
TZF  Start time of Z-phase formation 
TTP  Time-temperature-precipitation 𝑉  Activation volume 𝑉௦  Activation volume calculated based on strain rate [𝑉]  𝜎𝑉 2.3𝑅𝑇⁄  
XRD X-ray diffraction 
References 
Abe, F. (2006a). Metallurgy for long-term stabilization of ferritic steels for thick section boiler components in 

USC power plant at 650 °C. In Proceedings of the 8th Liege Conference on Materials for Advanced Power 
Engineering, 2006, September 18-20, 2006, Liege, Belgium (pp. 965-980). Forschungszentrum Juelich, 
Germany. Retrieved from https://www.fz-juelich.de/zb/DE/Home/home_node.html 

Abe, F. (2006b). Present status of advanced high-Cr ferritic heat resistant steels for ultra-supercritical power plants. 
Bulletin of the Iron and Steel Institute of Japan, 11, 197-207. Retrieved from https://www.isij.or.jp/ 

Abe, F. (2008). Precipitate design for creep strengthening of 9%Cr tempered martensitic steel for 
ultra-supercritical power plants. Science and Technology of Advanced Materials, 9, 013002 (pp.1-15). 
https://doi.org/10.1088/1468-6996/9/1/013002 

Abe, F. (2009). Analysis of creep rates of tempered martensitic 9%Cr steel based on microstructure evolution. 
Materials Science and Engineering A, 510-511, 64-69. https://doi.org/10.1016/j.msea.2008.04.118 

Abe, F. (2011). Effect of boron on microstructure and creep strength of advanced ferritic power plants steels. 
Procedia Engineering, 10, 94-99. https://doi.org/10.1016/j.proeng.2011.04.018 

Abson, D. J., & Rothwell, J. S. (2013). Review of type IV cracking of weldments in 9-12%Cr creep strength 
enhanced ferritic steels. International Materials Reviews, 58, 437-473. 
https://doi.org/10.1179/1743280412Y.0000000016 

Arai, H. (1970). A theoretical study on the formation of carbide and chromium-depleted-layer in austenitic 
stainless steel. Tetsu-to-Hagane, 56, 44-54. https://doi.org/10.2355/tetsutohagane1955.56.1_44 

Azuma, T., Miki, K., Tanaka, Y., & Ishiguro, T. (2002). Effect of B on microstructural change during creep 
deformation in high Cr ferritic heat resistant steel. Tetsu-to-Hagane, 88, 678-685. 
https://doi.org/10.2355/tetsutohagane1955.88.10_678 

Brailsford, A. D., & Aaron, H. B. (1969). Growth of grain-boundary precipitates. Journal of Applied Physics, 40, 
1702-1710. https://doi.org/10.1063/1.1657835 

Cipolla, L., Danielsen, H. K., Venditti, D., Nunzio, P. E. D., Hald, J., & Somers, M. A. J. (2010). Conversion of 
MX nitrides to Z-phase in a martensitic 12% Cr steeel. Acta Materialia, 58, 669-679. 
https://doi.org/10.1016/j.actamat.2009.09.045 

Cui, J., Kim, I-S., Kang, C-Y., & Miyahara, K. (2001). Creep stress effect on the precipitation behavior of Laves 
phase in Fe-10%Cr-6%W alloys. ISIJ International, 41, 368-371. 
https://doi.org/10.2355/isijinternational.41.368 

Danielsen, H. K. (2007). Z-Phase in 9-12%Cr steels (Dissertation of Ph. D.). Technical University of Denmark, 
Lyngby, Denmark. https://backend.orbit.dtu.dk/ws/files/4899462/HilmarThesis.pdf 

Danielsen, H. K., & Hald, J. (2009). Influence of Z-phase on long-term creep stability of martensitic 9 to 12 % Cr 
steels. VGB Power Technology, 5, 68-73. Retrieved from 
https://www.vgb.org/vgbmultimedia/danielsen_pt09_05-p-3571.pdf 



jmsr.ccsenet.org Journal of Materials Science Research Vol. 11, No. 1; 2022 

33 

Di-Gianfrancesco, A., Vipraio, S. T., & Venditti, D. (2013). Long-term microstructural evolution of 9-12%Cr steel 
Grades for steam power generation plants. Procedia Engineering, 55, 27-35. 
https://doi.org/10.1016/j.proeng.2013.03.214 

Dimmler, G., Weinert, P., Kozeschnik, E., & Cerjak, H. (2003). Quantification of the laves phase in advanced 9-12% 
Cr steels using a standard SEM. Materials Characterization, 51, 341-352. 
https://doi.org/10.1016/j.matchar.2004.02.003 

Dudko, V., Belyakov, A., Molodov, D., & Kaibyshev, R. (2013). Microstructure evolution and pinning of 
boundaries precipitates in a 9 pct Cr heat resistant steel during creep. Metallurgical and Materials 
Transactions A, 44A, S162-S172. https://doi.org/10.1007/s11661-011-0899-1 

Dudova, N., Plotnikova, A., Molodov, A., Belyyakov, A., & Kaibyshev, R. (2012). Structural changes of tempered 
martensitic 9%Cr-2%W-3%Co steel during creep at 650 °C. Materials Science and Engineering: A, 534, 
632-639. https://doi.org/10.1016/j.msea.2011.12.020 

Ennis, P. J., Zielinska-Lipiec, A., Wachter, O., & Czyrska-Filemonowicz, A. (1997). Microstructural stability and 
creep rupture strength of the martensitic steel P92 for advanced power plant. Acta Materialia, 45, 4901-4907. 
https://doi.org/10.1016/S1359-6454(97)00176-6 

Ennis, P. J., Zielinska-Lipiec, A., & Czyrska-Filemonowicz, A. (2000). Quantitative microscopy and creep 
strength of 9% chromium steels for advanced power stations. In A. Strang, W. M. Bank, R. D. Conroy, G. M. 
McColvin, J. C. Neal, and S. Simpson (Eds.), Proceedings of 5th International Charles Parsons Turbine 
Conference, 3-7 July, 2000, Cambridge, (pp. 498-507). London, JOM Communication Ltd. Retrieved from 
https://catalyst.library.jhu.edu/catalog/bib_2158972 

Ennis, P. J., & Czyrska-Filemonowicz, A. (2003). Recent advances in creep-resistant steels for power plant 
applications. Sadhana, 28, 709-730. https://doi.org/10.1007/BF02706455 

Esherby, J. D. (1956). The continuum theory of lattice defects. In F. Seitz and D. Turnbull (Eds.), Solid State 
Physics: Advances in Research and Applications, 3, 79-145. NY: Academic Press Inc. 
https://doi.org/10.1016/S0081-1947(08)60132-0 

Fedorova, I., Kipelova, A., Belyakov, A., & Kaibyshev, R. (2013). Microstructure evolution in an advanced 9 pct 
Cr martensitic steel during creep at 923 K (650 °C). Metallurgical and Materials Transactions A, 44A, 
S128-S135. https://doi.org/10.1007/s11661-012-1182-9 

Fedoseeva, A., Dudova, N., & Kaibyshev, R. (2016). Creep strength breakdown and microstructure evolution in a 
3%Co modified P92 steel. Materials Science & Engineering A, 654, 1-12. 
https://doi.org/10.1016/j.msea.2015.12.027 

Fedoseeva, A., Nikitin, I., Dudova, N., & Kaibyshev, R. (2019). Creep behavior and microstructure of a 
prospective Re-containing 10%Cr-3%Co-3%W martensitic steel. In Jiont EPRE-123HiMAT International 
Conference on Advances in High-Temperature Materials: Proceedings from EPRI's 9th International 
Conference on Advances in Materials Technology for Fossil Power Plants and the 2nd International 
123HiMAT Conference on High-Temperature Materials, Octorber 21-24, 2019, Nagasaki, Japan, ASM 
International (pp. 217-226). Retrieved from 
http://www.123himat-2019.mtl.titech.ac.jp/Leaflet_FinalProgram_191015_FinalVersion.pdf 

Fujita, T., Yamashita, K., & Miyake, H. (1980). The effect of nickel and cobalt on elevated temperature properties 
and microstructures of 10Cr-2Mo heat resisting steels. Transactions ISIJ, 20, 384-391. 
https://doi.org/10.2355/isijinternational1966.20.384 

Glen, J. (1958). A new approach to the problem of creep. Journal of the Iron and Steel Institute, 189, 333-343. 
Retrieved from https://iss.ndl.go.jp/books/R100000002-I000000124643-00 

Gao, Q., Zhang, Y. Zhang, H., Li, H., Qu, F., Zhan, J., Lu, C., Wu, B., Lu, Y., & Ma, Y. (2017). Coarsening 
behavior of M23C6 carbides in creep-resistant steel exposed to high temperatures. Scientific Reports, 7, 
Articl No. 5859. https://www.nature.com/articles/s41598-017-06191-2 

Haetterstrand, M., & Andren, H -O. (2001). Evaluation of particle size distribution of precipitates in a 9% 
chromium steel using energy filtered transmission electron microscopy. Micron, 32, 789-797. 
https://doi.org/10.1016/S0968-4328(00)00086-X 

Hald, J. (2008). Microstructure and long-term creep properties of 9–12% Cr steels. International Journal of 
Pressure Vessels and Piping, 85(1-2), 30-37.  



jmsr.ccsenet.org Journal of Materials Science Research Vol. 11, No. 1; 2022 

34 

Hasegawa, Y., Ohgami, M., & Muraki, T. (2003). Grain boundary strengthening mechanism of tungsten 
containing 9 to 12% chromium ferritic heat resistant steels at 650oC. Journal of the Society of Materials 
Science, Japan, 52, 843-850. https://doi.org/10.2472/jsms.52.843 

Hasegawa, Y., Muraki, T., Yoshida, S., Ohgami, M., Okayama, Y., Kawazoe, F., & Umeki, S. (2004). Alloy 
design of nano-scale precipitates bearing high strength ferritic heat resistant steels. Shinnittetsu Giho, No.381, 
61-65. Retrieved from https://www.nipponsteel.com/tech/report/nsc/ 

Hasegawa, Y. (2014). Grade 92 creep-strength-enhanced ferritic steel. In A. Shibli ed., Coal Power Plant 
Materials and Life Assessment - Development and Applications (pp. 52-86). Cambridge, UK, Woodhead 
Publishing. https://doi.org/10.1533/9780857097323.1.52 

Hashizume, R., Tamura, O., Miki, K., Azuma, T., Ishiguro, T., Murata, Y., & Morinaga, M. (2009). Benefitical 
effect of Re on the long-term creep strength of high Cr ferritic heat resistant steels. Tetsu-to-Hagane, 95, 
176-185. https://doi.org/10.2355/tetsutohagane.95.176 

Hassan, B., & Corney, J. (2017). Grain boundary precipitation in Inconel 718 and ATI 718Plus. Materials Science 
and Technology, 33, 1879-1889. https://doi.org/10.1080/02670836.2017.1333222 

Hayakawa, H., Terada, D., Yoshida, F., Nakashima, H., & Goto, Y. (2003a). Evaluation of mobile dislocation 
density of modified 9Cr-1Mo steel by stress change test. Tetsu-to-Hagane, 89, 1076-1081. 
https://doi.org/10.2355/tetsutohagane1955.89.10_1076 

Hayakawa, H., Terada, D., Yoshida, F., Nakashima, H., & Goto, Y. (2003b). Characterization of creep 
deformation mechanism and evaluation of dislocation mobility of modified 9Cr-1Mo steel by stress change 
test. Journal of Japan Institute of metals, 67, 22-26. https://doi.org/10.2320/jinstmet1952.67.1_22 

Hayakawa, H., Nakashima, S., Kusumoto, J., Kanaya, A., Terada, D., Yoshida, F., Nakashima, H. (2007a). 
Evaluation of creep deformation mechanism of heat resistant steel by stress change test. In Proceedings of 
CREEP8, 8th International conference on Creep and Fatigue at Elevated Temperatures, July 22-26, 2007, 
San Antonio, Texas (CREEP2007-26501, pp. 1-10). ASME. Retrieved from 
https://asmedigitalcollection.asme.org/proceedings 

Hayakawa, H., Terada, D., Yoshida, F., Nakashima, H., Kanaya, A., & Nakashima, S. (2007b). Characterization of 
creep deformation of 2.25Cr-1Mo steel by stress change test. Tetsu-to-Hagane, 93, 466-471. 
https://doi.org/10.2355/tetsutohagane.93.466 

Hori, S., & Saji, S. (1981). Grain boundary reaction. Bulletine of Japan Institute of Metals, 20, 863-869. Retrieved 
from https://doi.org/10.2320/materia1962.20.863 

Hosoi, Y., Wade, N., Kunimitsu, S., & Urita, T. (1986). Precipitation behavior of Laves phase and its effect on 
toughness of 9Cr-2Mo ferritic-martensitic steel. Journal of Nuclear materials, 141-143, 461-467. 
https://doi.org/10.1016/S0022-3115(86)80083-6 

Hu, P., Yan, W., Sha, W., Wang, W., Guo, Z., Shan, Y., & Yang, K. (2009). Study on Laves phase in an advanced 
heat-resistant steel. Frontier Materials Science, China, 3, 434-441. 
https://doi.org/10.1007/s11706-009-0063-7 

Jiang, J., Zhu, L., & Wang, Y. (2013). Hardness variation in P92 heat-resistant steel based on microstructural 
evolution during creep. Steel Research International, 84, 732-739. https://doi.org/10.1002/srin.201200265 

Kabadwal, A., Tamura, M., Shinozuka, K., & Esaka, H. (2010). Recovery and precipitate analysis of 9 pct Cr-1 pct 
MoVNb steel during creep. Metallurgical Transactions A, 41A, 364-379. 
https://doi.org/10.1007/s11661-009-0094-9 

Karashima, S., Iikubo, T., Watanabe, T., & Oikawa, H. (1971). Transmission electron microscopy of substructures 
developed during high-temperature creep in alpha-iron. Transactions of JIM, 12, 369-374. 
https://doi.org/10.2320/matertrans1960.12.369 

Karashima, S., Iikubo, T., & Oikawa, H. (1972). On the high-temperature creep behavior and substructures in 
alpha-iron single crystal. Transactions of JIM, 13, 176-181. https://doi.org/10.2320/matertrans1960.13.176 

Kimura, H., Sato, T., Bergins, C., Imano, S., & Saito, E. (2011). Development of technologies for improving 
efficiency of large coal-fired thermal power plants. Hitachi Review, 60(7), 365-371. Retrieved from 
http://www.hitachi.com/rev/pdf/2011/r2011_07_102.pdf 

Kimura, K., Suzuki, K., Toda, Y., Kushima, H., & Abe, F. (2002). Precipitation of Z-phase and degradation 
behavior of mod.9Cr-1Mo steel. In Proceedings of the 7th Liege Conference on Materials for Advanced 
Power Engineering 2002, (pp. 1171-1180). Forschungszentrum Juelich, Germany. Retrieved from 
https://www.fz-juelich.de/zb/DE/Home/home_node.html 



jmsr.ccsenet.org Journal of Materials Science Research Vol. 11, No. 1; 2022 

35 

Kimura, K. (2009). Creep rupture life prediction of creep resistant steels. Journal of Japan Institute of Metals, 73, 
323-333. https://doi.org/10.2320/jinstmet.73.323 

Kimura, K., Sawada, K., Kushima, H., & Toda, Y. (2013). Influence of chemical composition and heat treatment 
on long-term creep strength of Grade 91 steel. Procedia Engineering, 55, 2-9. 
https://doi.org/10.1016/j.proeng.2013.03.211 

Kipelova, A., Belyakov, A., & Kaibyshev, R. (2012). Laves phase evolution in a modified P911 heat resistant steel 
during creep at 923 K. Materials Science and Engineering A, 532, 71-77. 
https://doi.org/10.1016/j.msea.2011.10.064 

Kocer, C., Abe, T., & Soon, A. (2009). The Z-phase in 9-12% Cr ferritic steels: A phase stability analysis. 
Materials Science and Engineering A, 505, 1-5. https://doi.org/10.1016/j.msea.2008.10.028 

Kubon, Z., Foldyna, V., & Vodarek, V. (1998). Analysis of strengthening mechanisms in 9 to 12 chromium steels. 
In A. Strang, T. Canley, and G. W. Greenwood (Eds.), Microstructural Stability of Creep Resistant Alloys for 
High Temperature Plant Applications (pp. 257-270). London, Institute of Materials. 
http://metal2012.tanger.cz/files/proceedings/metal_00/papers/318.pdf 

Kubon, Z., Foldyna, V., Hajduk, D., & Simecek, P. (2000). Creep and relaxation properties of 9-12% Cr steels. In 
A. Strang, W. M. Bank, R. D. Conroy, G. M. McColvin, J. C. Neal, and S. Simpson (Eds.), Proceedings of 5th 
International Charles Parsons Turbine Conference, 3-7 July, 2000, Cambridge, (pp. 485-497). London, JOM 
Communication Ltd. Retrieved from https://catalyst.library.jhu.edu/catalog/bib_2158972 

Kunieda, T., Murata, Y., Morinaga, M., & Koyama, T. (2004). Effect of refractory elements (X: Mo, W, Re) on the 
microstructure evaluation of Fe-8Cr-0.1C-X martensitic steels during tempering. Materials Transactions, 45, 
392-395. https://doi.org/10.2320/matertrans.45.392 

Kunieda, T., Yamashita, K., Murata, Yoshinori, Koyama, T., & Morinaga, M. (2006). Effect of rhenium addition 
on tungsten diffusivity in iron-chromium alloys. Materials Transactions, 47, 2106-2108. 
https://doi.org/10.2320/matertrans.47.2106 

Kushima, H, Kimura, K., & Abe, F. (1999). Degradation of mod. 9Cr-1Mo steel during long-term creep 
deformation. Tetsu-to-Hagane, 85, 841-847. https://doi.org/10.2355/tetsutohagane1955.85.11_841 

Larson, F. R., & Miller, J. (1952). A time-temperature relationship for rupture and creep stresses. Transactions of 
the American Institute of Mining and Metallurgical Engineers, 74, 765-775. Retrieved from 
https://search.lib.virginia.edu/catalog/u744571 

Lifshitz, I. M., & Slyozov, V. V. (1961). The kinetics of precipitation from supersaturated solid solution. Journal 
of Physics and Chemistry of Solids, 19, 35-50. https://doi.org/10.1016/0022-3697(61)90054-3 

Lim, R., Sauzay, M., Dalle, F., Tournie, I., Bonnaillie, P, & Gourgues-Lorenzon, A. -F. (2011). Modelling and 
experimental study of the tertiary creep stage of Grade 91 steel. International Journal of Fracture, 169, 
213-228. https://doi.org/10.1007/s10704-011-9585-y 

Liu, F., Fors, D. H. R., Golpayegani, A., Andren, H. -O., & Wahnstrom, G. (2012). Effect of boron on carbide 
coarsening at 873 (600 ℃) in 9 to 12 pct chromium steels. Metallurgical and Materials Transactions A, 43A, 
4053-4062. https://doi.org/10.1007/s11661-012-1205-6 

Lundin, L., Norell, M., Andren, H. -O., & Nyborg, L. (1997). Remanent life assessment of creep-resistant 
modified 12% chromium steels: microstructural analysis and microstructural development models. 
Scandinavian Journal of Metallurgy, 26, 27-40. Retrieved from 
https://www.scimagojr.com/journalsearch.php?q=28362&tip=sid&clean=0 

Maddi, L., Deshmukh, G. S., Ballal, A. R., Peshwe, D. R., Paretkar, R. K., Laha, K., & Mathew, M. D. (2016). 
Effect of Laves phase on the creep rupture properties of P92 steel. Materials Science & Engineering A, 668, 
215-223. https://doi.org/10.1016/j.msea.2016.05.074 

Maruyama, K., Sawada, K., & Koike, J. (2001). Strengthening mechanisms of creep resistant tempered martensitic 
steel. ISIJ International, 41, 641-625. https://doi.org/10.2355/isijinternational.41.641 

Maruyama, K. (2019). Reliable evaluation of long-term creep properties at elevated temperature. Tetsu-to-Hagane, 
105, 767-777. https://doi.org/10.2355/tetsutohagane.TETSU-2019-006 

Masuyama, F. (2001). History of power plants and progress in heat resistant steels. ISIJ International, 41, 612-625. 
https://doi.org/10.2355/isijinternational.41.612 

Medina, S. F. (1997). Determination of precipitation-time-temperature (TTP) diagrams for Nb, Ti or V 
micro-alloyed steels. Journal of Materials Science, 32, 1487-1492. 
https://doi.org/10.1023/A:1018562202876 



jmsr.ccsenet.org Journal of Materials Science Research Vol. 11, No. 1; 2022 

36 

Milkereit, B., Giersberg, L., Kessler, O., & Sciek, C. (2014). Isothermal time-temperature-precipitation diagram 
for an aluminium alloy 6005A by in situ DSC experiments. Materials, 7, 2631-2649. 
https://doi.org/10.3390/ma7042631 

Monkman, F. C., & Grant, N. J. (1956). An empirical relationship between rupture life and minimum creep rate in 
creep-rupture tests. Proceedings of American Society for Testing and Materials, 56, 593-620. Retrieved from 
http://www.astm.org/DIGITAL_LIBRARY/STP/MMR/PAGES/PRO1956-56.htm 

Morooka, S., Tomoda, Y., Adachi, Y., Morito, S., & Kamiyama, T. (2008). Hierarchical characterization by EBSD 
and neutron diffraction on heterogeneous deformation behavior of a martensitic steel. Tetsu-to-Hagane, 94, 
313-320. https://doi.org/10.2355/tetsutohagane.94.313 

Mura, T., & Mori, T. (1976). Micromechanics-Dislocation and Inclusions (in Japanese), Tokyo: Baihukan. ASIN: 
B000JA16HW. Retrieved from https://iss.ndl.go.jp/books/R100000002-I000001129159-00 

Murata, Y., Yamashita, K., Morinaga, M., Hara, T., Miki, K., Azuma, T., Ishiguro, T., & Hashizume, R. (2009). 
Dependence of precipitation behavior and creep strength on Cr content in high Cr ferritic heat resistant steels. 
Journal of Solid Mechanics and Materials Engineering, 3, 457-463. https://doi.org/10.1299/jmmp.3.457 

Muroki, M. (2017). The way to high efficiency boilers for power plant led by Ni-based alloy: from 600°C -class 
ultra-super critical (USC) boilers to 700°C -class advanced ultra-super-critical (A-USC) boilers. IHI 
Engineering Review, 50(1), 26-29. Retrieved from http://www.ihi.co.jp/en/ 

Nie, M., Zhang, J., Huang, F., Liu, J. W., Zhu, X. K., Chen, Z. L., & Ouyang, L. Z. (2014). Microstructure 
evolution and life assessment of P92 steel during long-term creep. Journal of Alloys and Compounds, 588, 
348-356. https://doi.org/10.1016/j.jallcom.2013.11.080 

NIMS: Creep Data Sheet on Creep Deformation Properties of 9Cr-1Mo-V-Nb Steel Tubes for Boilers and Heat 
Exchangers and 9Crt-1Mo-V-Nb Steel Plate for Boilers and Pressure Vessels, No. D-1. (2007). Tsukuba, 
Japan. Retrieved from http://www.nims.go.jp/mits/english/creep_lst._e.htm 

NIMS: Data Sheets on the Elevated-Temperature Properties of 11Cr-2W-0.4Mo-1Cu-Nb-V stainless steel pipe for 
high temperature service (KA-SUS 410J3 TP), 11Cr-2W-0.4Mo-1Cu-Nb-V stainless steel plate for power 
plants (KA-SUS 410J3), and 11Cr-2W-0.4Mo-1Cu-Nb-V stainless steel tube for power boilers (KA-SUS 
410J3 TB), No. 51A. (2013). Tsukuba, Japan. Retrieved from 
http://www.nims.go.jp/mits/english/creep_lst._e.htm 

NIMS: Data Sheets on the Elevated-Temperature Properties of 9Cr-1Mo-V-Nb Steel Tubes for Boilers and Heat 
Exchangers, 9Crt-1Mo-V-Nb Steel Plates for Boilers and Pressure Vessels, and 9Crt-1Mo-V-Nb Steel 
Seamless Pipe for High Temperature Service, No. 43A. (2014). Tsukuba, Japan. Retrieved from 
http://www.nims.go.jp/mits/english/creep_lst._e.htm 

NIMS: Data Sheets on the Elevated-Temperature Properties of 9Cr-0.5Mo-1.8W-V-Nb Steel Tubes for Power 
Boilers and 9Cr-0.5Mo-1.8W-V-Nb Steel Pipe for High Temperature Service, No. 48B. (2018). Tsukuba, 
Japan. Retrieved from http://www.nims.go.jp/mits/english/creep_lst._e.htm 

Norton, F. H. (1929). The Creep of Steel at High Temperatures. NY: McGraw-Hill Book Co. Retrieved from 
https://archive.org/details/creepofsteelathi00nort 

Oikawa, H. (1982). Lattice self-diffusion in solid iron: A critical review. Technology Reports of the Tohoku 
University, 47, 67-77. Retrieved from 
http://www.worldcat.org/title/technology-reports-of-the-tohoku-university/oclc/2451160 

Orowan, E. (1940). Problems of plastic gliding. Proceedings of the Physical Society, 52, 8-22. 
https://doi.org/10.1088/0959-5309/52/1/303 

Panait, C. G., Bendick, W., Fuchsmann, A., Gourgues-Lorezon, A.-F., & Besson, J. (2010a). Study of the 
microstructure of the Grade 91 steel after more than 100 000 h of creep exposure at 600 °C. International 
Journal of Pressure Vessels and Piping, 87, 326-335. https://doi.org/10.1016/j.ijpvp.2010.03.017 

Panait, C. G., Zielinska-Lipiec, A., Koziel, T., Czyrska-Filemonowicz, A., Gourgues-Lorenzon, A. -F., & Bendick, 
W. (2010b). Evolution of dislocation density, size of subgrains and MX-type precipitates in a P91 steel during 
creep and during thermal ageing at 600 °C for more than 100 000 h. Materials Science and Engineering A, 
527, 4062-4069. https://doi.org/10.1016/j.msea.2010.03.010 

Sanhueza, J. P., Rojas, D., Garcia, J., Melendrez. M. F., Toledo, E., Montalba, C., Alvarado, M. I., & Jaramillo, A. 
F. (2019). Computational modeling of the effect of B and W in the phase transformation of M23C6 carbides 
in 9 to 12 pct Cr martensitic/ferritic steels. Materials Research Express, 6, 1-15. 
https://doi.org/10.1088/2053-1591/ab500c 



jmsr.ccsenet.org Journal of Materials Science Research Vol. 11, No. 1; 2022 

37 

Sawada, K., Takeda, M., Maruyama, K., Ishii, R., Yamada, M., Nagae, Y., & Komine, R. (1999). Effect of W on 
recovery of lath structure during creep of high chromium martensitic steels. Materials Science and 
Engineering A, 267, 19-25. https://doi.org/10.1016/S0921-5093(99)00066-0 

Sawada, K., Kubo, K., & Abe, F. (2003). Contribution of coarsening of MX carbonitrides to creep strength 
degradation in high chromium ferritic steel. Materials Science and Technology, 19, 732-738. 
https://doi.org/10.1179/026708303225010687 

Sawada, K., Kushima, H., & Kimura, K. (2006). Z-phase formation during creep and aging in 9-12% Cr heat 
resistant steels. ISIJ International, 46, 769-775. https://doi.org/10.2355/isijinternational.46.769 

Sawada, K., Kushima, H., Kimura, K., & Tabuchi, M. (2007). TTP diagram of Z phase in 9-12% Cr heat-resistant 
steels. ISIJ International, 47, 733-739. https://doi.org/10.2355/isijinternational.47.733 

Sawada, K., Suzuki, K., Kushima, H., Tabuchi, M., & Kimura, K. (2008). Effect of tempering temperature on 
Z-phase formation and creep strength in 9Cr-1Mo-V-Nb-N steel. Material Science and Engineering A, 480, 
558-563. https://doi.org/10.1016/j.msea.2007.09.031 

Sawada, K., Bauer, M., Kauffmann, F., Mayr, P., & Klenk, A. (2010). Microstructural change of 9% Cr-welded 
joints after long-term creep. Material Science and Engineering A, 527, 1417-1426. 
https://doi.org/10.1016/j.msea.2009.10.044 

Sawada, K., Kushima, H., Tabuchi, M., & Kimura, K. (2011). Microstructural degradation of Gr.91 steel during 
creep under low stress. Materials Science and Engineering A, 528, 5511-5518. 
https://doi.org/10.1016/j.msea.2011.03.073 

Sawada, K., Kushima, H., Hara, T., Tabuchi, M., & Kimura, K. (2014a). Heat-to-heat variation of creep strength 
and long-term stability of microstructure in Grade 91 steels. Materials Science and Engineering A, 597, 
164-170. https://doi.org/10.1016/j.msea.2013.12.088 

Sawada, K., Kushima, M., Tabuchi, M., & Kimura, K. (2014b). Effect of creep deformation on Z phase formation 
in Gr.91 steel. Materials Science and Technology, 30, 12-16. 
https://doi.org/10.1179/1743284713Y.0000000309 

Sawada, K., Sekido, K., Kimura, K., Arisue, K., Honda, M., Komai, N., … & Kubushiro, K. (2019a). Effect of 
initial microstructure on creep strength of ASME Grade T91 steel. Tetsu-to-Hagane, 105, 433-442. 
https://doi.org/10.2355/tetsutohagane.TETSU-2018-066 

Sawada, K., & Kimura, K. (2019b). Stability of long-term creep strength and microstructure in high Cr steels. 
Bulletin of The Iron and Steel Institute of Japan, 24, 68-72. Retrieved from 
https://dl.ndl.go.jp/info:ndljp/pid/3381227 

Schoeck, G. (1980). Thermodynamics and thermal activation of dislocations. In F.R.N. Nabarro (Ed.), 
Dislocations in Solids volume 3 Moving Dislocations (pp. 63-159). Amsterdam: North-Holland Pub. Co. 
https://doi.org/10.1002/crat.19800151012 

Sherby, O. D., Orr, R. L., & Dorn, J. E. (1953). Creep Correlations of Metals at Elevated Temperatures in 25th 
Techn. Rpt. Sr. 22 Issue 25 N7-on-295 (pp. 1-44). Berkeley, CA: University of California. Retrieved from 
http://www.dtic.mil/dtic/tr/fulltext/u2/005978.pdf 

Shewmon, P. G. (1963). Diffusion in Solid (pp. 164-187). McGraw-Hill Book Co., New York. 
https://doi.org/10.1016/0038-1101(64)90025-5 

Sikka, V. K., Cowgill, M. G., & Roberts, B. W. (1983). Creep properties of modified 9 Cr-1Mo steel. In J. W. 
Davis and D. J. Michel (Eds.), Proceedings of Topical Conference on Ferritic Alloys for Use in Nuclear 
Energy Technologies, Snowbird, Utah, June (pp. 413-423). American Nuclear Society, La Grange Park, IL. 
https://doi.org/10.2172/5687534 

Suzuki, K., Kumai, S., Kushima, H., Kimura, K., & Abe, F. (2000). Heterogeneous recovery and precipitation of 
Z-phase during long-term creep deformation of modified 9Cr-1Mo steel. Tetsu-to-Hagane, 86, 550-557. 
https://doi.org/10.2355/tetsutohagane1955.86.8_550 

Suzuki, K., Kumai, S., Kushima, H., Kimura, K., & Abe, F. (2003). Precipitation of Z-phase and precipitation 
sequence during creep deformation of mod.9Cr-1Mo steel. Tetsu-to-Hagane, 89, 691-698. 
https://doi.org/10.2355/tetsutohagane1955.89.6_691 

Tamura, M., Hayakawa, H., Yoshitake, A., Hishinuma, A., & Kondo, T. (1988). Phase stability of reduced 
activation ferritic steel 8%Cr-2%W-0.2%V-0.04%Ta-Fe. Journal of Nuclear Materials, 155-157, 620-625. 
https://doi.org/10.1016/0022-3115(88)90384-4 



jmsr.ccsenet.org Journal of Materials Science Research Vol. 11, No. 1; 2022 

38 

Tamura, M., Esaka, H., & Shinozuka, K. (1999). Stress and temperature dependence of time to rupture of heat 
resisting steels. ISIJ International, 39, 380-387. https://doi.org/10.2355/isijinternational.39.380 

Tamura, M., Esaka, H., & Shinozuka, K. (2000). Physical meaning of the new creep rupture equation for heat 
resisting steels. Materials Transaction, JIM, 41, 272-278. https://doi.org/10.2320/matertrans1989.41.272 

Tamura, M., Esaka, H., & Shinozuka K. (2003). Applicability of an exponential law in creep of metals. Materials 
Transactions, 44, 118-126. https://doi.org/10.2320/matertrans.44.118 

Tamura, M., Iida, T, Kusuyama, H., Shinozuka, K., & Esaka, H. (2004). Re-dissolution of VN during tempering in 
high chromium heat resistant martensitic steel. ISIJ International, 44, 153-161. 
https://doi.org/10.2355/isijinternational.44.153 

Tamura, M., Nakamura, M., Shinozuka, K., & Esaka, H. (2008). Tempering and precipitation behavior of 7 pct 
Cr-0.1 pct V-0.06 pct Nb-0.08 pct N steel. Metallurgical and Materials Transactions A, 39A, 1060-1076. 
https://doi.org/10.1007/s11661-008-9486-5 

Tamura, M., Sakasegawa, H., Shiba, K., Tanigawa, H., Shinozuka, K., & Esaka, H. (2011). Decomposition of 
Y2Ti2O7 particles in 8 pct Cr oxide-dispersion-strengthened martensitic steel during tempering, 
Metallurgical and Materials Transactions A, 42, 2176-2188. https://doi.org/10.1007/s11661-011-0640-0 

Tamura, M., Abe, F., Shiba, K., Sakasegawa, H., & Tanigawa, H. (2013). Larson-Miller constant of heat-resistant 
steel. Metallurgical and Materials Transactions A, 44, 264-52661. 
https://doi.org/10.1007/s11661-013-1631-0 

Tamura, M. (2015a). Method of estimating the long-term rupture strength of 11Cr-2W-0.4Mo-1Cu-Nb-V steel. 
Metallurgical and Materials Transactions A, 46, 1958-1972. https://doi.org/10.1007/s11661-015-2784-9 

Tamura, M., & Abe, F. (2015b). Changes in estimated dislocation density during creep in martensitic heat-resistant 
steel. Journal of Materials Science Research, 4(4), 48-69. https://doi.org/10.5539/jmsr.v4n4p48 

Tamura, M. (2017). Verification of equation for evaluating dislocation density during steady-state creep of metals. 
Journal of Materials Science Research, 6(2), 20-62. https://doi.org/10.5539/jmsr.v6n2p20 

Tamura, M. (2018). Relationship between sub-grain size and dislocation density during steady-state dislocation 
creep of polycrystalline cubic metals. Journal of Materials Science Research, 7(4), 26-45. 
https://doi.org/10.5539/jmsr.v7n4p26 

Tamura, M., & Abe, F. (2021a). Analysis on degradation in creep strength of 9Cr-W martensitic steel. Journal of 
Materials Science Research, 10(1), 1-27. https://doi.org/10.5539/jmsr.v10n1p1 

Tamura, M., & Abe, F. (2021b). Analysis of the degradation in the creep strength of High-Cr Martensitic Steels. 
Journal of Materials Science Research, 10(2), online. https://doi.org/10.5539/jmsr.v10n2p1 

Turnbull, D., & Fisher, J. C. (1949). Rate of nucleation in condensed system. The Journal of Chemical Physics, 17, 
71-73. https://doi.org/10.1063/1.1747055 

Wagner, C. (1961). Theorie der altering von niderschlagen durch umloesen (Ostwald Reifung). Zeitschrift fur 
Electrochemie, 65, 581-591. Retrieved from 
https://www.researchgate.net/publication/230384240_Theorie_Der_Alterung_Von_Niederschlagen_Durch_
Umlosen_Ostwald-Reifung 

Xu, Y., Wang, M., Wang, Y., Gu, T., Chen, L., Zhou, X., Ma, Q., Liu, Y., & Huang, J. (2015). Study on the 
nucleation and growth of Laves phase in a 10% Cr martensite ferritic steel after long-term aging. Journal of 
Alloys and Compounds, 621, 93-98. https://doi.org/10.1016/j.jallcom.2014.09.204 

Yan, W., Wang, W., Shan, Y. -Y., & Yang, K. (2013). Microstrucural stability of 9-12%Cr ferrite/martensite 
heat-resistant steels. Frontier Materials Science, 7(1), 1-27. https://doi.org/10.1007/s11706-013-0189-5 

Yi, Y., Xu, W., Xia, F., Gang, T., & Chen, L. (2017). Effects of alloying elements M (M=Fe, Mo) on phase 
stability of Cr23C6 carbides from first-principles. In Proceedings of the 2017 2nd International Conference 
on Advances in Materials, Mechatronics and Civil Engineering (ICAMMCE 2017), Advances in Engineering 
Research, 121, 74-80. https://doi.org/10.2991/icammce-17.2017.17 

Yoshizawa, M., Igarashi, M., & Nishizawa, T. (2005). Effect of tungsten on the Ostwald ripening of M23C6 
carbides in martensitic heat resistant steel. Tetsu-to-Hagane, 91, 272-277. 
http://doi.org/10.2355/tetsutohagane1955.91.2_272 

Zeng, Y. -P., Jia, J. -D., Cai, W. -H., Dong, S. -Q., & Wang, Z. -C. (2018). Effect of long-term service on the 
precipitates in P92 steel. International Journal of Minerals, Metallurgy and Materials, 25, 913-921. 
https://doi.org/10.1007/s12613-018-1640-5 



jmsr.ccsenet.org Journal of Materials Science Research Vol. 11, No. 1; 2022 

39 

Zielinski, A., Golanski, G., & Sroka, M. (2016). Assessment of microstructure stability and mechanical properties 
of X10CrWMoVNb9-2 (P92) steel after long-term thermal aging for high-temperature applications. Kovove 
Materials, 54, 61-70. https://doi.org/10.4149/km_2016_1_61 

 

Appendix 
 

 

Figure A1. Stress vs. time to 0.2% strain relationship for pl-91/MgC steel. Definitions of each group are the 
same as in Figure 1 

 

Figure A2. Stress vs. time to 0.5% strain relationship for pl-91/MgC steel. Definitions of each group are the 
same as in Figure 1 
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