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Abstract 
The electric generation characteristics of the PZT piezoelectric ceramics were examined experimentally and 
numerically. In this case, cyclic bending loading was applied to the PZT ceramics: bulk and thin-film membrane. 
Electric voltage increased with increasing the strain value. There was a sharp initial increase in positive voltage 
for the PZT ceramics as bending load was applied. Following this initial increase stage, a rapid fall to zero 
occurred. The reduction rate of the positive voltage was changed depending on the rigidly of the PZT ceramic: 
the higher the reduction rate, the higher the rigid of the ceramic. The electrical voltage from the circular 
membrane PZT ceramic during cyclic loading showed the higher level compared to that for the bulk one, in 
which the flexibility of the PZT ceramic was significant factor to obtain the high electric voltage. The variation 
of the electric voltages was estimated numerically, which was relatively in good agreement with the 
experimental one.  
Keywords: piezoelectric ceramic, lead zirconate titanate ceramic, experiment, numerical analysis 
1. Introduction 
The energy conversion of electrical and mechanical sources is an important aspect in our current life for power 
generators. In particular, piezoelectric materials are prospective materials for energy conversion, since they have 
a good electrical-mechanical coupling effect (Lu, Lee, & Lim, 2003). In recent years, electrical power generation 
from a variety of sources has received a lot of attention as a result of environmental and energy issues. One of 
the representative energy harvesting systems is that made by vibrating structures, which transform mechanical 
energy into electrical energy. There are several commercial piezoelectric materials, such as lead, bismuth, 
barium and lead zirconate tinatate (PZT) ceramic; and especially the PZT ceramic has been widely employed 
because of the better piezoelectric properties. 
Today, harvested energy systems have been developed by several engineers as new energy systems in which 
PZT ceramic plates are embedded under the floor or ground, e.g., roads, bridges, houses, and wicket gates. In 
this instance, the energy in the pavement caused by vehicles and gravity can be harvested using piezoelectric 
transducers (Zhao, Yu, & Ling, 2010); moreover, a related energy could be obtained via the walking motion of 
the human body, e.g., a heel-strike generator (Howells, 2009). It is considered that energy harvesting systems are 
expected to be part of the energy sources in our society. However, there would be technical problems in this 
system, caused by the low efficiency of the electric energy generation: the mean power from the system is much 
less than its target of 0.5 W. To solve this, several researchers have attempted to investigate the influence of the 
vibration condition on the electrical generation characteristics, in which loading conditions were altered, such as 
frequency and loading wave mode. Shu and Lien have investigated the harvested power generation 
characteristics under different vibrating conditions (frequency and acceleration), mechanical damping ratio, and 
electromechanical coupling coefficient. Theoretical predictions have also been made and have been found to be 
in good agreement with the experimental observations (Shu & Lien, 2006). PZT ceramics have been used for 
associated experiments, but many PZT ceramics cannot be employed due to their low machinability and their 
high price. Because of these issues, it might be expected that numerical analyses are undertaken instead of an 
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