Capital Structure, Turnover, and Stock Return: The Case of the Firms in the Nikkei 225

Chikashi Tsuji¹

¹ Faculty of Economics, Chuo University, Tokyo, Japan

Correspondence: Chikashi Tsuji, Faculty of Economics, Chuo University, 742-1 Higashinakano Hachioji-shi, Tokyo 192-0393, Japan. Tel: 81-42-674-2211. E-mail: mail_sec_low@minos.ocn.ne.jp

Received: November 29, 2013Accepted: December 30, 2013Online Published: February 25, 2014doi:10.5539/jms.v4n1p84URL: http://dx.doi.org/10.5539/jms.v4n1p84

Abstract

This paper investigates the risk and return relations of the turnover ratio of trading and capital structure based portfolios, which include the Nikkei 225 firms in Japan. The findings derived from our investigations are summarized as follows. First, portfolio risk is statistically significantly reduced in our lowest debt ratio and lowest turnover portfolio; second, portfolio risk statistically significantly increases in our highest debt ratio and highest turnover portfolio. Third, although risks of portfolios change in accordance with the levels of debt ratios and turnover ratios, these risks are not rewarded with higher returns as Sharpe ratios are not statistically different in our different risk portfolios. Finally, from the viewpoint of time-series analysis, time-varying risk of each portfolio is not clearly priced in stock markets, either.

Keywords: capital structure, GARCH-in-mean model, Sharpe ratio, stock return, turnover ratio

1. Introduction

Portfolio risk measured by the standard deviation, namely, the volatility of portfolio should be rewarded in the world of standard finance. This paper focuses on two risk sources that may raise the volatility of portfolio; the first is the firm's capital structure. Modigliani and Miller (1958) insisted in their famous paper that firms which have higher debt ratios are generally required higher stock returns. In addition, they expressed the firm's debt ratio as the financial risk of the firm, thus higher debt ratio portfolios should have higher volatility according to their theory. In addition to the debt ratio, we also focus on the firm's turnover ratio of trading in this paper. Generally, higher turnover stocks shall have higher market impacts from larger trading volumes. Hence it is natural to consider that higher turnover ratio portfolios have higher volatility. However, are these risks of higher volatility priced in stock markets?

As for the studies investigated the risk-return tradeoff of stocks, there are many US researches such as Campbell and Hentschel (1992), Lundblad (2007), Nelson (1991), and Glosten et al. (1993). However, as far as we know, there exists little empirical study that tested the risk-return tradeoff of stock portfolios by focusing on these two factors of capital structure and turnover ratio simultaneously by using the Japanese data.

Based on these research backgrounds, the objective of this paper is to empirically test whether risks associated with corporate capital structures and turnover ratios are rewarded with higher returns for the firms in the Nikkei 225 stock index in Japan. The contributions of this study are as follows. First, we find that 1) portfolio risk is reduced in our lowest debt ratio and lowest turnover portfolio. Second, we also find that 2) portfolio risk increases in our highest debt ratio and highest turnover portfolio. Third, our investigations reveal that 3) although risks change gradually as the levels of debt ratios and turnover ratios of portfolios increase, these risks are not rewarded with higher returns. This is understood from the evidence that the Sharpe ratios are not statistically different in our different portfolios sorted by debt ratios and turnover ratios. Fourth, 4) from the viewpoint of time-series analysis, again, risks of our various portfolios are not clearly priced in stock markets. The rest of the paper is organized as follows. Section 2 describes our data and research design, Sections 3 to 5 explain our empirical results, and Section 6 summarizes the paper.

2. Data and Research Design

First is regarding our data. We utilize the data of the firms included in the Nikkei 225 stock index in Japan. All data are supplied by the Quick Corp. More specifically, we are interested in all firms in the Nikkei 225; however,

the data of the characteristic information of turnover ratios and capital structure, which are needed for our portfolio constructions, are not obtained for all 225 firms. Thus our full sample data are 172 firms in cross-section, 26 years in time-series, and these firms are included in the Nikkei 225 at the end of the fiscal year of 2011. More exactly, the sample period is from the fiscal year of 1986 to 2011.

Next is regarding our portfolio construction procedures: using the data explained above, we constructed four kinds of turnover and capital structure sorting portfolios by following procedures. To construct our first six portfolios, 1) we first divided our full sample into two turnover groups, namely, low and high turnover firms. We then divided these two portfolios into three capital structure portfolios, namely, low, middle, and high debt ratio portfolios, respectively. We repeated this procedure each year and recorded the next fiscal year's returns of these six portfolios. We note that 'capital structure' here denotes the corporate debt ratios, which are measured by total book-value debt divided by total book-value assets, and 'turnover' here means the corporate turnover ratios of trading, which are measured by the (yen) trading volumes during the final month of the fiscal year divided by the (yen) corporate market values at the end of the fiscal year.

Next, to construct our second six portfolios, 2) we first divided our full sample into two capital structure groups, namely, low and high debt ratio firms. We then divided these two portfolios into three turnover portfolios, namely, low, middle, and high turnover portfolios, respectively. We repeated this procedure each year and recorded the next fiscal year's returns of these six portfolios.

Further, for our third six portfolios, 3) we divided our full sample into six turnover groups, namely, the lowest turnover firms, the second lowest turnover firms, and so on. We repeated this procedure each year and recorded the next fiscal year's returns of these six portfolios.

Moreover, for our final six portfolios, 4) we divided our full sample into six capital structure groups, namely, the lowest debt ratio firms, the second lowest debt ratio firms, and so on. We repeated this procedure each year and recorded the next fiscal year's returns of these six portfolios.

In order to survey the data characteristics of our full sample, we display the time-series and descriptive statistics for three variables: capital structure, turnover ratio, and one-year future return as to the Nikkei 225 firms in Table 1. We note that regarding our full sample, historical average of returns is 6.7672 and the standard deviation of historical returns is 25.4727.

As for the next step, we test the equality of returns and variances of our four kinds of six portfolios and those of our full sample data. After that, we examine the equality of the Sharp ratios of our four kinds of six portfolios and that of our full sample data. Finally, from the time-series viewpoint, using the GARCH-in-mean model, we test whether volatilities of our four kinds of six portfolios are priced or not in equity markets.

3. Risk and Return Characteristics

This section examines the equality of the risks and returns of our various portfolios and those of our full sample data. Table 2 firstly shows the equally-weighted averages of the one-year future stock returns of the firms in the six portfolios sorted firstly by the firms' turnovers and secondly by their capital structures. In this table, Welch's *t* denotes the *t*-statistic for the Welch's test and its null hypothesis is that the average return of each portfolio equals to that of our full sample, 6.7672 (displayed in Table 1). While the alternative hypothesis is that the average return of each portfolio does not equal to that of our full sample. According to the *t*-statistics for our Welch's tests in Table 2, we understand that the returns of all six portfolios are not statistically significantly different from the full sample's return.

Further, *F*-statistic in Table 2 is for testing the null hypothesis that the variance of each portfolio and that of our full sample (648.8584 (squared value of 25.4727 in Table 1)) are equal. While the alternative hypothesis is that the variance of each portfolio and that of our full sample are not equal. In this test, the variance of our low turnover and low debt ratio portfolio is statistically significantly lower than that of our full sample and the variance of our high turnover and high debt ratio portfolio is statistically significantly higher than that of our full sample.

Next, Table 3 is regarding our six portfolios sorted firstly by the firms' capital structures and secondly by their turnovers. This table shows the similar results of the same analyses as those in Table 2. According to the results in Table 3, all six portfolio returns are not statistically significantly different from our full sample's return. While the variance of the low debt ratio and low turnover portfolio is statistically significantly lower than that of our full sample. In addition, the variance of the high debt ratio and high turnover portfolio is statistically significantly higher than that of our full sample. Based on the results in Table 2, this evidence is considered to be natural.

	sample averages		
Fiscal year	Capital structure	Turnover	One-year future return
1986	0.6722	0.1405	28.2225
1987	0.6660	0.1081	39.5953
1988	0.6557	0.0940	-2.1454
1989	0.6484	0.0501	-13.2853
1990	0.6505	0.0499	-20.4727
1991	0.6496	0.0278	-1.7181
1992	0.6435	0.0449	9.4120
1993	0.6339	0.0390	-9.9241
1994	0.6324	0.0286	31.5409
1995	0.6284	0.0417	-10.0540
1996	0.6205	0.0324	-10.9642
1997	0.6125	0.0350	1.7901
1998	0.6102	0.0495	20.0913
1999	0.6038	0.0647	6.5887
2000	0.5966	0.0644	-9.1343
2001	0.5945	0.0772	-17.0925
2002	0.5943	0.0704	66.1699
2003	0.5741	0.1199	8.2657
2004	0.5614	0.1146	60.4492
2005	0.5430	0.1283	8.5032
2006	0.5406	0.1730	-26.2258
2007	0.5408	0.1756	-35.6423
2008	0.5613	0.1581	41.0961
2009	0.5585	0.1273	-6.6016
2010	0.5536	0.2213	-1.2304
2011	0.5686	0.1505	18.7141
Panel B. Descri	ptive statistics		
Hist. Avg.	0.6044	0.0918	6.7672
Std. Dev.	0.0419	0.0546	25.4727
Max.	0.6722	0.2213	66.1699
Min.	0.5406	0.0278	-35.6423
Skewness	-0.0732	0.6207	0.7205
Kurtosis	1.7019	2.3404	2.9417
Obs. (TS)	26	26	26
Obs. (CS)	172	172	172
Obs. (Total)	4472	4472	4472

Table 1. Full sample characteristics of capital structures, turnover ratios, and one-year future stock returns as to the firms included in the Nikkei 225 stock index in Japan: time-series values and descriptive statistics for the fiscal year from 1986 to 2011

Notes: This table shows the time-series sample average values and the descriptive statistics for the variables as to the firms included in the Nikkei 225 stock index in Japan. More concretely, we are interested in all firms included in the Nikkei 225 index; however, characteristic information of corporate turnover ratio and capital structure is not obtained for all 225 firms. Thus our full sample is 26 years in time-series, 172 firms in cross-section, and these firms are included in the Nikkei 225 at the end of the fiscal year of 2011. In Panel A, 'Capital structure' denotes the sample averages of corporate capital structures, which are measured by total book-value debt divided by total book-value assets, and 'Turnover' means the sample averages of corporate turnover ratios, which are measured by the (yen) trading volumes during the final month of the fiscal year divided by the (yen) corporate market values at the end of the fiscal year. In addition, 'One-year future return' denotes the averages of the next fiscal year's stock returns. Moreover, 'Hist. Avg.' denotes the historical average values and 'Std. Dev.' denotes the standard deviations. Further, 'Max.' and 'Min.' denote the maximum values and minimum values, respectively. Furthermore, 'Obs. (TS)', 'Obs. (CS)', and 'Obs. (Total)' are the number of time-series observations, the number of cross-sectional observations, and the number of total observations, respectively.

	Portfolios						
Fiscal year	Low turnover			High turnover			
	Low CS	Middle CS	High CS	Low CS	Middle CS	High CS	
1986	38.7149	32.3931	35.7722	15.8642	17.9349	28.4448	
1987	11.4473	27.0016	52.2811	18.4570	43.1534	84.9198	
1988	17.3078	4.3790	2.3237	-9.9186	-11.4327	-15.6271	
1989	-14.6831	-14.1847	-8.4739	-12.7422	-16.7588	-13.0198	
1990	-12.6386	-17.5995	-18.5340	-20.2994	-28.0634	-25.8639	
1991	-1.3256	1.2058	-5.6117	-5.0533	2.2181	-1.50529	
1992	17.1026	19.4128	6.9266	9.4481	3.9916	-0.2519	
1993	-4.7171	-5.5654	-8.9029	-15.0309	-12.5747	-12.6951	
1994	27.1036	21.4799	30.3798	34.8179	36.3987	38.8861	
1995	3.2399	-16.2686	-19.0068	5.5056	-19.7102	-14.6311	
1996	-1.2842	-18.9621	-20.8522	2.9921	-8.1778	-19.6806	
1997	11.7532	11.6694	-10.2564	6.3004	-1.2705	-7.2201	
1998	15.9198	3.6937	-0.9144	51.3867	23.3147	26.6931	
1999	-0.5852	26.3094	23.3075	-5.6210	2.8307	-6.1589	
2000	-8.7683	-7.1923	-3.3908	-7.6129	-15.2906	-12.6962	
2001	-13.8685	-3.9531	-11.2428	-27.5132	-24.6692	-21.1166	
2002	33.9315	51.5932	76.7525	47.1916	65.9064	121.1325	
2003	10.0792	8.6202	12.6234	0.1127	8.2943	9.8777	
2004	43.4486	51.5083	52.8977	58.1113	71.3222	85.4736	
2005	9.3543	5.5651	9.5788	13.1352	11.3319	2.0502	
2006	-20.1962	-23.0021	-25.3256	-27.2093	-27.8117	-33.7530	
2007	-25.9112	-39.8531	-27.9123	-38.4090	-41.6864	-40.4354	
2008	26.3476	41.8766	23.8964	52.8429	52.5502	49.4849	
2009	-7.3608	-8.1322	-6.8192	-13.0636	-4.2142	0.0100	
2010	2.1232	4.1356	-3.9502	-6.7870	-5.0008	2.1519	
2011	29.6147	24.5980	15.9290	-0.6776	14.9610	27.9327	
Average	7.1596	6.9511	6.5952	4.8549	5.2903	9.7078	
Welch's t	0.0635	0.0272	0.0240	0.2684	0.1947	0.3207	
p-value	0.9497	0.9784	0.9810	0.7895	0.8464	0.7500	
Std. Dev.	18.5837	23.1828	26.2414	25.9022	29.1048	39.2062	
F-statistic	0.5322*	0.8283	0.9423	0.9671	0.7660	0.4221**	
p-value	0.0608	0.3206	0.4415	0.4670	0.2550	0.0177	

Table 2. Equally-weighted firm averages of the one-year future stock returns with regard to six portfolios constructed by turnover and capital structure: the time-series and the test results of the portfolio returns of the firms in the Nikkei 225 for the fiscal year from 1986 to 2011

Notes: This table shows the equally-weighted averages and test results of the one-year future stock returns with regard to six portfolios constructed by the turnover ratios and capital structure of the firms included in the Nikkei 225 stock index in Japan. The sample period is from the fiscal year of 1986 to 2011. More concretely, we are interested in all firms included in the Nikkei 225 index; however, characteristic information of corporate turnover and capital structure is not obtained for all 225 firms. Thus our full sample data are 26 years in time-series, 172 firms in cross-section, and these firms are included in the Nikkei 225 at the end of the fiscal year of 2011. With regard to the portfolio constructions, we first divided our samples into two turnover groups, namely, low turnover and high turnover firms. We then divided these two portfolios into three capital structure portfolios, namely, low, middle, and high debt ratio portfolios. We repeated this procedure each year and recorded the next fiscal year's returns of these six portfolios. In the table, 'CS' means debt ratios. In addition, Welch's *t* denotes the *t*-statistic for the Welch's test whose null hypothesis is that the average return of each portfolio does not equal to that of the full sample, 6.7672 (displayed in Table 1), while the alternative hypothesis is that the average return of each portfolio and that of the full sample, 648.8584 (squared values of 25.4727 in Table 1). Alternative hypothesis here is that the variance of each portfolio and that of the full sample are not equal. Finally, ** denotes the statistical significance at the 5% level and * denotes the statistical significance at the 10% level, respectively.

	Portfolios							
	Low capital str	ucture		High capital str	High capital structure			
Fiscal year	Low TO	Middle TO	High TO	Low TO	Middle TO	High TO		
1986	39.6877	31.3856	15.8642	35.7722	25.9534	20.7029		
1987	21.6735	18.8938	14.3308	49.5991	47.4873	85.1456		
1988	17.6328	3.7356	-8.3152	2.9658	-10.0717	-18.8903		
1989	-17.8958	-4.8953	-20.0315	-10.6997	-10.9904	-14.8304		
1990	-10.0824	-19.6116	-21.8489	-18.4757	-25.6075	-27.3575		
1991	-4.9501	0.0986	-3.1560	-2.9378	0.1133	0.6493		
1992	18.8571	12.9030	8.9967	12.2238	1.5964	1.7457		
1993	-4.2350	-10.8100	-16.4597	-5.1009	-11.3936	-11.6270		
1994	27.4349	32.2759	36.1948	23.4180	29.2223	40.6450		
1995	-0.9466	-6.0412	1.1716	-19.6786	-17.2564	-17.6827		
1996	-4.1427	-13.8289	8.7827	-16.1825	-25.0691	-15.9297		
1997	9.9883	8.4070	3.0499	-0.1455	-9.5797	-1.1431		
1998	11.2027	15.4209	52.4728	-1.9111	8.6850	34.1232		
1999	-3.8299	-3.2919	0.4855	24.9320	27.5778	-5.9584		
2000	-6.5992	-10.5079	-10.6457	-0.3892	-14.0849	-12.7970		
2001	-8.2959	-20.9256	-27.9171	-10.9968	-13.2775	-21.1428		
2002	41.3525	35.7308	60.9193	69.7951	74.2723	114.1791		
2003	10.4902	8.9288	0.5014	15.0116	5.7275	8.8701		
2004	43.8057	47.2084	59.7313	49.6905	61.6707	100.1740		
2005	8.5212	5.4183	12.9825	8.8283	4.6097	10.4186		
2006	-20.8541	-21.2680	-27.7441	-24.0757	-26.1483	-37.0908		
2007	-28.5978	-31.7981	-42.2629	-29.1874	-41.1205	-40.9436		
2008	24.2180	45.0395	53.4019	26.3207	43.7340	54.0896		
2009	-6.7610	-5.5959	-15.6213	-8.1231	-4.8080	1.3962		
2010	2.4098	3.7948	-7.2554	-3.3582	-2.5534	-0.2923		
2011	31.7964	18.0660	3.9785	21.1054	14.2981	22.8654		
Average	7.3800	5.3359	5.0618	7.2462	5.1149	10.3584		
Welch's t	0.0972	0.2215	0.2307	0.0688	0.2206	0.3856		
<i>p</i> -value	0.9230	0.8257	0.8185	0.9454	0.8263	0.7017		
Std. Dev.	19.5919	20.9029	27.7940	24.7046	28.4510	40.0722		
F-statistic	0.5916*	0.6734	0.8399	0.9406	0.8016	0.4041**		
<i>p</i> -value	0.0982	0.1646	0.3331	0.4398	0.2922	0.0137		

Table 3. Equally-weighted firm averages of the one-year future stock returns with regard to six portfolios constructed by capital structure and turnover: the time-series and the test results of the portfolio returns of the firms in the Nikkei 225 for the fiscal year from 1986 to 2011

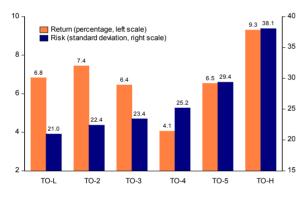
Notes: This table shows the equally-weighted averages and test results of the one-year future stock returns with regard to six portfolios constructed by the turnover ratios and capital structure of the firms included in the Nikkei 225 stock index in Japan. The sample period is from the fiscal year of 1986 to 2011. More concretely, we are interested in all firms included in the Nikkei 225 index; however, characteristic information of corporate turnover and capital structure is not obtained for all 225 firms. Thus our full sample data are 26 years in time-series, 172 firms in cross-section, and these firms are included in the Nikkei 225 at the end of the fiscal year of 2011. With regard to the portfolio constructions, we first divided our samples into two capital structure groups, namely, low debt ratio and high debt ratio firms. We then divided these two portfolios into three turnover portfolios, namely, low, middle, and high turnover portfolios. We repeated this procedure each year and recorded the next fiscal year's returns of these six portfolios. In the table, 'TO' denotes the turnover ratio. In addition, Welch's *t* denotes the *t*-statistic for the Welch's test whose null hypothesis is that the average return of each portfolio does not equal to that of the full sample. Similarly, *F*-statistic displayed in the table is for testing the null hypothesis of equal variance of each portfolio and that of the full sample. Similarly, *F*-statistic displayed in the table is for testing the null hypothesis here is that the variance of each portfolio and that of the full sample are not equal. Finally, ****** denotes the statistical significance at the 5% level and ***** denotes the statistical significance at the 10% level, respectively.

Table 4. Equally-weighted firm average of the one-year future stock returns with regard to six portfolios
constructed by turnover: the time-series and the test results regarding the portfolio returns of the firms in the
Nikkei 225 for the fiscal year from 1986 to 2011

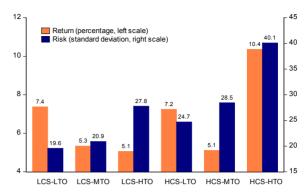
	Portfolios constructed by turnover							
	Level of turnover							
Fiscal year	Lowest	2	3	4	5	Highest		
1986	47.2189	32.8810	26.7972	23.9465	23.2121	15.2674		
1987	34.5618	25.6225	30.4983	42.7974	32.9939	70.3886		
1988	17.9557	5.7282	0.3732	-5.0492	-12.5740	-19.3945		
1989	-16.6396	-13.1600	-7.5068	-8.4160	-17.7435	-16.3951		
1990	-12.0053	-13.3658	-23.2550	-24.0858	-26.6461	-23.4459		
1991	-3.0288	-4.7256	1.8183	-2.3901	-1.5236	-0.5559		
1992	16.7714	14.7142	11.7944	1.8903	10.3945	1.1238		
1993	-1.7784	-9.2443	-8.2895	-10.0881	-14.3141	-15.9584		
1994	21.3907	28.3239	29.4847	35.2461	28.8634	45.7334		
1995	-7.8788	-14.0477	-10.0324	-11.1847	-6.7994	-10.4065		
1996	-14.6904	-7.9585	-18.0702	-19.4076	-7.8835	2.4350		
1997	2.1801	6.3422	4.4602	-2.0086	7.1968	-7.0865		
1998	0.7742	4.7313	13.2293	13.8858	25.4937	62.0902		
1999	13.9572	13.3158	21.3106	-3.2683	0.1862	-5.9583		
2000	-7.0211	0.5365	-12.6004	-9.5828	-11.8046	-14.0920		
2001	-5.9406	-14.2506	-9.2282	-22.1909	-21.4212	-29.5748		
2002	45.1298	66.6680	50.9991	60.6902	72.0710	101.6818		
2003	10.0731	14.8147	6.6486	2.8408	8.1709	7.2689		
2004	43.1815	45.1610	59.2932	52.6139	74.4917	87.9107		
2005	12.2843	8.4144	3.8979	-0.6136	7.0280	19.9545		
2006	-23.2622	-21.5179	-23.6927	-19.3929	-33.1230	-36.4413		
2007	-26.3477	-32.1362	-34.9267	-35.7711	-42.0488	-42.7234		
2008	15.0199	32.3378	44.4339	46.9933	55.2877	52.6914		
2009	-12.8993	-6.2435	-3.1043	-6.5142	-4.3077	-6.4491		
2010	-1.8322	5.4456	-1.2595	-7.1978	2.6623	-4.8362		
2011	30.3703	25.1713	14.6199	11.7312	22.1417	8.5909		
Average	6.8286	7.4446	6.4497	4.0567	6.5386	9.3007		
Welch's t	0.0095	0.1019	0.0468	0.3858	0.0300	0.2821		
<i>p</i> -value	0.9925	0.9193	0.9629	0.7013	0.9762	0.7792		
Std. Dev.	20.9530	22.3875	23.4274	25.1844	29.3617	38.0507		
F-statistic	0.6766	0.7724	0.8459	0.9775	0.7526	0.4482**		
<i>p</i> -value	0.1675	0.2617	0.3394	0.4775	0.2413	0.0249		

Notes: This table shows the equally-weighted averages and test results of the one-year future stock returns with regard to six portfolios constructed by the turnover ratios of the firms included in the Nikkei 225 stock index in Japan. The sample period is from the fiscal year of 1986 to 2011. More concretely, we are interested in all firms included in the Nikkei 225 index; however, characteristic information of corporate turnover and capital structure is not obtained for all 225 firms. Thus our full sample data are 26 years in time-series, 172 firms in cross-section, and these firms are included in the Nikkei 225 at the end of the fiscal year of 2011. With regard to the portfolio constructions, we first divided our samples into six turnover groups, namely, the lowest turnover to the highest turnover firms. We then repeated this procedure each year and recorded the next fiscal year's returns of these six portfolios. In addition, Welch's *t* denotes the *t*-statistic for the Welch's test whose null hypothesis is that the average return of each portfolio does not equal to that of the full sample. Similarly, *F*-statistic displayed in the table is for testing the null hypothesis of equal variance of each portfolio and that of the full sample, 648.8584 (squared values of 25.4727 in Table 1). Alternative hypothesis here is that the variance of each portfolio and that of the full sample are not equal. Furthermore, ** denotes the statistical significance at the 5% level.

	Portfolios constructed by capital structure Level of capital structure							
Fiscal year								
	Lowest	2	3	4	5	Highest		
1986	33.2666	29.6907	23.9217	30.0007	21.6478	30.6314		
1987	12.2603	22.0200	20.7256	36.1090	65.0710	81.6584		
1988	16.8646	-1.4997	-2.4922	4.4437	-15.4876	-15.1391		
1989	-14.8772	-13.0598	-15.1671	-13.7869	-11.6603	-11.0964		
1990	-14.9883	-16.9361	-19.5262	-27.5400	-21.0123	-22.7299		
1991	-1.9252	-4.1306	-2.0975	4.0271	-2.8916	-3.4143		
1992	13.0522	16.6853	11.1497	9.2865	5.5430	0.8725		
1993	-7.8545	-12.6793	-11.0353	-11.6211	-10.5048	-5.9650		
1994	31.5589	34.6790	29.7505	30.0143	28.8147	34.4423		
1995	6.4278	1.5314	-13.5143	-20.6679	-15.7431	-18.1545		
1996	2.5921	-0.5746	-10.7494	-20.1015	-17.9409	-18.8931		
1997	8.6805	8.4168	4.3483	8.6960	-7.5937	-11.9021		
1998	48.2545	10.3711	20.2967	14.4611	36.2412	-8.8549		
1999	-9.3013	-0.3635	3.1295	22.9862	6.2452	16.5844		
2000	-6.8993	-12.6925	-8.2363	-9.2075	-12.9146	-5.1087		
2001	-20.6692	-22.7528	-13.7796	-13.8602	-13.0109	-18.5368		
2002	40.4389	40.8344	56.9053	63.1989	90.2977	105.3026		
2003	4.6171	7.5505	7.7053	4.8421	14.0558	10.9985		
2004	37.7900	46.1845	66.7357	61.6034	74.5567	75.8194		
2005	12.8424	8.4101	5.7727	17.0706	-1.0865	7.6761		
2006	-22.3547	-24.9677	-22.6714	-28.0635	-29.5813	-29.7883		
2007	-27.4590	-34.5365	-40.7577	-40.1054	-34.9853	-35.9492		
2008	34.1432	45.5276	43.0054	51.6274	36.9341	35.3483		
2009	-10.3340	-9.5734	-8.2079	-6.1376	1.6523	-6.8268		
2010	-2.5557	-2.4495	3.7391	-1.6036	-8.9387	4.1183		
2011	21.2597	16.0896	16.4234	18.2563	10.3800	29.4975		
Average	7.1089	5.0683	5.5913	7.0742	7.2342	8.4843		
Welch's t	0.0527	0.2585	0.1694	0.0420	0.0586	0.2020		
<i>p</i> -value	0.9582	0.7971	0.8662	0.9666	0.9535	0.8408		
Std. Dev.	21.1214	21.7722	24.5755	27.1805	31.6353	35.0824		
F-statistic	0.6875	0.7306	0.9308	0.8783	0.6483	0.5272*		
<i>p</i> -value	0.1776	0.2190	0.4296	0.3741	0.1427	0.0580		


Table 5. Equally-weighted firm average of the one-year future stock returns with regard to six portfolios constructed by capital structure: the time-series and the test results regarding the portfolio returns of the firms in the Nikkei 225 for the fiscal year from 1986 to 2011

Notes: This table shows the equally-weighted averages and test results of the one-year future stock returns with regard to six portfolios constructed by the capital structure of the firms included in the Nikkei 225 stock index in Japan. The sample period is from the fiscal year of 1986 to 2011. More concretely, we are interested in all firms included in the Nikkei 225 index; however, characteristic information of corporate turnover and capital structure is not obtained for all 225 firms. Thus our full sample data are 26 years in time-series, 172 firms in cross-section, and these firms are included in the Nikkei 225 at the end of the fiscal year of 2011. With regard to the portfolio constructions, we first divided our samples into six capital structure groups, namely, the lowest debt ratio to the highest debt ratio firms. We then repeated this procedure each year and recorded the next fiscal year's returns of these six portfolios. In addition, Welch's *t* denotes the *t*-statistic for the Welch's test whose null hypothesis is that the average return of each portfolio does not equal to that of the full sample. Similarly, *F*-statistic displayed in the table is for testing the null hypothesis of equal variance of each portfolio and that of the full sample, 648.8584 (squared values of 25.4727 in Table 1). Alternative hypothesis here is that the variance of each portfolio and that of the full sample are not equal. Furthermore, * denotes the statistical significance at the 10% level.


Panel A. Six portfolios of two levels of turnover and three levels of capital structure

Panel C. Six portfolios constructed by sorting only by turnover

Panel B. Six portfolios of two levels of capital structure and three levels of turnover

Panel D. Six portfolios constructed by sorting only by capital structure

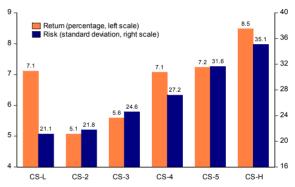


Figure 1. Risk and return relationship of the one-year future stock returns of four kinds of six portfolios constructed by turnover and capital structure: evidence from the firms included in the Nikkei 225 in Japan for the fiscal year from 1986 to 2011

Moreover, Table 4 displays the results of similar analyses for our only turnover sorting six portfolios. According to the results in Table 4, all portfolio returns are not statistically significantly different from our full sample's return. While as to the variance, in the highest turnover portfolio, it is statistically significantly higher than that of our full sample. In addition, Table 5 exhibits the results of similar analyses for our only debt ratio sorting six portfolios. The results in Table 5 demonstrate that again, the returns of all portfolios are not statistically significantly different from our full sample's return. While regarding the variance, in the highest debt ratio portfolio, it is statistically significantly higher than that of our full sample.

To sum up, in general, the risk is reduced in lower turnover and lower capital structure portfolios; while the risk increases in higher turnover and higher capital structure portfolios. However, the returns are not statistically significantly different even if the turnovers and capital structures in portfolios are altered.

Further, viewing the states of risk-return tradeoff in various portfolios is also interesting. Figure 1 displays the risk-return relationship of various portfolios in four graphs. First, Panels A and B of Figure 1 demonstrate that, although roughly, risks of portfolios gradually increase as the levels of turnovers and debt ratios in portfolios rise. However, returns of portfolios do not necessarily increase as the levels of turnover and debt ratio in portfolios go up. Furthermore, we can view the clearer tendency of risk characteristics of two kinds of portfolios shown in Panels C and D of Figure 1. More concretely, with regard to returns, not so clear tendency is observed again as before; however, the risks of the only turnover sorting portfolios clearly increase as the levels of turnover ratio rise (Panel C). Similarly, the risks of the only capital structure sorting portfolios clearly rise as the levels of debt ratios increase (Panel D).

As above, the clear positive connection between debt ratios and stock return volatilities and the clear positive linkage between turnover ratios and stock return volatilities can be recognized. However, as far as the firms in the Nikkei 225, higher volatilities associated with these two factors, debt ratio and turnover ratio, are not

statistically significantly rewarded with higher returns as seen in the results in Tables 2 to 5.

Table 6. Results of the Welch's tests for the time-varying Sharpe ratios of various portfolios constructed by turnover and capital structure: evidence from the firms included in the Nikkei 225 for the fiscal year from 1986 to 2011

Panel A. Portfol	ios constructed by	turnover and capital s	tructure			
	Turnover and	capital structure level	s of portfolios (two	TO and three CS lev	vels)	
	Low turnover			High turnover		
	Low CS	Middle CS	High CS	Low CS	Middle CS	High CS
Sharpe ratio	0.3820	0.3021	0.3382	-0.0780	0.2036	1.9103
Welch's t	0.0007	0.2344	0.1209	1.3317	0.5249	0.8814
<i>p</i> -value	0.9994	0.8156	0.9043	0.1891	0.6021	0.3862
Panel B. Portfol	ios constructed by	capital structure and t	urnover			
	Capital structu	are and turnover levels	s of portfolios (two	CS and three TO lev	rels)	
	Low capital st	ructure		High capital s	tructure	
	Low TO	Middle TO	High TO	Low TO	Middle TO	High TO
Sharpe ratio	0.4353	0.1755	-0.0028	0.3606	0.2819	2.4537
Welch's t	0.1508	0.6332	1.1500	0.0607	0.2726	0.9237
<i>p</i> -value	0.8808	0.5297	0.2560	0.9518	0.7863	0.3641
Panel C. Portfol	ios constructed by	only turnover				
	Turnover leve	ls of portfolios				
	Lowest	2	3	4	5	Highest
Sharpe ratio	0.2457	0.3056	0.4341	0.1337	0.2664	0.3991
Welch's t	0.4086	0.2278	0.1317	0.7525	0.3335	0.0444
<i>p</i> -value	0.6847	0.8207	0.8958	0.4555	0.7401	0.9648
Panel D. Portfol	ios constructed by	only capital structure				
	Capital structu	are levels of portfolios	5			
	Lowest	2	3	4	5	Highest
Sharpe ratio	0.2433	0.1252	0.1341	0.9687	0.2788	0.3231
Welch's t	0.4209	0.7722	0.7472	0.7532	0.2925	0.1652
<i>p</i> -value	0.6757	0.4438	0.4586	0.4570	0.7712	0.8695

Notes: This table shows the results of the Welch's tests for the time-varying Sharpe ratios of various portfolios constructed by the turnover ratio and capital structure (debt ratio). The sample firms are those included in the Nikkei 225 for the fiscal year from 1986 to 2011: our sample period spans from the fiscal year of 1986 to 2011. More concretely, we are interested in all firms included in the Nikkei 225 index; however, characteristic information of corporate turnover ratio and capital structure is not obtained for all 225 firms. Thus our full sample data are 26 years in time-series, 172 firms in cross-section, and these firms are included in the Nikkei 225 at the end of the fiscal year of 2011. In the table, 'CS' denotes the capital structures, which are measured by total book-value debt divided by total book-value assets, and 'TO' denotes the turnover ratios, which are measured by the (yen) trading volumes during the final month of the fiscal year divided by the (yen) corporate market values at the end of the fiscal year. Further, 'Sharpe ratio' in this table denotes the average of the time-varying Sharpe ratios of our full sample. On the other hand, alternative hypothesis of the Welch's test is that the average of the time-varying Sharpe ratios of oue full sample. On the other hand, alternative hypothesis of the Welch's test is that the average of the time-varying Sharpe ratios dues not equal to the average of the time-varying Sharpe ratios of the full sample. According to the *p*-values, it is understood that there is no portfolio Sharpe ratio that is statistically significantly different from the full sample's Sharp ratio.

Table 7. The risk-return tradeoff of various portfolios constructed by turnover and capital structure: the test results by using the GARCH-in-mean model for the firms included in the Nikkei 225 for the fiscal year from 1986 to 2011

Panel A. Portfolios con	nstructed by turnove	er and capital structu	ire			
	Turnover and c	capital structure leve	els of portfolios			
	Low turnover			High turnover		
	Low CS	Middle CS	High CS	Low CS	Middle CS	High CS
GARCH-in-mean	22.8953	1.8003	-0.5753*	0.7104***	0.9171*	0.5441***
<i>p</i> -value	0.4223	0.4603	0.0587	0.0100	0.0981	0.0000
Panel B. Portfolios con	nstructed by capital	structure and turnov	/er			
	Capital structu	re and turnover leve	els of portfolios			
	Low capital str	ucture		High capital st	0.9171* 0.5441*** 0.0981 0.0000	
	Low TO	Middle TO	High TO	Low TO	Middle TO	High TO
GARCH-in-mean	17.2723	0.9358	-0.2729	-0.4573	-3.5103***	0.1983
<i>p</i> -value	0.5882	0.6070	0.3838	0.1552	0.0000	0.2856
Panel C. Portfolios con	nstructed by turnove	er				
	Turnover level	s of portfolios				
	Lowest	2	3	4	5	Highest
GARCH-in-mean	0.5351***	-11.8449	-0.0130	4.3920	-0.0412	-0.2164
<i>p</i> -value	0.0000	0.4123	0.9548	0.6260	0.8467	0.5321
Panel D. Portfolios co	nstructed by capital	structure				
	Capital structure levels of portfolios					
	Lowest	2	3	4	5	Highest
GARCH-in-mean	0.6236	-4.3405**	-0.3127	34.6290	0.4584	11.5243
<i>p</i> -value	0.2113	0.0121	0.3555	0.7394	0.1915	0.3200

Notes: This table shows the test results of the risk-return tradeoff of various portfolios constructed by turnover and capital structure. The test results are derived by using the GARCH-in-mean (1,1) model for the portfolios of firms included in the Nikkei 225 for the fiscal year from 1986 to 2011. More concretely, we are interested in all firms included in the Nikkei 225 index; however, characteristic information of corporate turnover and capital structure is not obtained for all 225 firms. Thus our full sample data are 26 years in time-series, 172 firms in cross section, and these firms are included in the Nikkei 225 at the end of the fiscal year of 2011. In the table, 'CS' denotes the capital structures, which are measured by total book-value debt divided by total book-value assets and 'TO' denotes the turnover ratios, which are measured by the (yen) trading volumes during the final month of the fiscal year divided by the (yen) corporate market values at the end of the fiscal year. Further, the values of the row of the 'GARCH-in-mean (1,1)' display the coefficient values estimated from the GARCH-in-mean (1,1) model. In our estimation, we used the heteroskedasticity consistent covariance by Bollerslev and Wooldridge (1992). Furthermore, *** denotes the statistical significance of the coefficients at the 10% level, ** denotes the statistical significance of the coefficients at the 10% level, respectively.

4. Testing the Time-Varying Sharpe Ratios

According to our results so far, although risks statistically significantly alter in the higher turnover and higher debt ratio portfolios or lower turnover and lower debt ratio portfolios, their returns are not statistically significantly different. How are then the risk-adjusted returns of our various portfolios? In order to explore this issue, we attempt to calculate the time-varying Sharpe ratios of our portfolios. For computing these time-varying Sharpe ratios, the time-varying standard deviations are needed; for this purpose, we use the following GARCH (1,1) model:

$$RET_{i,t+1} = \eta_i + \kappa_{i,t+1},$$

$$\sigma_{i,t+1}^2 = \xi_{i,0} + \xi_{i,1}\sigma_{i,t}^2 + \xi_{i,2}\kappa_{i,t}^2.$$
 (1)

Where $RET_{i,t+1}$ denotes the return of portfolio *i* at time *t*+1 and $\sigma_{i,t+1}$ denotes the return volatility of portfolio *i* at time *t*+1. By using the time-varying standard deviations derived as above, we next compute the time-varying Sharp ratios as the following equation (2):

$$SR_{i,t} = [RET_{i,t} - r_{f,t}] / \hat{\sigma}_{i,t}$$

Where $r_{f,t}$ is the risk-free rate at time *t* and we use the short-term certificate of deposit (CD) rate in Japan for this variable. We then calculate the average of Sharpe ratios for various portfolios and test their differences by Welch's test as in Table 6. Namely, the null hypothesis of the Welch's test here is that the average of the time-varying Sharpe ratios of the portfolios equals to the average of the time-varying Sharpe ratios of our full sample. While the alternative hypothesis here is that the average of the time-varying Sharpe ratios of our full sample. According to the *p*-values in Table 6, we recognize that there is no portfolio Sharpe ratio that is statistically significantly different from our full sample's Sharp ratio. That is, we understand that even if the risk is adjusted, the risk-adjusted returns of various portfolios are not statistically significantly different from our full sample's statistically significantly different from our full sample is risk-adjusted returns. This means that, as far as the firms in the Nikkei 225, turnover and capital structure sorting portfolios cannot produce the statistically significantly higher risk-adjusted returns than that of our full sample.

5. Analyses of the Time-Varying Risk-Return Tradeoff

Finally, we examine the risk-return tradeoff from another angle. Namely, from the time-series viewpoint, we investigate whether the risk of each portfolio is rewarded or not. To implement this analysis, we use the following GARCH-in-mean (1,1) model:

$$RET_{i,t+1} = \eta_{i,0} + \eta_{i,1}\sigma_{i,t+1} + \kappa_{i,t+1},$$

$$\sigma_{i,t+1}^2 = \xi_{i,0} + \xi_{i,1}\sigma_{i,t}^2 + \xi_{i,2}\kappa_{i,t}^2.$$
(3)

Where $RET_{i,t+1}$ denotes the return of portfolio *i* at time *t*+1 and $\sigma_{i,t+1}$ denotes the return volatility of portfolio *i* at time *t*+1. Namely, our GARCH-in-mean (1,1) model in this analysis includes the conditional standard deviation in its return equation. In our estimation, we use the heteroskedasticity consistent covariance suggested by Bollerslev and Wooldridge (1992). The results are shown in Table 7. In this table, the values of the row of the '*p*-value' under the 'GARCH-in-mean' display the *p*-values that show the statistical significance of the coefficients of the time-varying standard deviations in the GARCH-in-mean (1,1) model.

As this table shows, in only four cases, risks are statistically significantly rewarded. Namely, those are 1) the case of the high turnover-low debt ratio portfolio (Panel A), 2) the case of the high turnover-middle debt ratio portfolio (Panel A), 3) the high turnover-high debt ratio portfolio (Panel A), and 4) the lowest turnover portfolio (Panel C). However, in overall, it is rather difficult to conclude that the time-varying risks of our capital structure and turnover sorting portfolios are clearly priced in equity markets in Japan.

6. Summary and Conclusions

This paper examined the risk and return relations of turnover and capital structure sorting portfolios of the Nikkei 225 firms in Japan. The findings from our empirical analyses are summarized as follows. 1) First, portfolio risk was reduced in our lowest debt ratio and lowest turnover portfolio. 2) Second, portfolio risk increased in our highest debt ratio and highest turnover portfolio. 3) Third, although risk changed in accordance with the levels of debt ratios and turnover ratios, these risks were not rewarded with higher returns. 4) Fourth, from the viewpoint of time-series, risk of each portfolio was not clearly priced in the Japanese stock markets, either.

We should note that the above evidence is as to the cases of the Nikkei 225 firms. However, from our analyses, one strong implication for the practice investments exists: for earning excess returns, it is useless to focus on the corporate capital structure and turnover differentials in the Nikkei 225 firms. Finally, we also recognize that this kind of research by using larger data set with adding some additional viewpoints shall be one of our future tasks.

Acknowledgements

The author thanks the Japan Society for the Promotion of Science for their generous financial assistance for this research. Further, the author greatly thanks the kind invitation from the journal to write to this journal. Moreover, I also thank the Editor and anonymous referees for their kind comments to this paper.

References

- Bollerslev, T., & Wooldridge, J. M. (1992). Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances. *Econometric Reviews*, 11, 143–172. http://dx.doi.org/10.1080/07474939208800229
- Campbell, J. Y., & Hentschel, L. (1992). No news is good news: An asymmetric model of changing volatility in stock returns. *Journal of Financial Economics*, *31*, 281–318. http://dx.doi.org/10.1016/0304-405X(92)90037-X
- Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. *Journal of Finance*, 48, 1779–1801. http://dx.doi.org/10.1111/j.1540-6261.1993.tb05128.x
- Lundblad, C. (2007). The risk return tradeoff in the long run: 1836–2003. *Journal of Financial Economics*, 85, 123–150. http://dx.doi.org/10.1016/j.jfineco.2006.06.003
- Modigliani, F., & Miller, M. H. (1958). The cost of capital, corporation finance and the theory of investment. *The American Economic Review*, 48, 261–297.
- Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. *Econometrica*, 59, 347–370. http://dx.doi.org/10.2307/2938260

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).