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Abstract 

The complexity that has characterized market relations in recent years, with demands for product and process 
innovation, has even had repercussions on more traditional activities, such as the civil construction segment. 
Behind only agriculture, the construction industry represents 13% of the global GDP and its volume is US$ 8 
trillion per year. However, construction projects often exceed budget by 80%, and deadlines by 20 months. 
Between 8% and 10% of productivity gains are related to the insertion of technologies (IPEA, 2022). In the field 
of civil construction, these digital technologies, such as cloud computing, automation, virtual reality and 
augmented reality, 3D modeling, communication applications and BIM—Building Information Modeling and 
even machine learning, have been called Construction 4.0. This article evaluates the feasibility of replacing the 
use of Terrestrial Laser Scanner (TLS) by the use of Unmanned Aerial Vehicles (UAV). For this, it presents a 
comparison in the use of equipment for carrying out planimetric surveys in civil construction, using as an 
example the UAV and the TLS—more modern equipment, in addition to the total station—more conventional 
equipment—for surveying control points. The results show that in the UAV image processing, the RMSE 
presented a centimeter accuracy (1.93044 cm) for the model. Even if the accuracy of the models generated by 
TLS is millimetric, it can be considered that the results obtained here were satisfactory, however it is necessary 
to apply imaging techniques more efficiently to obtain a more accurate product, in order to arrive at millimeter 
accuracy. Studies on better positioning of targets and georeferencing of models would also be of great 
contribution to applications in civil construction. 
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1. Introduction 

The complexity that has characterized market relations in recent years, with the demand for product and process 
innovation, has even had repercussions in more traditional activities, such as in the civil construction segment 
(Cavalcanti et al., 2018; Alaloul et al., 2019). Despite being traditional, this segment has undergone several 
changes in the business model, as a result of important technological advances, requiring companies to adapt to 
new conditions by incorporating new technologies, professional qualification, materials and developing new 
processes, considered innovative, resulting in projects increasingly complex (FIRJAN, 2014). 

Based on this advance in digitalization, combined with internet technology and other future-oriented 
technologies, such as the so-called “smart objects” (machines and products), a new change of model in the 
industry is observed (Lasi et al., 2014). Through these expectations of the future, the term Industry 4.0 was 
established, which is a concept introduced in 2011 during the Hannover Fair, Germany, announced as the Fourth 
Industrial Revolution (Madsen, 2019). This new industry concept aims to connect products, production 
environments, suppliers, transporters and consumers through digitization, automation and artificial intelligence 
of production processes (Oesterreich & Teuteberg, 2016; Madsen, 2019; Pessôa & Becker, 2020). 

In the civil construction segment, these digital technologies, such as cloud computing, automation, virtual reality 
(VR) and augmented reality (AR), 3D modeling, communication applications and BIM—Building Information 
Modeling, even machine learning, have been called Construction 4.0 (Craveiro et al., 2019). From the use of 
technology and the integration of these innovative ideas, a new scenario is created for the construction sector, 
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much more connected and disruptive. Brazil is still in the process of becoming familiar with digitization and its 
impacts on the concept of Industry 4.0. 

Construction 4.0 can be employed throughout a project’s lifecycle, from inception to completion, through 
initiation, planning, execution, monitoring and control, and closure. Companies in the field of Civil Engineering 
seek new technologies due to the optimization of labor and materials, reduction of environmental impacts and 
waste generation, as well as the strengthening of quality control, traceability and specialization of labor (Coda et 
al., 2019). 

In the construction industry, the usefulness of technologies such as VR, AR and 3D modeling is extraordinary. 
According to Nakamura (2018), VR is an interaction technology between a user and an operating system, 
through 3D graphic resources or 360º images. The goal is to give the user the feeling of presence in a virtual 
environment, providing a complete immersion in the simulated environment in real time (Masood & Egger, 
2019). It can, for example, contribute to the design project, allowing the professional to see the project in 3D in 
the environment of a work, thus being able to identify possible errors or repairs to be made. In addition, with the 
simulation in a virtual environment, the client can feel inside his own residence, even before it is built, being 
able to request changes in the projects in advance. 

AR has the opposite purpose of virtual reality. According to Thomé (2019), augmented reality inserts digital 
elements into physical reality. For example, from footage of an empty room, an application may be able to insert 
paint colors on the walls so that the user can analyze how such a choice would look before executing it. 

3D modeling uses software to create a mathematical representation of a three-dimensional shape. According to 
Alves (2018), some modeling software allows 3D models to be shared and viewed anywhere, especially at the 
construction site. In this way, the project can be changed or updated in real time, inaccurate data and calculations 
can be hastily corrected and the company avoids rework in several steps that would end up generating extra costs 
and delays in execution. 

In this technology environment, we cannot forget BIM. According to Wilson and Heng (2021), BIM is changing 
traditional construction practices in a broader sense, in terms of people, processes, work, culture, communication 
and business models. According to Gu and London (2020), BIM involves the application and maintenance of an 
integrated digital model of all construction information at different stages of the development life cycle in the 
form of a data repository, including geometric and non-geometric information. 

The ability to share information and experience, obtain true cost estimates from the outset, identify problems and 
implement solutions based on reliable information prior to construction all benefit from saving time, money and 
achieving a superior result. 

Regarding the challenges in the Brazilian context for the use of these technologies, the country faces difficulties 
such as lack of investment in equipment to incorporate these technologies, adaptation of layouts, processes and 
forms of relationship between companies in the production chain, as well as the difficulty of creating of new 
specialties and the development of new technologies (CNI, 2016). In addition, there is a need to adopt relatively 
quick measures to avoid a competitiveness gap between Brazil and some countries where Industry 4.0 has 
already started to become a reality. 

To obtain the data that will support these technologies, we highlight the three-dimensional survey using 
Terrestrial Laser Scanner (TLS), which generates a cloud of dense and high-precision points. This product is 
widely used for taking dimensions in the three orthogonal cartesian axes. Because it uses laser measuring 
equipment, applying surface scanning, it has a high economic value. In this way, technical and scientific research 
seeks simplified methodologies for generating models, equivalent to those generated by the TLS (Inocencio et al., 
2014; Young & Seonghyuk, 2019). 

As alternatives to the TLS, there is the Unmanned Aerial Vehicle (UAV), popularly known as a drone, which 
through imaging and specific software is capable of generating three-dimensional models equivalent to the 
models generated by the TLS. However, Fonseca e Silva and Maia Gomes (2020) in their results points to the 
need for further research with regard to positional precision and accuracy, the feasibility of applying UAV 
imaging in civil structures, as well as producing equivalent end products of this technology (digital terrain model 
and point cloud). 

To solve issues like to reduce the digitization time and costs while maintaining a high coherence between the 
physical artefact and its digital counterpart, in a context where the purpose is to massively digitize complex 
objects in their original setting by minimizing the impact, several methodologies are being discussed to improve 
the efficiency of digitization regarding image capturing, 3D model creation, scaling and mesh editing. 
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This study is corroborated by Medeiros, Figueira and Vasconcelos (2022), where they highlight that, despite the 
merit of the scientific community turning to studies on AR in recent years, joint efforts are needed to solve the 
challenges faced by technology, such as the parallax, hardware limitations, the high consumption of time to 
configure the markers, data storage limitations, poor georeferencing and inaccurate tracking of the environment, 
in order to make the use of AR even more assertive, efficient and accessible in the construction site. 

In this context, the research question is how UAV can replace the use of TLS, obtaining accurate results. This 
article aims to evaluate the feasibility of replacing the use of a three-dimensional TLS by the use of UAV in 
three-dimensional surveys for civil construction. For this, it presents a comparison in the use of equipment for 
carrying out three-dimensional surveys in civil construction, using as an example the UAV and the TLS, in 
addition to the total station—more conventional equipment—for surveying the control points. 

With the results obtained in this comparison, it is possible to manage the positive and negative points of each 
equipment, where each one is more viable depending on the case to be studied. In its development, research was 
carried out on the functioning of the equipment mentioned above, as well as the precision of each one and the 
recommendations contained in the norms regarding the acceptable standard deviations. After collecting this 
information, for the methodology, a field study was carried out in a real work still in progress within the 
municipality of Gravatá—PE, where it was possible to use the total station together with the Global Navigation 
Satellite System (GPS/GNSS) RTK—auxiliary equipment, TLS and VANT to carry out the same planimetric 
survey, and with the use of software, results were obtained that served as comparison instruments. 

1.1 Perspectives of Imaging Technologies in Brazil  

The use of TLS has expanded a lot in recent years in the field of graphical and metric documentation of objects, 
mainly because it is a non-destructive and non-invasive technique, which does not involve direct contact. TLS is 
Remote Sensing equipment that make it possible to collect a large number of data from the observed surface, 
with high precision and a fast acquisition rate (thousands and even millions of points per second (Inocencio, 
2014; Kerle, 2019). 

The basic operating principle of the TLS is to measure the time required for a laser pulse to travel from the 
transmitter to the reflective surface of the target and back to the receiver. The light beam emitted by the 
equipment travels through the atmosphere and interacts with the target object. The constituent atoms and 
molecules of the target reflect or absorb electromagnetic radiation and its backscattering gives rise to remote 
laser detection (Becker, 2019). The files generated by TLS is based on a structure where the coordinates of the 
points in space (x, y, z) are stored, the laser pulse return intensity value (I) and, if available, the values from the 
digital camera attached to the equipment. The final product of a scan is a cloud of points with spatial coordinates 
and their corresponding intensities, forming a 3D image of the scanned structure (Ferraz, Souza, & Reis, 2016; 
Becker, 2019). 

This technology is not recent in civil construction and has been used, among other applications, to estimate the 
deformation of arches and vaults, based on the symmetry of cuts obtained along the vault guideline (Armesto et 
al., 2010; Cintra, 2017) , obtaining as-built designs (Bosché, 2010; Klein, 2012; Miranda, 2020; Gouveia, 2021), 
automatic recognition of surface damage related to mass loss (Teza, Galgaro, & Moro, 2009), scanning for 
reconstruction models of building facades and pathological manifestations in materials that make up the 
construction of buildings (Pu & Vosselman, 2009; Ballesteros, 2020; Ballesteros & Lordsleem Junior, 2021), 
efflorescence in granitic rocks on the walls of buildings, through the images generated in the scan 
(Armesto-González et al., 2010) and even to detect the proliferation of mosses in reinforced concrete structures 
(González-Jorge et al., 2012). 

To use the UAV as a solution, it is necessary to apply the principle of photogrammetry and aerial surveying. 
Objectively, photogrammetry is the science or art of obtaining reliable measurements through photographs. In 
order to analyze the data obtained in photogrammetry, it is necessary to know the phototriangulation technique, 
which is presented as a technique that helps in the mathematical interpretation of photographs. The aerial survey, 
on the other hand, can be described as a set of air or space operations for measuring, computing and recording 
terrain data using specific sensors, consisting of an aerospace phase for capturing and recording data and a phase 
that refers to the data processing (Macedo et al., 2020; Sobrinho, 2021). 

In order to measure and confirm the results, it is necessary to implement control points on the ground, these 
points are targets or georeferenced objects on the ground that will appear in the aerial images, that is, 
photo-identifiable. These control points are used to correlate the image coordinate system with the terrain 
coordinate system. They are reference points on the ground that are used in the post-processing of the images to 
increase the accuracy of the final products generated (Neto, 2015; Cintra, 2017; Malik & Guidi, 2018). In 
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the points on the boundary of the terrain and the control points on the front of the terrain were irradiated. The 
irradiations were made using prism with direct reading in the work. 

After obtaining the georeferenced coordinates of E1 and E0, the data were processed in the Autocad Civil 3D 
software, where the main traverse and all the irradiations were calculated, and through this process the precise 
coordinates of all the vertices of the work were obtained, including the control points.  

The equipment used as a UAV was a DJI Mini 3 Pro (DJI RC) (GL), equipped with a 20-megapixel camera and a 
precision GPS/GNSS kit (PPK—Post-Processed Kinematic) Emlid M+ (L1) with its respective Emlid RS base 
(L1). Although it is not the most used model in the literature, it was chosen because it is a low-cost device. 

The overflight with the UAV was carried out with the aid of the Matterport MAP Pilot application, the mission 
was of the Oblique type at 25 m in height, with the camera directed at 60° in relation to the nadir. The 
overlapping of the photos was 89 and 90% (overlap, sidelap). 

As TLS, the Matterport Pro2 was used, which has a 3D sensor of structured light (infrared), 20 seconds of 
capture time per scan, 99% accuracy within range and a maximum range of 4.5 m. Depth resolution is 10 points 
per degree (3600 points at the equator, 1800 points at the meridian, about 4 million points per panorama). 

2.3 Step 3—Accuracy Analysis 

The data collected in the field were treated and analyzed in the laboratory, using software such as Guandalini 
PPK, AutoCad Civil 3D, Agisoft Photoscan, in addition to Map by Matterport. In this step, the topographic data 
of the control points collected in the field were treated in the AutoCad Civil 3D software and their coordinates 
corrected. The precise coordinates of the photos, which were obtained through the GPS/GNSS onboard the UAV 
(Emlid M+), were treated and corrected through the Guandalini PPK software, while the images collected in the 
field were treated in the Agisoft Photoscan software, in which, through algorithms, applies to the 
phototriangulation technique: aligning, georeferencing and generating the specific products of aerial 
photogrammetry. 

The photographs obtained in the aerial survey (445) were processed with reference to the 10 control points 
surveyed in the field, and the final product was an orthophoto in ‘.tiff’ format, georeferenced, which was 
imported into the AutoCAD civil 3D software. 

The use of technological equipment, such as the total station, for measuring measurements within civil 
construction requires some care so that the results obtained do not suffer variations that do not meet the 
pre-established standard deviations in NBR 13133 (Matos, 2018). What differs them is the way they are handled, 
and with the laser scanner and the total station, many processes are done manually, for example, the correct use 
of the prism in the total station, which needs to be positioned so that the emitted laser through the device directly 
hit your target. In addition, it needs to be level with the ground, which is why it usually has a spirit level in its 
structure, which makes the operator precise when holding it. With drones, most processes are programmed 
through a device, which can be the user’s own smartphone, and thus the drone does the service automatically 
according to the programming made, which can leave margins for error if the programming is not done correctly. 
correctly (Sobrinho, 2018). 

Matos (2018) shows that the technical unpreparedness to use this equipment can directly interfere with the final 
project, because with the mistakes made, it may be necessary to redo the fieldwork. In addition to the technical 
preparation for their use, it is also necessary that the conditions of the device are in accordance with the 
compliances so that the work is carried out with quality. 

According to Rebelo (2019), no matter how hard you try to reduce and even eliminate errors, they always 
happen. The most common errors occur on three occasions, errors due to natural factors such as wind, humidity, 
fog, etc.; errors due to instrumental factors, which refer to defects in the device used; and errors due to personal 
factors, which, as previously mentioned, occur when the operator does not perform the work accurately. The 
latter may still be related to the user’s sensory issue, such as touch and vision, each of which has its own annuity. 

Still within the scope of possible errors, Matos (2018) showed in his work that with the use of the total station 
the influence of the ambient temperature interferes with the results obtained, and the heat of the sun acting 
directly on the device caused the measurement to suffer a error of approximately 3cm, not being within the 
standard established by the norm considering the type of device used (FOIF station model RTS/OTS 685). As 
previously mentioned, NBR 13133 provides a table regarding acceptable standard deviations in the use of total 
stations, according to the class of each equipment. 

the results obtained with UAV also depend on a number of factors to be as accurate as possible. The lack of 
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knowledge in its handling and the interference of external factors are examples of these factors. According to 
Xavier (2020), for the results to be more accurate, it is necessary to combine some equipment together with the 
drone. The RTK GPS is the equipment that helps the drone to carry out the surveys, obtaining the coordinates (X, 
Y and Z) of the points of interest. Also, according to Xavier (2019), the GPS/GNSS system integrated into the 
drone does not have good accuracy for aerial surveys, and can generate errors within a radius of 5 to 10 meters 
from the point of interest depending on the type of device used. 

Arias (2017) points out that another factor that directly interferes with the results obtained with drones is the 
solar trajectory, because depending on the time of day, the shadow area can make it difficult and generate errors 
in image processing. 

3. Results 

The search results are presented below. 

3.1 Survey and Analysis of Control Points 

The control points, to verify the accuracy, were surveyed using the Total Station and are shown in Table 1, 
together with the RMSE resulting from the processing. 

 

Table 1. Coordinates and RMSE of the control points  

Ponto E (m) RMSE (m) N (m) RMSE (m) Altitude (m) RMSE (m) 

1 217.719,69  9.091.755,16  489,755  
2 217.736,46 0,0015 9.091.750,23 0,0154 489,695 0,0251 
3 217.723,48 -0,0102 9.091.750,51 -0,0082 489,485 0,0060 
4 217.710,62 0,0095 9.091.746,77 -0,0007 489,986 0,0115 
5 217.721,17 -0,0012 9.091.743,59 -0,0082 489,193 0,0060 
6 217.726,53 0,0205 9.091.737,06 0,0037 489,369 0,0011 
7 217.733,75 -0,0017 9.091.734,66 0,0055 489,510 0,0229 
8 217.738,42 -0,0027 9.091.732,33 -0,0002 489,384 -0,0059 
9 217.705,89 0,0125 9.091.730,70 0,0158 489,131 0,0460 
10 217.706,84 -0,0021 9.091.729,59 0,0048 489,169 -0,0063 

 

At the end of processing, a report was generated with the Root Mean Square Error (RMSE) values of the points. 
This RMSE is the root mean squared error of the difference between the prediction and the actual value and 
explicitly represents what various methods tend to minimize (Lopes & Barbosa, 2020). The result of adjusting 
the three-dimensional model, using the control points, can be seen in Table 2. 

 

Table 2. RMSE of control points  

Number X error (cm) Y error (cm) Z error (cm) XY error (cm) Total (m) 
10 1.22324 0.87940 1.99074 1.32014 1.93044 

X – Easting Y – Northing Z - Altitude 

 

The processing resulted in a three-dimensional model, point cloud, with 7,490,386 points, that is, a density of 
1,706,238 points/m². Figure 4 shows the three-dimensional model obtained through imaging. 
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Table 4. Comparison between TLS and UAV 

Characteristics TLS VANT 

Equipment Accuracy Millimeter Centimeter 
Resolution Million points Hundreds of points 
Equipment Cost Tens of thousands Thousands 
handling skill Medium/High Low 
Portability Bulky Not bulky 
3D model accuracy Depends on the equipment Depends on processing software 
Generation of 3D models Automatic capture Postprocessed 
Environmental challenges Reflectivity, surface texture, target movement Repetition, flight conditions, angle of view 
Equipment limits - Does not fly over indoor areas 

 

4. Discussion 

It was evident in this study that the ambient lighting is an important issue to be evaluated in the planning and 
execution of the imaging. The shaded locations in the model showed greater deficiency of details for both 
equipment. 

For aero photogrammetry, flight altitude is an item of great relevance. In this way, it could not be different for 
the final result of UAV imaging. The richness of detail in the final model directly depends on the amount of 
detail observable in the photos, that is, it is necessary to correctly equate the camera resolution ratio with the 
flight height and the desired richness of detail. 

Another issue regarding the use of the UAV in this type of application is that it is restricted to use in uncovered 
environments, preventing its use in closed and covered environments, due to the need for visibility for the 
GPS/GNSS, both for navigation of the drone and the on-board precision one (PPK Emlid), while the LST model 
adopted allows imaging in closed environments with low light. 

Equating the point cloud generated by UAV imaging with a probable modeling using TLS in an equivalent area, 
the number of points generated is greater, but even so it is reasonable to inform that the number of points to be 
generated in modeling by imaging can be adapted, being defined by the user while executing the processing in 
Agisoft Photoscan. It is noteworthy that the increase in the number of points in the processing phase is due to 
interpolation processes and does not represent new points obtained in the mapped object, which can compromise 
the accuracy of the survey. 

Still on a direct comparison between the methods, regarding the time taken in the field information, the time in 
the imaging method was 58 minutes, from the implantation of the points until the end of the overflight. In the 
LST scan, the time was 3 hours and 18 minutes. This shows that the imaging method presents greater simplicity 
in its field conception. 

In terms of processing, imaging made great demands on the machine (computer) used. Even though it is a 
specific equipment for processes that demand high processing capacity (Central Process Unit—CPU) and 
memory (Random Access Memory—RAM), this processing required 17 hours in the Depth Map and 9 hours and 
27 minutes in the Dense Point Cloud, remembering that such processes were continuous, without turning off the 
machine during this entire period. Still comparing with the LST, the processing of the points obtained with the 
laser scanner demanded 5 hours and 30 minutes. 

It was characterized that in the imaging method the final result is intrinsically linked to the ability of the software 
algorithms to resolve possible dimensional errors in the model, given that the algorithm interprets repeated 
overlapping of images of the same scenario, seeking homologous points. In LST scanning, however, this 
resolution is directly linked to the robustness and precision of the laser equipment and not to the processing 
software. 

In order to carry out modeling as a basis for projects in civil construction, it is clear that it is necessary to apply 
imaging techniques more efficiently to obtain a more accurate product, in order to reach millimetric accuracy. 
Also studies on better positioning of targets and georeferencing of models would be of great value. 

As observed in the referenced studies, the TLS is able to detect moisture, biodeterioration and cracks, 
pathological manifestations, in addition to allowing the visualization of dimensional changes and deformations 
in the order of a few centimeters. By enabling the visualization and scanning of a structure without direct contact 
with it, with a range of meters and even kilometers, the LST would be an option for inspections in civil 
construction. Image processing techniques and classification algorithms can also be used to create a pattern for 
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the incidence/intensity/amount of damage to structures, which in current methodology depends on the 
inspector’s qualitative criteria. 

This study is in its initial phase and opens up a range of opportunities in terms of scientific development and 
innovation, bringing together the Remote Sensing area and Civil Construction. It is believed that with the 
advancement of the technological capacity of the equipment used here together with their respective software, 
3D modeling through these new tools, replacing an LST, will soon have a viable and reliable methodology to 
apply in three-dimensional modeling. 
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