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Abstract 

Several studies focus on the characteristic curve of the soil, which plays a fundamental role in the mechanics of 
unsaturated soils and is also an important indicator of the physical quality. Therefore, the objective of this 
research was to determine the characteristic curve of the soil by the methods of Filter Paper, Richards Pressure 
Chamber, and Haines Funnel on an erodible slope in the Metropolitan Region of Recife, in the state of 
Pernambuco, Brazil. The curves were designed by the models of van Genuchten, Fredlund & Xing, Seki, and 
Dunner. In the suction x humidity ratios, during the wetting and drying processes, the experimental points were 
very close, making it difficult to define the hysteresis effect. The Richards Chamber and Haines Funnel methods 
allowed the complementation of the characteristic curve for low suction values, indicating that the techniques 
can be used simultaneously. The statistical analysis resulted in a numerical model with a significance value 
greater than 97%. 

Keywords: characteristic curves, erodible soil, mathematical adjustments 

1. Introduction 

The knowledge of the behavior of the characteristic curve for unsaturated soil has been an important artifice for 
the analysis of the performance of its physical-hydric properties. It is also fundamental for several areas such as 
geotechnics, agriculture, hydrology, irrigation and fertilizer management, remediation of polluted areas, and 
many others, Silva, Libardi and Gimenes (2018); Ahmed et al. (2021); Yan, Birle and Cudmani (2021); Wang et 
al. (2021), in addition to its essential role in formulating constitutive equations applicable to unsaturated soils 
(Maranha Das Neves, 2016). 

The soil-water characteristic curve (SWCC) is the relationship between water content (gravimetric or volumetric) 
or degree of saturation with suction (matrix or total) (FREDLUND et al., 2012). It is commonly illustrated in the 
semi-log space of volumetric water content and matric suction (θ:logψ) and contains fundamental information to 
describe geotechnical problems related to unsaturated soils (Rajesh et al., 2017).  

As in the distribution of pores in the soil, it is possible to obtain dependence relationships between the 
coefficients of the mathematical equations that describe the characteristic curve and various soil properties, 
Cassáro et al. (2008). The presentation of the characteristic curve is influenced by properties such as structure 
and aggregation, initial moisture content, void index, soil type, nature and compaction energy, stress history, 
percentage of fines, mineralogy, pore size distribution, Parahyba et al. (2019), which may vary for each type of 
soil. The choice of the number of points used to determine the curve is usually arbitrary, without a specific 
criterion. 

With the shape of the curve, it is possible to identify the classification as uni, bi, or trimodal: if the soil has only 
one pore size range (macro, meso, or micro), it is called unimodal. This strip can be narrow, characterizing 
uniform sand, or wide, characterizing well-graded sand. A soil that has two predominant bands can be considered 
bimodal. The trimodal distribution is considered less frequent (Oliveira, 2019).  
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between the actual or measured and predicted values, that is, the residual sum of squares. 

The general form of the independent variables used in the complete quadratic model was identified based on the 
analysis of the parameters obtained with the parameters of the soil characteristic curve. The entire analysis was 
performed with the help of Minitab Statistical Software (version 19.0), which made it possible to apply the RSM 
method, as well as the ANOVA analysis. 

3. Results and Discussion 

The characteristic curve is an important relationship to interpreting the response of unsaturated soil. It represents 
how the permeability, the shear strength, and the volumetric deformations behave under the variation of suction, 
obtained through wetting paths and drying. Table 2 presents the initial conditions of each specimen, the 
gravimetric (ws), and volumetric (θs) mixtures. 

 

Table 2. Physical indices of samples for determination of characteristic curves 

Depth (m) wo (%) γo (kN/m3) eo So (%) Saturation Humidity 

Ws (%) θs (%) 

P 01 (1,5) 
 

12,97 14,30 0,83 40,86 31,67 45,33 
12,89 14,51 0,81 41,95 30,92 44,75 

P 01 (4,5) 
 

11,46 13,97 0,90 33,81 33,96 47,36 
11,69 13,90 0,91 34,20 34,33 47,64 

 

The characteristic curves of the soils obtained through the filter paper, Haines funnel, and Richards chamber 
methods are in Figures 11 and 12. The points of the curves during the wetting and drying process were very close, 
making it difficult to identify the effect of hysteresis. Different hypotheses have been formulated to explain the 
hysteresis of the characteristic curves; however, the best bases on differences in pore sizes, in which large and 
small pores are interconnected, both during drying and wetting. This process can be interrupted by the pores 
influencing the suction values.  

The characteristic curve was transformed concerning the void ratio to facilitate the analysis of tropical soils since 
it considers the pore size, which is generally not homogeneous. In this case, at each point on the curve, the 
measurements in pF are multiplied by the respective void indices, removing its influence on the characteristic 
curve. The soils at Point P-01 (1,5m), Figure 9, present an air entry value of around 1.5 kPa, where desaturation 
of the soil macrostructure begins. This initial desaturation occurs for low suctions down to plus or minus 10kPa. 
For Figure 10 at Point P-01 (4,5m) in residual granite soil, the characteristic curves are typical of clayey soils, 
presenting a non-homogeneous (bimodal) pore distribution. This distribution is due to weathering, which is 
responsible for the formation of aggregation of cemented particles or clay bridges. The shapes of the curves are 
similar to a “saddle” and can be divided into three distinct sections. The sample has a first air entry value (in the 
macropores) for small suctions, around 4 kPa, where desaturation begins. Afterward, a practically horizontal 
level is observed, with the suction varying from 100 kPa to 2200 kPa. This threshold makes it hard to interpret 
residual suction as a single value. In the last stretch, the second air entry value occurs, where the moisture 
content decreases again with the addition of suction due to water removal in the soil microstructure. 
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independent factors used in this study are listed in Table 4. 

 

Table 4. Independent factors and their range 

Term Range 

Pfx e (Pe) 1.04 to 7.72 
Saturation (SAT) 10.34% to 100% 

 

According to Myers, Montgomery e Anderson-Cook (2009); Güllü e Fedakar (2017), and Silva et al. (2021) to 
assure the success of the statistical model, the confiability of the measured factors is essencial. In order to 
provide a higher rate of accuracy in the resulting model, it was necessary to suppress some of the outliers witthin 
the independent factors and also of some of the factor interactions (SAT*SAT). Table 5 shows all of the 
independent factors and the interactions used to create the full-quadratic model. 

 

Table 5. Analysis of variance 

Source Degrees of freedom Adj SS Adj MS F-Value P-Value 

Model 4 4079678608 1019919652 179.17 0.000 
Linear 2 2473911743 1236955871 217.30 0.000 
Pe 1 65692397 65692397 11.54 0.002 
SAT 1 6890 6890 0.00 0.043 
Square 1 154278908 154278908 27.10 0.000 
Pe*Pe 1 154278908 154278908 27.10 0.000 
2-Way Interaction 1 29504706 29504706 5.18 0.032 
Pe*SAT 1 29504706 29504706 5.18 0.032 
Error 25 142310223 5692409   
Total 29 4221988831    

 

The results of the interactions show good fitting for the model behavior, especially for the factors Pe and Pe*Pe, 
who presented values very close to zero for the P-Values. According to Shirazi, Khademalrasoul e Ardebili (2020) 
and Silva et al. (2021) those results are way below the limit for the P-Values (0.05) for RSM studies involving 
soil parameters, indicating that the independent factors involving Pe have a strong influence on the soil suction 
results. 

The regression values obtained for the modeling were sumarized on Table 6. The results showed excellent 
confiability values for R² (96.64%), which according to Myers Montgomery e Anderson-Cook (2009) and Silva 
et al. (2021) is a good parameter to evaluate how the model can represent accurately the behavior of a soil 
geotechnical property. The other regression results were 95,94% and 93,82% for the Adjusted R² and the 
Predicted R², respectively, showing a difference of less than 20% between the R² values as it is recommended by 
DeLoach e Ulbrich (2007). 

 

Table 6. Sumarized regression values 

S R² (Model) R-sq R² Adjusted) R-sq(adj) R² Predicted R-sq(pred) 

38,1015 97.76% 96.80% 94.94% 

 

With the excellent values obtained for the regression analysis (Table 6), the model is now considered valid and 
can be used for optimization purposes. The quadratic polynomial equation suggested through the RSM 
methodology is now presented in equation 5. ܷܱܵܰܫܶܥ = 86078 − 48096 ∙ ܲ݁ − 55317 ∙ ܶܣܵ + 6738 ∙ ܲ݁ ∙ ܲ݁ + 16257 ∙ ܲ݁ ∙  (5)       ܶܣܵ
After the model validation, it was possible to draw the response surface, which is a key aspect of any RSM 
analysis, making it possible to easily visualize which corresponding regions of the surfaces indicate response 
minimization or maximization (Figure 11). 
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