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Abstract 

Several plant residues can be generated during the stages of industrial processing, such as fruit peel, seeds and 
bagasse, and these can give rise to high-value products. The management and use of this waste is of global 
interest. The aim of this study was to evaluate the spatio-temporal evolution of scientific knowledge on the reuse 
of agroindustrial waste generated in Brazil through a scientometric analysis. To this end, a search was performed 
in the databases Scopus, Scielo, and Web of Science between the years 1991and 2021. The words used as 
indexers were agribusiness waste, vegetable waste, fruit waste, biomass waste, plant residue, and chemical 
characterization. The following selection criteria were adopted: search of indexers by title, scientific articles, 
articles in English and Portuguese, and articles on plant waste generated in Brazil. There was an increase in 
publications over the years, with a greater number of studies (21.46%) in the chemistry area, addressing mainly 
the physical-chemical characterization of materials. In Brazil, sugarcane (Saccharum officinarum L.) was the 
most studied species with a view to reusing its residues. We identified species from highly threatened Brazilian 
biomes, such as the Atlantic Forest and Cerrado, with the potential for transformation into new materials. The 
gaps in knowledge, evidenced in this analysis, suggest that more studies should be carried out on residues of 
native plant species which impact local communities. In particular, studies could focus on applicability in health 
and cosmetics, which are promising areas for plant materials and still little investigated. 

Keywords: bioproduct, management, reuse, agroindustrial residue 

1. Introduction 

The world population has gradually increased. Producing food properly, sustainably and of a high quality is a 
challenge for humanity. Technological development has favored increased productivity, which has significantly 
intensified the need for sustainability in agriculture due to the environmental impacts associated with the use of 
fertilizers, pesticides, water and others (Lampridi, Sorensen, & Bochtis, 2019).  

Because of their high content of vitamins, minerals and fiber, vegetables are key components for a healthy 
human diet (Nguyen et al., 2020). Thus, the consumption of fruit and vegetables has been stimulated as a form of 
disease prevention (Silva, Smith-Menezes, & Duarte, 2016). In the industrial production of vegetable products it 
is common to use, for example, the pulp of fruit and the disposal of the peel and seeds in significant quantities 
(Cangussu, Fronza, & Cavalcanti, 2020), with a consequent increase in waste generation (Barbosa & Conceição, 
2016). 

The residues generated in the processing of vegetables in the food industry, although they have antioxidant 
compounds and nutritional values, are often discarded at the end of the production process (Pereira, Firmo, & 
Coutinho, 2022). However, they could be used in new food sources, reducing food waste (Sousa, Vieira, & Lima, 
2011), or be reused by the pharmaceutical and chemical industry (Saraiva et al., 2018). Studies have developed 
ways to convert plant waste into added value, such as in the production of vermicompost (Muthukumaravel, 
Amsath, & Sukumaran, 2008), biomethane (Jaiganesh, Nagarajan, & Geetha, 2014), bioactive compounds, 
bioethanol and organic acids (Sánchez et al., 2021). 
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Waste management and sustainable development are challenging topics for developing and industrialized 
countries (Patel, 2012). In this context, agroindustrial systems and forestry stand out because they demand a 
significant availability of biomass linked to the activities of these sectors (Santos, Nascimento, & Alves, 2017). 
The agricultural sector has challenges to face in the management and adequate food security of waste in order to 
reduce environmental and socioeconomic impacts (Esparza et al., 2020). 

In Brazil there has been growing concern about the management of municipal solid waste, both related to its 
recovery and in order to reduce its environmental impact. However, initiatives in this direction are still 
insufficient (Prado et al., 2022). According to Silva, Rosas and Oliveira (2018), the prospects for a decrease in 
solid waste generation in Brazil are not positive. These authors, when analyzing the situation of the country after 
the creation of Law 12.305/2010 which instituted the National Solid Waste Policy (Brazil, 2010), pointed out 
that non-generation, reduction, reuse and, consequently, conscious consumption are still developing very slowly. 

It is important, therefore, to investigate what researchers in Brazil have done in the field of scientific research on 
the reuse of agroindustrial waste so far as a way to assess current trends and direct future efforts. In this context, 
scientometric analysis can be a very useful tool. Review articles have the function of providing information 
about academic evolution and helping to monitor the development of science. They present the “state of the art” 
in a specific subject in order to improve the quality of research, guiding future work through evidence (Blümel & 
Schniedermann, 2020). 

The objective of this study was to evaluate the spatio-temporal evolution of scientific knowledge on the reuse of 
plant waste generated by the agroindustrial sector in Brazil, with emphasis on the types of reuses proposed for 
plant residues, predominant areas of knowledge and plant species studied (origin, endemism, and 
phytogeographic domains). 

2. Methods 

The methodological basis of this study was based on scientometrics, a segment of the sociology of science that 
studies the quantitative aspects of scientific activities. Through indicators that detect the growth and trends of the 
subject addressed, it provides information on the orientation and scientific and technological dynamics of a 
country, as well as on its participation in science and technology worldwide (Macias-Chapula, 1998; Parra, 
Coutinho, & Pessano, 2019). 

2.1 Collection of Scientometric Data 

To compose the dataset of this work, the articles/papers were initially accessed in the databases of the Portal de 
Periódicos da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES 
(http://www.periodicos.capes.gov.br/); Scopus (Elsevier) (https://www.scopus.com); Scientific Electronic Library 
Online (Scielo) (https://scielo.org/); and Web of Science (www.webofknowledge.com), between May and June 
2022. All databases were searched for papers that presented in their title the following combination of terms: 
“agribusiness* waste*” OR “vegetable* waste*” OR “fruit* waste*” OR “Biomass* Waste*” OR “plant* 
residue*” OR “Chemical characterization”. The asterisk (*) was used to capture variations in the root of words or 
singular and plural, p. ex. “plant residues”. 

2.2 Temporal Analysis of Publications 

The selected time frame was from 1991 to 2021. As the platforms do not have the same standard for the 
refinement of searches, there was a need to carry out manual verification of all articles in order to exclude the 
titles that were not related to the reuse of plant waste. 

During manual screening, duplicate file deletions and evaluation of titles and abstracts were performed. The 
application of these filters was carried out by organizing and reading the files in the programs Zotero 6.0.9 and 
Microsoft Excel. Review articles were excluded in order to consider only articles that investigated 
physical-chemical characteristics and the applicability of plant residues. 

We obtained 14,084 studies, of which 12,072 were scientific papers. Among these, 144 scientific articles were 
selected for being published in Portuguese or English, produced in Brazil and addressing the theme “reuse of 
plant residues” (Figure 1). 
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Figure 1. Diagram of identification and selection of articles for the scientometric analysis of scientific 
knowledge about the reuse of plant waste produced in Brazil, published from 1991 to 2021 

 

2.3 Bibliometric Indicators 

In order to meet the objectives of the scientometric analysis, the data collected in the 144 selected articles were 
as follows: year of publication; area of knowledge of the research/researchers; type of reuse; plant species cited 
in the study; and origin, endemism and phytogeographic domains of the species. The scientific names, origins, 
endemism and phytogeographic domains of the species were determined according to Flora e Funga do Brasil 
(2022). 

2.4 Data Analysis 

Data analysis was performed with the help of the Program R version 4.0.0 for Windows. Normality was checked 
by the Shapiro-Wilk test (p = 0.454), showing that the results do not differ from a normal distribution. In order to 
express the trend of the number of publications over the years, linear regression analysis and determination of 
(R2) were performed. The images were generated by QGIS 3.26.0 and Microsoft Excel. 

3. Results and Discussion 

Although the search covered the period from 1991 to 2021, the first article on this subject was published only in 
1994. Between 1994 and 2021 the number of publications increased linearly, indicated by the equation y = 
1.3846x + 2000, R² = 0.7525 (Figure 2). 
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Figure 2. Regression analysis of articles published on the use of agroindustrial plant residues in Brazil between 
1994 and 2021 

 

Solid waste generation is considered a consequence of economic growth, which boosts the population’s access to 
new products and consumer goods, such as energy recovery (Mannarino et al., 2016). The transformations 
arising from globalization that occurred in the 1990s contributed to the increase in information regarding the 
implications for the environment. Waste management has been incorporated in urban centers, most of which are 
in member countries of the Organization for Economic Cooperation and Development (OECD) (Demajorovic, 
1995). Thus, it is possible that the beginning of scientific production on this subject from the year 1994 is related 
to the incorporation of the concept of sustainability in 1992 at the United Nations Conference on Environment 
and Development in Rio de Janeiro. At this event, documents were prepared that stipulated international 
commitment to actions that associate development and the environment. From that moment, the matter has 
become official in most governments in the world (Malheiros et al., 2008).  

Although the growth in the number of publications in the first two decades of the evaluated period (1994−2014) 
may be related to the international agreements on the environment, to which Brazil is a signatory, it is important 
to note that the most significant increase in publications occurred in the later years (2010−2021). It is possible 
that this is related to the publication of Federal Law nº 12.305/2010, which establishes the National Solid Waste 
Policy in Brazil. This policy has as its guiding principle the protection of human health and sustainability in 
government actions in the field of waste management, with goals that seek to eradicate landfills and encourage 
environmental solutions considered appropriate for the final disposal of municipal solid waste (Brazil, 2010). It 
is important to note that according to Normative Instruction Ibama nº 13/2012, which establishes the Brazilian 
Waste List, residues from agriculture, horticulture, aquaculture, forestry, hunting and fishing are considered solid 
waste, as are residues from the preparation and processing of food products (Ibama, 2012). 

In the same period between 2010 and 2019, the Brazilian Association of Public Cleaning Companies and Special 
Waste (Abrelpe, 2010) observed a considerable increase in the generation of municipal solid waste in Brazil, 
from 67 million to 79 million tons per year, in all regions of the country. In 2010, ABRELPE reported that 3,152 
municipalities sought a selective collection initiative, and this number increased in the following decade to 4,070 
municipalities. 

Agribusiness is considered responsible for producing much of the organic waste today. The minimization or 
reuse of agroindustrial waste is an alternative to reduce the impacts caused by the inadequate disposal of these 
by-products, since they are a source of organic matter such as proteins, enzymes, essential oils and other 
chemical constituents (Ricardino, Souza, & Silva Neto, 2020). This has stimulated the development of methods 
and reuse and, consequently, led to an increase in the number of scientific publications in the area. 

The concern with the need to produce more food due to the population increase, and the need to preserve natural 
resources challenge several areas of knowledge, especially the Natural, Exact and Earth Sciences. This was 
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mentioned in the studies. 

Of the 153 plant species described in the papers (Table 1), the most cited were sugarcane (Saccharum 
officinarum L.)—18 papers; corn (Zea mays L.)—14 papers; rice (Oryza sativa L.)—13 papers; oats (Avena 
strigosa Schreb.)—11 papers; and (Passiflora spp)—9 papers. Brazil is considered a major sugarcane producer 
and exporter in global agribusiness, and 68% of Brazilian production is exported, which represents 5.7% of the 
total revenue of exports made by the country (Satolo et al., 2016). About 11 million tons of bagasse ash and 14 
million tons of sugarcane straw ash can be generated annually. These data show that reusing this waste 
sustainably has become a necessity and has motivated research in recent years (Berenguer et al., 2020). 

Bibliographic data demonstrate trends in the development of innovative materials from sugarcane waste with 
applications in construction (Silva et al., 2021), in wastewater treatment (Lebre et al., 2022), and in power 
generation (Silva et al., 2019), among others. These data are corroborated by Tessmann et al. (2021), who 
identified, by scientometric analysis, the use of sugarcane residues such as bagasse, molasses, straw, cake and 
vinasse in the production of bioproducts such as lactic acid and flour. 

Corn is another major crop on the world stage, ranking third in world exports, and is the second most significant 
crop in Brazilian agriculture (Silva et al., 2021). Corn processing generates cob and straw, residues that can be 
used in the production of bioethanol (Gupta & Verma, 2015) and which are considered viable as a complement to 
sugarcane ethanol (Silva & Castaneda-Ayarza, 2021). In addition, corn silk, often discarded during the corn 
processing stages, has the potential to become health products (Gasparoti & Paula, 2021). 

Rice is one of the most consumed and produced grains in the world and is considered a staple food. In Brazil, 
rice has economic and social relevance. The need to adapt rice farming systems in order to improve productivity 
and ensure sustainability has been the subject of recent discussions (García et al., 2021). The by-products of rice 
crops are generated in significant quantity. Among them are bran, chirera, bark and ashes of burnt bark (Silva et 
al., 2021). The most frequent use of rice residues is as a fertilizer additive and in plants in the production of 
thermal and electrical energy (Abaide et al., 2019). Applications of residues were also found in the coproduction 
of furfural, furfuryl alcohol and formic acid (Santos et al., 2021), fertilizer (Jakelaitis et al., 2010), milk 
coagulation enzymes (Alecrim et al., 2015), flour (Ascheri et al., 2016) and vermicomposting (Vione et al., 
2018). 

Oat is considered an important winter crop in Brazil. The area of cultivation of oats grew around 8% from 2019 
to 2020, an increase of about 429.7 thousand hectares, and consequently its production has risen (Azevedo et al., 
2022). Oats have different uses, such as in the production of grains for human and animal consumption, 
production of cosmetics and inputs for the chemical industry, green fertilization, pasture formation or preparation 
of hay and silage, among others (Mori, Fontaneli, & Santos, 2012). This justifies the search for methods that 
reuse oat residues, produced in the stages of raw material processing, to obtain fertilizer (Dias et al., 2003; 
Paredes Filho, Silva, & Florentino, 2020) and for the conservation (Panachuki et al., 2015) and improvement of 
soil quality (Franchini, Gonzalez-Vila, & Rodriguez, 2002). 

Fruit and vegetables are among the most important waste generators in the food processing industry, 
supermarkets and homes, and waste may exceed 25% of the initial product (Sánchez et al., 2021). This fact is 
attributed to the regular growth in the use of fruits and vegetables in diets due to the population’s search for 
natural and healthy foods (Brito et al., 2020). 

In Brazil, passion fruit is a widely consumed fruit. It is estimated that about 60% of the cultivation is intended 
for fresh consumption, while the rest of the production is used in juices and concentrates in processing. The 
increase in consumption of this fruit may be related to its nutritional characteristics, such as high levels of 
vitamins, carotenoids and phenolic compounds. Research has been carried out with the objective of evaluating 
the chemical composition and the physical-chemical characteristics of. the agroindustrial residues of passion 
fruit, due to the increase in the availability of these materials (Santos et al., 2021). In addition, the residues have 
also been studied for use as flour (Mendes et al., 2019) in the production of methane (Edwiges et al., 2018), 
animal feed (Pereira et al., 2020) and biosorbent (Pavan et al., 2008). 

Several fruits whose residues were studied in the studies collected here, although less cited, are important in the 
Brazilian and global scenario. Sustainable reuse can contribute to the bioeconomy and to the fulfillment of the 
2030 Agenda for sustainable development, launched by the United Nations (UN) (United Nations, 2017). 
Bioeconomy is understood as the use of innovative and biotechnological processes for the conversion of biomass 
into bioproducts (food, biofuels, biochemists, forage, etc.), either as raw material or final product. In this type of 
economy the production bases, such as materials, chemical compounds and energy, are derived from renewable 
biological resources (Bueno & Torres, 2022). This new approach to the economy is consistent with the need to 
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rise to value-added raw materials for other sectors given their varied characteristics and applicability. The 
fermentation of fruit residues can be used in the production of biofuels (Tahir & Amin, 2013). A focus of many 
countries today is the modernization of biogas for the large-scale production of renewable energy systems, which 
encourages the valorization of biofuel in the energy system, both economically and environmentally 
(Angelidakia et al., 2018). 

For biogas production, husks, bagasse and fruit seeds are used as biomass in renewable methods such as 
anaerobic digestion. It is used as a direct energy source in boilers and biogas turbines (Sousa & Rizzatto, 2022). 
Reis et al. (2019) used residues of açaí, cocoa, coconut, cupuaçu and Brazil nut to evaluate the combustion 
properties and create renewable energy alternatives for the industry of the Amazon region of Brazil. Similarly, 
residues of species such as tomato, squash, carrot, and potato were used for the treatment of plant solid waste 
and the development of scientific knowledge on the kinetics of hydrolysis in anaerobic codigestion systems 
(Leite et al., 2021). 

Plant residues were used long before the Christian age as green fertilization was applied to agricultural systems. 
Nowadays, they are reemerging as alternatives to conventional forms of agricultural production. They present 
benefits such as improving the physical-chemical and biological properties of the soil and fertility, providing 
nutrients for following crops, erosion control and plant protection (Abranches et al., 2021). In this context, in 
2009, Carvalho et al. already considered the plant residues of the species Cajanus Cajanus cajan (L.) Huth, 
Mucuna pruriens (L.) DC. and Pennisetum glaucum (L.) R.Br. as suitable species for soil cover and Canavalia 
brasiliensis Mart. ex Benth, Helianthus annuus L. and Raphanus sativus L. as green fertilizers due to their faster 
recycling. Sarfaraz et al. (2020) used the residues (straw) of rice, soybean and corn crops for the production of 
suitable biochar to increase soil fertility. 

Biochar can also be produced by different materials containing carbon such as wood, coal and coconut shell, 
with numerous applications in different areas, but mainly in the environmental area, as one of the adsorbents in 
water and effluent treatment (Bhatnagar et al., 2013). Studies have shown the use of plant residues in this, such 
as Ceiba speciosa (A.St.-Hil.), Ravenna, in the adsorption of synthetic phenolic effluent (Franco et al., 2021), 
sugarcane bagasse, coconut shell and babassu coconut endocarp in the removal of 2,4-D herbicide from water 
(Brito et al., 2020), and Passiflora edulis residue in methylene blue biosorption (Pavan et al., 2008).  

In addition, plant waste has been used in construction based on tests making mortar with waste from Pinus 
caribaea (Stancato, Burke, & Beraldo, 2005) as a mineral additive to partially replace cement from the biomass 
residue of sugarcane (Anjos et al., 2013) and complementary cementation material resulting from the calcination 
of elephant grass biomass (Martínez�Ramírez et al., 2019). The quality of the concrete is related to the quality 
of the aggregates used, and the concrete is based on the dosed and homogeneous mixture between aggregates, 
cement and water (Silva et al., 2022). The use of agroindustrial plant residues in the production of cement and 
construction derivatives reduces the extraction of mineral resources, which has direct impact on the preservation 
of natural resources (Pacheco-Torgal & Jalali, 2011). 

Different applications of plant residues were little mentioned by the works in the searches. Among them, articles 
were found that aimed to evaluate residues for the production of compounds of interest to the pharmaceutical 
industry and polymer production (Branco et al., 2010), chitosan films for food packaging (Mesquita et al., 2020) 
and cellulose nanocrystals from rice husk (Hafemann et al., 2020). In addition, vegetable waste can be raw 
materials with the potential to provide solutions in the future for science’s demand for biomedical materials 
(Pelegrini et al., 2019). 

The development of products originating from plant waste can reduce the negative socioeconomic and 
environmental impacts caused by food waste (Esparza et al., 2020). The strategies to valorize residues of 
vegetable origin are still relatively scarce due to the small amount of knowledge, but the development of 
biotechnologies can help in this valorization, improving the yield, quality and economic viability (Ganesh, 
Sridhar, & Vishali, 2022). In this way, research is needed that proposes new applications for plant waste, in order 
to expand the range of options for the producer market. 

4. Conclusions 

Waste management means adopting a set of appropriate actions at all stages of the manufacturing process of a 
product, from the collection of raw material to the final product. The reuse of agroindustrial plant waste follows 
the precepts of sustainable development, and seeks to minimize waste production, aiming at the preservation of 
public health and the quality of the environment.  

This scientometric analysis evaluated the trends in publications about the reuse of plant waste in Brazil between 
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1991 and 2021. An exponential increase was seen in the number of articles published on this subject over the 
years, starting in 1994. The largest number of publications addressed the areas of chemistry, agricultural sciences, 
chemical engineering, biological sciences and agricultural engineering. 

The residues most investigated for reuse were (Saccharum officinarum), corn (Zea mays), rice (Oryza sativa), 
oat (Avena strigosa Schreb.) and passion fruit (Passiflora edulis, Passiflora alata). Regarding the distribution of 
species in different Brazilian phytogeographic domains, it was found that the Atlantic Forest, the Cerrado and the 
Amazon are the most investigated. Publications with residues of species occurring in the Atlantic Forest and 
Cerrado, two highly threatened Brazilian biomes, may reveal a concern with the conservation and preservation of 
these biomes. 

A significant number of studies investigated the use of plant waste from large crops, due to their commercial 
importance combined with the great environmental impact that such crops potentially generate. A small number 
of studies investigated residues of native plant species. These findings open the prospect that research for the use 
of plant residues from the most threatened biomes, even if generated on a smaller scale from local species in 
cooperatives and communities, could contribute to the strengthening of the entire production chain. This 
strengthening, in turn, could be reflected in the greater engagement of communities in actions for the 
conservation of species, whose residues are confirmed to be useful. Therefore, this is a gap in knowledge in a 
field where scientific investigations are still insufficient. 

The authors evaluated agroindustrial plant waste more frequently, with the objective of generating potential 
products for food, fertilizer, biofuel, activated carbon, and construction, but 12 papers did not contain the 
specified application and 33 other applications were less cited. Among the less cited applications, it is worth 
mentioning those that focused on health (human and animal) and cosmetics, demonstrating that there is another 
gap in knowledge to be explored here, since plant residues can be sources of pharmacologically active chemical 
compounds. 
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Appendix A 

 

Table 1. Plant species cited in articles published between 1994 and 2021, with the number of articles in which 
they were cited, common name, scientific name, origin, endemism, Brazilian phytogeographic domains and type 
of reuse 

Number of 
articles in which 
they were cited 

Common 
name 

Scientific name Origin * Endemism* phytogeographic 
domains * 

Type of reuse investigated 
in the articles 

1 avocado Persea americana 
Mill.* 

naturalized non-endemic Atlantic Forest methane production 

1 pineapple Ananas comosus (L.) 
Merril* 

native non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest, Pampa and 
Swampland 

bioenergy 

4 pumpkin NI NI NI NI biogas production 
2 açai Euterpe oleracea 

Mart. 
native non-endemic Amazon and 

Savannah 
methane production, 
biomass conversion, 
production of milk 
coagulation enzymes and 
biofuels 

1 watercress Rorippa 
nasturtium-aquaticu
m (L.) Hayek* 

cultivated non-endemic NI methane production 

1 poplar Populus deltoids W. 
Bartram ex 
Marshall* 

cultivated non-endemic NI ANE 

1 albizia Albizia 
julibrissin Durazz 

cultivated non-endemic NI green manure 

1 artichoke Cynara cardunculus 
L.* 

cultivated non-endemic Savannah, Atlantic 
Forest, Pampa 

biogas production 

4 lettuce Lactuca sativa L. cultivated endemic NI flour, biogas production and 
production of 
2,3-butanediol 

2 cotton Gossypium 
barbadense L.* 

naturalized non-endemic Amazon, Caatinga, 
Atlantic Forest 

bioenergy 

2 plum Prunus domestica 
L.* 

cultivated non-endemic NI methane production and 
production of 
2,3-butanediol 

1 almond Prunus dulcis (Mill.) 
D. A. Webb* 

cultivated non-endemic NI mushroom fertilization 

1 andiroba Carapaguianensis A
ubl. 

native non-endemic Amazon biomass conversion 

1 Arachis 
pintoi 

Arachis pintoi 
Krapov. & W. 
C .Greg. 

native endemic Caatinga, Savannah, 
Atlantic Forest 

 decomposition and 
mineralization of N from 
organic plant materials 

1 araticum Annona crassiflora 
Mart. 

native non-endemic Amazon, Savannah, 
Swampland 

growth and production of 
lipases of the fungus 

13 rice Oryza sativa L.* cultivated non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest, Pampa, 
Swampland 

biocatalyst, coproduction of 
value-added products, 
fertilizer, nanocrystals, 
production of milk 
coagulation enzymes, 
polyurethane foam, 
construction, flour, 
production of compounds 
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and vermicomposts. 

1 asparagus Asparagus officinalis 
L. 

cultivated non-endemic NI flour enrichment 

11 oat Avenastrigosa 
Schreb. 

cultivated non-endemic Atlantic Forest, 
Pampa 

soil conservation, waste 
decomposition, identifying 
low molecular weight 
organic acids, fertilizer, 
Surface Applied Lime 
Mobility, organic acid 
production, absorption of 
cations in latosol, 
improvement in fertility and 
soil correction. 

1 olive Olea europaea L. cultivated non-endemic NI biochar 
1 bacuri Platonia insignis 

Mart. 
native non-endemic Amazon, Savannah development of bioproducts

6 Cavendish 
banana 

Musa L. naturalized non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest 

bioproducts production, 
biogas production, 
absorption of heavy metals 
from water and additives in 
elephant grass silage 

1 baru Dipteryxalata Vogel native non-endemic Savannah bioproducts 
1 potato Solanum tuberosum 

L.* 
cultivated non-endemic NI methane production 

1 sweet 
potato 

Ipomoea batatas (L.) 
Lam.* 

naturalized non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest, Pampa, 
Swampland 

methane production 

1 eggplant Solanum melongena 
L.* 

cultivated non-endemic NI methane production and 
production of 
2,3-butanediol 

3 beet Beta vulgaris L. cultivated non-endemic Atlantic Forest meat preservative and 
biogas production. 

1 birch NI NI NI NI ANE 
1 bocaiuva Acrocomia aculeata 

(Jacq.) Lodd. ex 
Mart. 

native non-endemic Savannah, Atlantic 
Forest 

growth and the production 
of lipases of the fungus and 
substrate 

1 falso-pláta
no 

Acer pseudoplatanus 
L.* 

cultivated non-endemic NI ANE 

2 grass - 
Brachiaria 
- 
Decumben
s 

Urochloadecumbens 
(Stapf) R. D. Webster 

naturalized non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest, Pampa, 
Swampland 

green manure and 
decomposition of waste 

1 broccoli Brassica oleracea 
L.* 

cultivated non-endemic NI methane production and 
production of 
2,3-butanediol 

1 buriti Mauritia flexuosaL.f. native non-endemic Amazon, Caatinga, 
Savannah 

bioenergy 

1 cocoa Theobroma cacao L. native non-endemic Amazon, Atlantic 
Forest 

biosorbents and biofuels 

1 coffee 
marata 

Coffea L.* naturalized non-endemic Amazon, Atlantic 
Forest 

biofuels and activated 
carbon 

1 cajanus Cajanus cajan (L.) 
Huth 

naturalized non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest, Pampa, 
Swampland 

green manure 

1 cashew Anacardium L.* native non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest, Pampa, 
Swampland 

methane production 
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1 NI Calopogoniummucun
oidesDesv. 

native non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest, Swampland 

 decomposition and 
mineralization of N from 
organic plant materials 

18 sugarcane Saccharum 
officinarum L.* 

cultivated non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest, Pampa, 
Swampland 

coproduction of 
value-added products, 
biofuels, synthesis of 
gasification, production of 
bioproducts, substrate, 
bioenergy, construction, 
chemical input, composting, 
activated carbon and 
biofertilizer. 

1 Canavalia 
b. 

Canavalia 
brasiliensis Mart. ex 
Benth. 

native non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest 

green manure 

1 cânhamo Crotalaria juncea L. naturalized non-endemic Amazon, Savannah, 
Atlantic Forest, 
Pampa, Swampland 

green manure 

1 grass NI NI NI NI co-production of 
value-added products 

2 capimBrac
hiaria 

Urochloabrizantha 
(Hochst. ex A.Rich.) 
R.D.Webster 

naturalized non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest, Pampa, 
Swampland 

construction and fertilizer 

2 elephant 
grass 

Cenchrus purpureus 
(Schumach.) 
Morrone 

naturalized non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest, Swampland 

additives in elephant grass 
silage and construction. 

2 persimmo
n 

Diospyros kaki L.f. cultivated non-endemic NI production of methane and 
fertilizer 

1 Brazil nut Bertholletiaexcelsa 
Bonpl.  

native non-endemic Amazon biofuels 

2 onion Allium cepa L.* cultivated non-endemic NI biogas production 
1 ceiba Ceiba speciosa 

(A.St.-Hil.) Ravenna 
native non-endemic Amazon, Caatinga, 

Savannah, Atlantic 
Forest, Pampa, 
Swampland 

activated carbon for 
removal of phenol from 
water 

6 carrot Daucus carota L.* cultivated non-endemic Atlantic Forest, 
Pampa 

production of 
2,3-butanediol, flour, biogas 
and human food 

1 rye Secale cereale L. cultivated non-endemic Atlantic Forest Mobility of Surface Applied 
Lime 

2 barley Hordeumvulgare L.* cultivated non-endemic NI flour 
2 chayote Sicyosedulis Jacq. naturalized non-endemic NI biogas production 
1 citrus  NI NI NI NI soil conservation 
1 coconut Cocos nucifera L. naturalized non-endemic Atlantic Forest biosorbents and magnetic 

activated carbons 
1 coconut NI NI NI NI Biofuels, activated carbon 

and substrate 
4 babassu Attalea speciosa 

Mart. ex Spreng.* 
native endemic Amazon, Savannah activated carbon, 

biosorbents and biogas 
1 cocona Solanum 

sessiliflorum Dunal 
native non-endemic Amazon functional food and food 

additives 
1 courgette Cucurbita pepo L. cultivated non-endemic NI flour 
1 cauliflowe

r 
Brassica oleracea 
var. botrytis L.* 

cultivated non-endemic NI methane production 

6 crotalaria Crotalaria juncea L. naturalized non-endemic Amazon, Savannah, 
Atlantic Forest, 
Pampa, Swampland 

green manure and 
decomposition of waste 

1 cumaru Amburana acreana 
(Ducke) A.C.Sm. 

native non-endemic Amazon food preservative 
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3 cupuaçu Theobroma 
grandiflorum (Willd. 
ex Spreng.) 
K.Schum. in Mart. 

native unknown Amazon Production of milk 
coagulation enzymes, 
conversion of biomass and 
biofuels. 

2 yerba mate Ilex dumosa Reissek native non-endemic Caatinga, Savannah, 
Atlantic Forest, 
Pampa 

co-production of 
value-added products and 
confection of sweets 

2 common 
vetch 

Vicia sativa L. naturalized non-endemic Atlantic Forest, 
Pampa 

organic acid production and 
soil correction 

1 spinach Spinacia oleracea L. cultivated non-endemic Atlantic Forest flour 
2 eucalyptus Eucalyptus grandis 

W. Hill 
cultivated non-endemic NI biosorbents and fuel of 

boiler 
3 eucalyptus Eucalyptus 

urophylla S. T. Blake 
cultivated non-endemic NI biosorbents and fuel of 

boiler 
2 eucalyptus EucalyptusL'Hér cultivated non-endemic NI ecological firewood 
2 eucalyptus NI NI NI NI Bioenergy production and 

soil conservation 
1 pigeon pea Cajanus cajan (L.) 

Huth 
naturalized non-endemic Amazon, Caatinga, 

Savannah, Atlantic 
Forest, Pampa, 
Swampland 

absorption of cations in 
latosol 

1 velvet 
bean 

Mucuna pruriens (L.) 
DC. 

native non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest 

green manure 

1 green bean Vigna 
unguiculata (L.) 
Walp. 

cultivated non-endemic NI ANE 

1 wild bean Canavalia 
brasiliensis Mart. ex 
Benth 

native non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest 

green manure 

1 jack bean Canavalia 
ensiformis (L.) DC. 

cultivated non-endemic NI green manure 

3 bean Phaseolus vulgaris 
L. 

cultivated non-endemic NI Production of methane, 
bioenergy and production of 
2,3-butanediol 

2 fig Ficus carica L.* cultivated non-endemic NI fish nutrition 
7 fruits and 

vegetables 
NI NI NI NI evaluation of COD and C/N 

ratio, production of 
compounds, biogas, 
vermicomposting and 
anaerobic biodegradation 

1 gabiroba Campomanesia 
adamantium 
(Cambess.) O. Berg 

native non-endemic Cerrado, Atlantic 
Forest 

ANE 

2 gabiroba Campomanesia 
pubescens (Mart. ex 
DC.) O.Berg 

native endemic Caatinga, Savannah, 
Atlantic Forest 

substrate and growth and 
the production of lipases of 
the fungus 

4 sunflower Helianthus annuus L. cultivated non-endemic NI green manure 
4 guava Psidium guajava L.* naturalized non-endemic Amazon, Caatinga, 

Savannah, Atlantic 
Forest, Pampa 

meat preservative, methane 
production and fish 
nutrition 

3 pigeon pea Cajanus cajan (L.) 
Huth 

naturalized non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest, Pampa, 
Swampland 

green manure 

1 guapeva Pouteria 
gardneriana (A.DC.) 
Radlk 

native non-endemic Caatinga, Savannah, 
Atlantic Forest 

feed 

1 mint Mentha L. naturalized non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest 

flour 
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1 inajá Attalea 
maripa (Aubl.) Mart. 

native non-endemic Amazon bioenergy 

1 inga Inga edulis Mart native non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest 

green manure 

1 jambo Syzygium jambos (L.) 
Alston* 

naturalized non-endemic Savannah, Atlantic 
Forest 

antioxidant, natural dye in 
food and enrichment of 
diets 

1 jatobá Hymenaeacourbaril 
L. 

native non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest, Swampland 

super-activated charcoal 

1 juçara Euterpe edulis Mart. native non-endemic Savannah, Atlantic 
Forest 

meat preservative 

6 orange Citrus ×aurantium 
L. 

cultivated non-endemic Savannah, Atlantic 
Forest 

fish nutrition, ice cream, 
methane and flour 
production 

1 leucena Leucaena 
leucocephala (Lam.) 
de Wit 

naturalized non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest 

Mobility of Surface Applied 
Lime 

1 Lupinus 
albus 

Lupinus albus L. cultivated non-endemic NI breakdown of waste 

1 apple Malus pumilaMill.* cultivated non-endemic NI methane production, 
production of 
2,3-butanediol, 
co-production of 
value-added products and 
biofuels 

1 pine wood Pinus 
caribaea Morelet 

naturalized non-endemic Savannah, Atlantic 
Forest 

civil construction 

3 papaya Carica papaya L.* naturalized non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest 

biogas and flour production

2 castor 
bean 

Ricinus communis L. naturalized non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest, Pampa, 
Swampland 

composting and production 
of bioproducts 

3 cassava Manihot esculenta 
Crantz 

native non-endemic Amazon, Savannah bioenergy and production of 
methane 

2 manduvirá Crotalaria juncea L. naturalized non-endemic Amazon, Savannah, 
Atlantic Forest, 
Pampa, Swampland 

green manure 

5 mango Mangifera indica L.* cultivated non-endemic NI bioactive compounds, 
additives in elephant grass 
silage and methane 
production 

4 passion 
fruit 

Passiflora edulis 
Sims 

native non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest, Pampa, 
Swampland 

flour, biosorbent, 
production of hydrolytic 
and oxidative enzymes 

4 passion 
fruit 

NI NI NI NI additives in the ensiling of 
elephant grass, methane 
production and feeding 
Japanese quail 

1 sweet 
passion 
fruit 

Passiflora alata 
Curtis 

native endemic Amazon, Savannah, 
Atlantic Forest, 
Pampa 

industrial processing of 
juices 

3 watermelo
n 

Citrullus lanatus 
(Thunb.) Matsum. 
&Nakai 

cultivated non-endemic NI flour and production of 
biogas 

2 melon Cucumis melo L. cultivated non-endemic NI biogas production 
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8 millet Cenchrus 
americanus (L.) 
Morrone 

naturalized non-endemic Savannah, Atlantic 
Forest 

Fertilizer, soil correction, 
water interception and 
storage, desiccation speed, 
soil cover, solar radiation 
interception and surface 
runoff 

14 corn  Zea mays L. cultivated non-endemic NI green fertilizer, 
foodstufffeed, bioenergy, 
production of 
2,3-butanediol, 
bromatological 
characteristic, tillage and 
soil correction, water 
interception and storage, 
desiccation speed, soil 
cover, solar radiation 
interception and surface 
runoff 

1 strawberry Fragaria ×ananassa 
Duchesne ex Rozier 
* 

cultivated non-endemic NI methane production 

3 mucuna Mucuna bennetti F. 
Muell.  

native non-endemic NI Mobility of Surface Applied 
Lime, absorption of cations 
in latosol and fertilizer 

4 mucuna Mucuna pruriens var. 
utilis (Wall. ex 
Wight) Baker ex 
Burck 

cultivated non-endemic Savannah, Atlantic 
Forest 

green manure 

1 murici   
Byrsonima Rich. ex 
Kunth 

native non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest, Swampland 

industrial processing of 
juices 

6 fodder 
radish 

Raphanus sativus L. naturalized non-endemic Caatinga, Savannah, 
Atlantic Forest, 
Pampa 

Identifying low molecular 
weight organic acids, 
fertilizer, soil correction, 
organic acid production. 

1 neem Azadirachta indica 
A.Juss. 

cultivated non-endemic NI biofertilizers 

1 pecan nut Carya illinoinensis 
(Wangenh.) K.Koch 

cultivated non-endemic NI production of compounds 

1 nuts Bertholletiaexcelsa B
onpl. 

native non-endemic Amazon biomass conversion 

1 palm Archontophoenixalex
andrae (F.Muell.) 
H.Wendl. &Drude 

cultivated non-endemic NI ANE 

2 palm heart Euterpe edulis Mart. native non-endemic NI Production Cellulose and 
cellulose pulp 

1 NI Cenchrus 
americanus (L.) 
Morrone 

naturalized non-endemic Savannah, Atlantic 
Forest 

green manure 

2 cucumber Cucumis sativus L. cultivated non-endemic Atlantic Forest flour and production of 
biogas 

7 pequi Caryocar brasiliense 
Cambess. 

native non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest 

industrial processing of 
juices, flour, nematode 
control, growth and 
production of fungus 
lipases, substrate and 
functional foods 

1 pear Pyrus L.* cultivated non-endemic NI production of 
2,3-butanediol 

2 peach Prunus persica (L.) 
Batsch * 

cultivated non-endemic NI Production of methane and 
flour 
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1 pepper Capsicum baccatum 
L. var. baccatum 

native non-endemic Savannah, Atlantic 
Forest, Swampland 

flour 

4 pepper NI NI NI NI methane production and 
production of 
2,3-butanediol 

1 chili Capsicum annuum L. cultivated non-endemic Amazon production of 
2,3-butanediol 

1 NI Pinus taeda L. naturalized non-endemic Atlantic Forest ecological firewood 
1 pitaia Selenicereusundatus 

(Haw.) D.R. Hunt  
naturalized non-endemic NI applicability not specified 

1 pupunha Bactris 
gasipaes Kunth 

native non-endemic Amazon food packaging 

1 okra AbelmoschusMedik. Cultivated non-endemic NI methane production 
4 radish Raphanus sativus L. Naturalize

d 
non-endemic Caatinga, Savannah, 

Atlantic Forest, 
Pampa 

soil correction, absorption 
of cations in latosol, 
fertilizer 

3 cabbage Brassica oleracea L. Cultivated non-endemic NI production of 
2,3-butanediol and methane

2 arugula Eruca vesicaria (L.) 
Cav. 

Cultivated non-endemic NI production of methane and 
flour 

1 NI Sargassum 
filipendula C. Agardh 

Native unknown NI silver absorption 

1 seriguela Spondiaspurpurea L. Cultivated non-endemic NI growth and production of 
lipases of fungus 

2 sisal Agave sisalana 
Perrine ex Engelm. 

Naturalize
d 

non-endemic Caatinga polymers and bioproducts 

4 soy NI NI NI NI green manure, added value 
material, feed, soil cover, 
water interception and 
storage, desiccation speed, 
solar radiation interception 
and surface runoff 

4 soy Glycine max (L.) 
Merr. 

Cultivated non-endemic NI green manure 

4 sorghum Sorghum bicolor (L.) 
Moench 

Naturalize
d 

non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest, Swampland 

green manure 

1 mucuna MucunaAdans. Native non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest 

decomposition and 
mineralization of N from 
organic plant materials 

2 Stylosanth
es 

Stylosanthes 
guianensis (Aubl.) 
Sw. var. guianensis 

Native non-endemic Amazon, Caatinga, 
Savannah, Atlantic 
Forest, Swampland 

green fertilizer and N 
decomposition and 
mineralization of organic 
plant materials 

1 tamarind Tamarindus indica L. Cultivated non-endemic NI human consumption 
1 taro Colocasia esculenta 

(L.) Schott 
Cultivated non-endemic NI flour 

3 tomato Solanum 
lycopersicum L.* 

Cultivated non-endemic NI biogas production 

1 blue lupin Lupinus angustifolius 
L. 

Cultivated non-endemic NI green manure 

1 white 
lupin 

Lupinus albus L. Cultivated non-endemic NI green manure 

1 crimson 
clover 

Trifolium 
incarnatum L 

Cultivated non-endemic NI green manure 

2 wheat Triticum aestivum L. Naturalize
d 

non-endemic NI green fertilizer and Surface 
Applied Lime Mobility 

1 wheat NI Ni NI NI production of hydrolytic 
and oxidative enzymes 

3 wheat Triticum aestivum L. Cultivated non-endemic NI fertilizer and correction of 
the soil 
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1 tucumã Astrocaryumtucuma 
Mart 

Unknown desconhecido NI production of bioproducts 

1 umbu Spondias tuberosa 
Arruda 

Native endemic NI feed 

5 grape NI NI NI NI coproduction of 
value-added products, fish 
nutrition, methane 
production, oil source with 
nutritional, cosmetic and 
pharmaceutical applications

1 grape Vitis labrusca L. Cultivated non-endemic NI breakfast cereal 
1 grape Vitis vinifera L. Cultivated non-endemic NI ANE 
1 saconadi Virolaelongata 

(Benth.) Warb. 
Native non-endemic Amazon plant drug 

* data obtained in the Flora e Funga do Brazil (2022). NI – not informed. ANE – applicability not specified. 
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