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Abstract 

This paper analyses, from an energy flow perspective, the implementation of smart lighting systems in street 
lighting, where lights are dimmed to adapt to the flow of objects passing in a street. The research focus on the 
sustainability perspective of implementing a transition to smart lighting systems when compared to regular LED 
lighting. To account for externalities, the energy flow was addressed considering the extra electronic devices 
used in a smart lighting system (controllers, motion sensors, radars, and computers). 

To compare both traditional LED street lighting and smart lighting the paper started with a model of a 
2.5-kilometre street, scaling up scenarios of the commune Ecublens, in the Swiss canton of Vaud, and then to 
half and all residential streets of Switzerland were examined to understand if the gains in energy savings are 
scalable.  

The research shows that, even with the additional electronic devices, the smart lighting system reduces the 
energy consumption of street lighting, even when considering the production of the extra components used. 
Financially, the extra costs of implementing smart lighting systems are offset by the savings in electricity 
consumption. Therefore, smart lighting systems for street lighting can be an environmentally and economically 
beneficial project to implement. 

Keywords: smart lighting, street lighting, sustainability, energy flow, energy savings 

1. Introduction  

In the light of the United Nations Sustainable Development goals, it is not only needed to combine efforts of public 
policies, corporations, and civil society but also actions from the public sphere to minimize waste and optimize 
processes, where public entities play not only the role of regulating and monitoring. Boons (2009) affirms that 
sustainable development requires system changes in both production and consumption. 

The development and success of those goals depends on innovation rather than continuing the activities like usual. 
The Oxford Dictionary defines innovation as “A new method, idea or product”, where usually when relating to 
tackling global or societal challenges, the expression of social innovation, which Stanford defines as: “A novel 
solution to a social problem that is more effective, efficient, sustainable, or just than current solutions. The value 
created accrues primarily to society rather than to private individuals”, is used. Clean technology innovations 
address global problems, generating similar or better outcomes. 

Hart and Milstein (1999) called sustainability a new factor that fosters creative destruction, generating an 
unprecedented opportunity, this idea brings into light sustainability as the innovation, the development of new 
products, services and as consequence, companies. 

Bebbington et al. (2007) says that there is a widely recognized need for assessing the degree in which current 
activities are unsustainable, turning off the lights is the most common answer to energy savings actions one could 
take (Lundberg et al., 2019), yet public lights on the streets are continuously on, regardless of its usage. This paper 
analyses, from an energy flow perspective, the implications of using smart lighting systems for public illumination, 
and it gives the pathway for development, scaling up, and an assessment of this cleantech innovation value. 

Schreuer (2017) shows the case of Belgium, the country with the world’s highest light pollution, where it leaves 
street lighting on all night on roads, allegedly for security reasons, but the article shows that it might be due to 
lobby and internal policies/governance of the country. In this regard, smart lighting could be a useful tool for 
Belgium to reduce energy pollution, and electrical consumption, while leaving luminaires on, for the same 
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allegedly security reasons. 

There’s an economic pressure on cities to minimize costs and being more efficient with resources. The impact of 
economic policies can be studied with material and energy flow models (Binder, 2007). Street lighting is an 
essential factor in public energy expenditure, therefore, it’s crucial to implement street lighting systems that avoid 
energy waste and pollution (Beccali et al., 2019). 

According to the National Electrical Manufacturers Association of the USA (NEMA, 2015), the LED technology, 
has a linear increase of energy per light emitted, when dimming, 100% of lumens have 100% of input power, while 
20% of lumens have 20% of input power. This shows, that dimming the streetlights when there’s no flow of people, 
could be useful to reduce the energy consumption of cities and maintain the sense of security levels from street 
lighting (since it’s dimmed, not on and off). There are systems which regulate the amount of light needed according 
to traffic or movement, which, when implemented in a systemic way are defined as “smart lighting”. To quantify 
all energy flows of the processes an energy flow analysis was performed to identify possibilities to minimize the 
environmental impact of street lighting. 

1.1 Smart Lighting Systems: CityZen 

This research project analyses CityZen smart lighting offer from an energy flow perspective, to understand how the 
technology can be scaled and if it is more sustainable than not-connected LED street lighting systems. For CityZen, 
a project using Schreders products by BG consulting, smart lighting is the regulation of street lighting to the 
amount needed.  

There are three products for smart lighting in the Schreder portfolio: 

a. Stand-alone: One motion sensor per light, the light intensity increases, or it is initiated when there is a 
movement close to it.  

b. Autonomous network: Can have one or multiple motion sensors or radars, the lighting poles are connected 
through WiFi signal, and a signal is passed to change the light intensity for multiple poles. It can act in accordance 
with the time of the day (e.g., at 18h00 during winter street light must be at 100%, even if traffic is lower than 
average, due to security or regulation) and to the flow (e.g., one car will increase the luminosity in 20%, two in 
22%). It’s necessary in-situ management for changing system regulations.  

c. Interoperable network: It works the same way as the autonomous network with the only difference that a 
fixed lighting intensity can be set during certain hours. Each 150 lighting poles are connected to a server, which 
sends the data to an off-site computer. This system allows to be managed from apart, also any problem in the 
network is pointed in the computer and the maintenance can be done for the specific part on a given place.  

This paper will focus on the interoperable network, a system that Schreder defined as the most innovative, which 
minimizes maintenance costs and timing (since possible problems are managed on the computer) and generate data 
to better optimize the system. There will also be a comparison of the same system but using LED lighting without 
the dimming (constant light emitted all night) to understand the energy impact (positive or negative) from the 
technology.  

This smart lighting system uses the Ampera Schreder luminaire, which according to Schreder (2015) has a LED 
lifetime (when exposed to a temperature of 25oC) of 100.000 hours, considering that there’s 4359 hours of 
night-time per year in Ecublens (VD-CH), the lifetime of the light under this condition is almost 23 years. 
Considering all digital systems in the interoperable network, it’s possible to assume that the lifetime of the 
luminaire is higher than other hardwares and softwares in the system, considering past technological advancement 
in the 23 years’ timeframe, there’ll be multiple software and hardware (computer, server, data centre) updates and 
necessary changes. 

When considering the costs of implementation for smart street LED lighting, the Los Angeles (USA) 
implementation by Philips costed the city USD 57 million for 172.000 lights (Maddox, 2016), totalling around 
USD 331,40, per light (considering the other system parts inside the cost of each lamp, e.g., servers). Another 
provider of smart grid systems, Silver Springs (2013), charge USD 572 per light (USD 399 for the LED lamp, USD 
49 for the network costs and USD 123 for software), for a city model with 50.000 lights, giving a ROI of 6 years 
due to energy savings. Taking into consideration that cost savings is the major driver for energy efficiency projects 
(De Groot et al., 2001). 

This study considers a small testing scenario of a 2,5km street in Ecublens, the whole district of Ecublens and a 
Switzerland’s scaling up for half of all luminaires in residential streets and for all luminaires in residential street, 
being 10, 1050, 103 700, 207 400 respectively for the number of luminaires.  
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Table 3. Energy consumption [kJ/y] of each process in different scaling up scenarios of the conventional lighting 
system (produced by the authors, 2017) 

System  Conventional lighting system - Energy Consumption 

 1st scenario 2nd scenario 
The commune of Ecublens 

3rd scenario 
Half of all residential streets in 
Switzerland 

4th scenario 
All residential streets of 
Switzerland 

Luminaires 18 921 600 1 968 768 000 196 216 992 000 392 433 984 000 
Radars - - - - 
Controllers - - - - 
Segment controllers - - - - 
Internal server - - - - 
Computers - - - - 
Total energy 
consumption 

18 921 600 1 968 768 000 196 216 992 000 392 433 984 000 

 

Table 4. Energy consumption [kJ/y] of each process in different scaling up scenarios of the smart lighting system 
(Produced by the authors, 2017) 

System   Smart lighting system – Energy Consumption 

 1st scenario 2nd scenario 
The commune of Ecublens 

3rd scenario  
Half of all residential streets in 
Switzerland 

4th scenario 
All residential streets in 
Switzerland 

Luminaires 15 424 061 1 619 526 353 159 947 507 400 319 895 014 800 
Radars 19 205 2 016 571 199 160 413 398 320 826 
Controllers 236 520 24 834 600 2 452 712 400 4 905 424 800 
Segment controllers 23 652 165 564 16 351 416 32 702 832 
Internal server 473 040 496 692 49 054 248 98 108 496 
Computers 21 310 22 378,73 2 216 560 4 411 810 
Total energy 
consumption 

16 197 788 1 647 042 159 162 667 002 400 325 333 983 600  

 

The energy input from the process ‘distribution grid’ to the processes of the luminaires was compared, as both 
systems are steady-state systems, the imports equal the exports. Therefore, it doesn’t matter whether the imports 
or exports are compared to each other. The imports of the conventional system are 18,921.60 megajoules per 
year, whereas the imports of the smart lighting system are 16,183.03 megajoule per year. The comparison of 
these two figures or flows already indicates a difference in energy supply of approximately 2,738.57 megajoules 
per year for a street with two intersections. The implementation of the smart system in the second scenario of 
whole Ecublens goes along with a decrease of about 321,725.84 megajoules in energy supply per year. The 
impact of an implementation of the smart light system in these four scenarios based on the assumptions done 
indicates, that an increase of efficiency in energy use could be achieved. 
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Table 6. C02eq in two scenarios, comparing smart and regular LED lighting (Produced by the authors, 2017) 

Scenario Number of Luminaires CO2 eq Reduction (kg/year) CH CO2 eq Reduction (kg/year) Imports 

10 luminaires 10 24.97 97.60 
Whole Ecublens 1 050 2 949.15 11 528.51 
Half of CH residential streets 103 700 307 541.57 1 202 207.96 
All CH residential streets 207 400 615 083.34 2 404 416.68 

 

2.3 Sensitivity Analysis on Variable ‘ItemPass’ 

These results are based on a consistent number of passing items during the autonomous mode of the smart 
lighting system. Since the number of passing items has an essential impact on the energy consumption of the 
radar and the luminaire, Table 7 shows the results of a sensitivity analysis of the variable ‘ItemPass’ on the total 
energy consumption (TEC) in four different scenarios. An increase of passing items goes along with a higher 
energy consumption due to a longer duration at an intensity of 100%, which requires the full performance of the 
luminaire. The scenarios 1, 2, and 3 shows that the energy savings change marginally. The fourth scenario, which 
illustrates an increase of 100% of the variable ‘ItemPass’, leads to a decrease of almost 5.98% in energy savings. 
An increase of 100% is equal to one item passing every 2.5 minutes.  

The results of the four scenarios examined strengthen the hypothesis, that a long-term study and a detailed 
simulation such as a Monte Carlo Simulation is necessary to develop for each residential district an appropriate 
model. Adapting the model of a 2.5 kilometres street with two intersections for each residential street of 
Ecublens or whole Switzerland is not detailed enough to meet the local circumstances and needs, which vary 
from location to location. 

 

Table 7. Sensitivity analysis for passing items and energy consumption kJ/year (Produced by the authors, 2017) 

 Model 
+/- 0% 

1st scenario 
+10% 

2nd scenario 
+25% 

3rd scenario  
+40% 

4th Scenario 
+100% 

Total Energy Consumption 
Conventional Lighting 
Model 

18 921 600  18 921 600 18 921 600 18 921 600 18 921 600 

Constant Energy consumption  
(No influence by variable 
‘Passitem’) 

754 522 754 522 754 522 754 522 754 522 

Radar 19,205 19,233.8 19,276.4 19,318.96 19,489.25 
Luminaire 15,409,278 15,412,818.5 15,419,561.9 15,423,476.5 15,444,756 
Total Energy Consumption 15,428,483 15,432,052.3 15,438,838.3 15,442,795.5 16,218,767.25 ∆ to Conventional -22.64% -22.61% -22.56% -22.53% -16.66% 

 

2.4 Energy Flow Along the Value Chain 

The energy savings identified for the four scenarios goes along with an additional use of electronical devices. 
These electronical devices require a huge amount of energy during their production. From an environmental 
point of view, the additionally emerging energy consumption during their production must be considered, if it 
comes to an overall assessment of the energy use along the value chain. Zundritsch and Hewes (2017) calculated 
the additional energy consumption during the production. Table 8 shows the impact of the additional energy 
consumption on the energy savings in megajoule and per cent per year. The 1st scenario ensures still energy 
savings of approximately 2 732.81 megajoules per year or 16.82 %. Whereas the 4th scenario points out 67 100 
000.40 megajoules saved per year or 20.29%. 
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Table 8. Energy Consumption during production of the additionally used electronical devices included 
(Zundritsch & Hewes, 2017) 

 1st scenario  
Model of 2.5 kilometers 

4th scenario 
All residential streets of Switzerland 

Total Energy Consumption Smart  16 197.79 MJ/y 325 333 983.60 MJ/y 
Additional energy consumption of electronical devices  
(during production broke down per year) 

397.72 MJ/y 916 527.76 MJ/y 

Total Energy Consumption Smart including additional energy 
consumption 

16 595.51 MJ/y 326 250 511.40 MJ/y 

Total Energy Consumption conventional  18 921.60 MJ/y 392 433 984.00 MJ/y 
∆ Total Energy Consumption 
Conventional – Smart including additional energy consumption 

- 2 723.81 MJ/y - 67 100 000.40 MJ/y ∆	 	% - 16.82% -20.29% 

 

For instance, these two scenarios including the energy consumption occurring during the production of the 
additionally used electronical devices shows, that the integral assessment according to the energy flow leads in 
case of switching from a conventional lighting to a smart lighting system still to energy savings. 

3. Methods 

To better understand the lighting consumption, the variation in sunlight during the year was analysed. Since the 
distribution grid only sends the electrical signal when it’s dark, it is relevant to understand the hours of 
night-time during the year, to better assess the electricity input.  

To calculate the yearly and monthly sunlight time (to calculate the night-time), firstly the latitude for the region 
of Ecublens 46.5296o was identified. Afterwards the solar hour, the theta (which is a ratio of pi, the day per hour 
divided by the number of days in a year), the solar declination (the angle in radians which represents the solar 
angle towards the earth) was calculated. Based on these results it was possible to define the cosZ (which is a 
function of the latitude, solar declination and solar hour) and the arcossin of cosZ. In case of the arcossin of cosZ 
is higher than 90o, it is night and if it is lower, sunlight is available. The data computed shows the sunlight angle 
per hour for each day of the year to be able to calculate the days and months of the Julian calendar.  

3.1 System Model 

The unique characteristic of cleantech innovations such as the smart lighting system exists in providing light on 
demand. Both energy flow analysis models don’t contain any type of energy storage processes and are therefore 
not dependent on time. These circumstances imply constant flows and stocks:  (0) = ( ), = 0                              (2) 

The first step in the definition of the system boundaries was identifying the different types of districts; residential, 
commercial, industrial, pedestrian, and school districts. Due to cities heterogenous characteristics the model must 
be broke down to a smaller scale, which represents only one type of district to be very close to reality. According 
to Schreder’s data, smart public lighting systems are most useful when implemented in residential or industrial 
districts. An exact example of the desired neighbourhood is outlined in red and can be seen in the Quartier du 
Croset. Based on this residential street with help of GIS and Google Maps to calculate the average spacing 
between the streetlamps to get the number of streetlights used. Figure 8 and table 9 shows the important 
parameters determining the systems characteristics.  

 

Table 9. Explanatory Street taken in Ecublens, VD and the Spatial System Boundary Definition (produced by the 
authors, 2017) 

Parameter Value 

City district Residential 
Number of intersections 2 
Total street length 2.5 km 
Spacing of street lights 25 m 
Number of street lights 10 
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consumption between 86 and 279 W. In our case, the Ampera Midi is used to meet the demands of a residential 
district including commercial businesses for households needs. Moreover, using the middle-class product 
Ampera ‘Midi’ allows us to meet the demands of a commercial street as well as the demands of a residential 
district. And consequently, enables an analysis of different scenarios of Scaling up more realistic. 

3.3 Primary Data Collection 

Besides the semi-structured interview, another source of primary data collection was counting passing items at a 
residential street at two different days between 10pm and 11pm (Table 10) to have a more realistic number of 
passing items during the autonomous mode, which is operating during the deep ‘sleeping hours’. In our model, 
the number 12 was taken for a more conservative calculation. 

 

Table 10. Average counted items (Produced by the authors, 2017) 

Measurement time 1st: Counted items 2nd: Counted items 

09.00 PM – 10.00 PM 12 11 

 

Another primary source of data was the analysis on solar hours in Ecublens (explained in chapter 2).  

3.4 Secondary Data Collection  

To bring the energy flow model as close as possible to the real consumption data, the consumption of the 
processes was calculated according to developed equations, which model the energy consumption dependent on 
its influences: 

a) Energy consumption of the smart lighting system processes: LED luminaire, radar, controller, internal 
server and computer Energy Consumption of the conventional lighting system: LED luminaire  

b) Financial: the costs of the smart lighting system divided per luminaire (the data was gathered from Philips 
and Silver Springs, both providers of smart lighting systems. The product costs CHF 331.40 (Maddox, 2016), 
respectively CHF 572.00 (Silver Springs 2013) for the one from Silver Springs. The average price was used). 
For all the calculations the most expensive model for the calculation was taken. Also, energy scope provided the 
pricing for the regular LED lighting system, for the same luminaire, with this data was possible to calculate the 
price difference between the regular and smart system and infer the same pricing difference for Philips.  

c) Data from the energy price in Vaud (Switzerland) per kWh for industries, with high energy usage.  

d) CO2eq: The carbon equivalent emission per kWh of energy produced in Switzerland  

3.5 Calculation of Flows in the Smart Lighting System 

Breaking the energy consumption down to each process of the smart lighting system, there is: 

a) The radar: Its consumption is not a constant value. It is rather dependent on the passing items (people, 
vehicles, animals, etc.). With every passing item, the radars consumption increases. Function of the process: 
detecting a moving item to communicate the detection to the luminaire to prepare for an increase in intensity 

b) The motion sensor is already included in some of the luminaires and have the same function as the radar but 
are not so precise. The energy consumption of the motion sensors is so low, that it can be neglected. 

c) LED luminaire: The energy consumption is constant or linear depending on its adjusted mode 

d) Controller (LuCo): The energy consumption of the controller, which is situated on every luminaire, 
communicates with the controllers of the other luminaires and the radars. It is running throughout the year to 
send requested data for the light management. 

e) Segment Controller is required for every 150 luminaires to have more preciseness in communication. 

f) Computer: the computer/tablet serves to monitor the system, intervene (by adjusting the settings for 
example), to check for maintenance problems, or to see data (e.g., energy consumption) 

g) Internal Server: The internal server compiles and processes the data between the controllers 

Starting at the starting point of the chain of cause and effect leads to firstly computing the consumption of the 
radars and motion sensors. Considering, that the radars energy consumption changes with passing items, its 
consumption was calculated according to the equation 3. 
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= 	 × 365	 	× 	9ℎ 	 	 × 	 × 1,5 	 × 1ℎ3600 + 																							(3) 
ECRy = Energy consumption of the radars per year 

n = Number of radars used 

DetecEnergy = Additional energy consumption because of detected item 

ConstantEnergy= Constant energy consumption despite item detected or not  

On the other hand, the installed motion sensors are integrated in some of the luminaires. The motion sensors 
energy consumption is not dependent on the quantity of items detected, but rather a constant value and is in our 
case neglectable because of its very low energy consumption. 

The system operates in two modes. The fixed settings mode is during the ‘Rush hours’ between 4pm-10pm and 
6am-9am. Whereas the autonomous mode is working during the ‘deep sleeping hours’ between 10pm and 6pm. 
The night hours are calculated as a mean for each of the four seasons according to the equation 4 to have a 
representative day for each season. 

	= 	 	 																																																																																			(4) 
nj = the mean of night hours per day for seasonj 

mt = total night hours in monthi 

di = days in monthi 

Based on the average night-time, and considering the main sleeping hours, it was possible to develop a model for 
the light intensity dependent on the passing items by time for each season. The used luminaire ‘Ampera Midi’ 
has a range of performance between 45 W and 150 W.  

First, a function of the performance dependent on the light intensity was needed. This can be done through 
scaling of the performance range. The equation to calculate the performance dependent on the intensity is seen 
on equation 5.  = + 	 ×	100																																																																						(5) = {10,20,30,40,50,60,70,80,90} 
The next step was computing the duration at each intensity. Two different scenarios must be distinguished. The 
formula for each luminaire is seen at equation 6. 

≈ % = 	 	 ×	 ,	 	× 	                    (6) 

% = 	1ℎ −	 ≈ %		 
t≈I=100% = Duration of passing items at light intensity ≈100% [h] 

tI=40% = Duration at light intensity 40% [h] 

The value for the autonomous working time is t≈I=100% in seconds per hour. The dimming settings are adjusted at 
an intensity level of 40%. The fixed settings mode is working with an adjusted intensity, which is constant. The 
recommended fixed settings by Schreder is at a light intensity of approximately 70%.  

After computing the unknown variables, the energy consumption for the four representative nights for each 
season can be calculated according the equation 7. 

ECdj =  ha x ( tI=40% x PI=40% + t≈I=100% x PI=100% ) + hf  x PI=70%                         (7) 

ha = hours in autonomous mode  

hf = hours in fixed settings mode  

ECd,j = Energy consumption per day in season j per luminaire 
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Finally, the final consumption per year of each luminaire could be calculated:  	= 				∑ 		 		× 			 ,                                (8) 

ECLy = Energy consumption throughout the whole year per luminaire [W/year] 

ECd, j = Energy consumption per night in seasonj per luminaire [W/day, lum] 

The value of ‘ECLy’ is equal to the value of the flow ‘Energy Supply’ to each luminaire. 

The transmission and heat losses are also known as dissipation losses. Those losses are described as an 
additional energy consumption, which is used by the luminaire to provide light. The amount of energy wasted is 
calculated as the percentage of the energy demand of each LED luminaire. Calculated according to the equation 
9.  = 	×	 , %																																																																															(9) 

The street lighting LED losses of energy is around 30 and 35 percent (Ette et al., 2009). The arithmetical mean 
between 30 and 35 percent was used to calculate the emitted losses by the luminaire; 32.5%. The value of the 
losses is equal to the flows ‘Energy Losses’ leaving the process of a luminaire. By setting up the equations, the 
value of the flow ‘Energy emitted’ leaving the process of the luminaire, was calculated. 

The controller used in this system is the LUCO NXP, which controls the LED driver and the ballasts. It is the 
main process, which is responsible for the communication between the luminaires, sensors and radars in the 
autonomous mode. The performance of the controller varies between 0,7W and 0,8W. The controller is working 
throughout the year with a constant value of energy consumption. For this model, the mean of 0,75W was used.  

The equation 10 shows the calculation of the energy consumption for the controller. = 0,75 	 × 	24	 × 	365																																																																		(10) 
ECCy = Energy consumption of controller per year [Wh] 

The system is in steady-state and works even when LED lights are off (constantly receiving input to remain or 
change the state). Consequently, the input flows must be equal to the output flows. Therefore, the value of ECCy 

is equal to the flows ‘Energy Supply’ and ‘Energy emitted’. 

The segment controller has the same function as the controller described before. It contributes to more 
preciseness in communication between the electronical devices. This segment controller is used for every 150 
luminaires. In case of having 151 luminaires two segments controller are required. The energy consumption for 
each segment controller is the same of the LUCO NXP: = = 0.75 	 ×	 1ℎ3600 	× 	24	 × 	365																																												(11) 
ECSCy = Energy Consumption of a segment controller per year [Wh]  

The in- and output flow ‘Energy Supply’ and ‘Energy Emitted’ of the controller are equal to the value of 
‘ECSCy’. 

As for the data storage and management between controllers there is a server, whose energy consumption is 
dependent on the amount of data generated by the controllers. The server’s main purpose is to provide the 
lighting management system, which offers adjusting the settings and modes of each luminaire. Estimating the 
energy consumption of the server was challenging due to a broad range of servers available. In our case a server 
with a performance of 50W (Joel Hruska, 2012), is used. The performance of 50W is only achieved if the server 
is fully load. Assuming a load of approximately 30% lead to the following equation 12. = 50 , = 0.3	 × 	50 	 × 	24ℎ 	 × 	365 																																			(12) 
For usage of the lighting management system a computer in form of a tablet or PC is needed. Considering that 
the latter is more portable, considering a tablet for the management, with an iPad 2 from Apple. Its performance 
is 3,16W with display on and 0,45W in sleeping mode (Apple, 2012). Assuming two hours per day of usage of 
the lighting management, the energy consumption of the tablet was calculated according to the following 
equation 13. = 	3,16 	 × 	2ℎ + 0,45 	 × 	22ℎ	 	× 	365 																																(13) 
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ECComy = Power consumption of the computer per year [Wh/year] 

All equations explained were used to calculate the values of the energy flows and can be found in detail in the 
annexes. 

3.6 Calculation of Flows in the Conventional LED Lighting System  

For comparability of both systems, for the conventional LED the same luminaire was used with the only 
difference, that it is operating without the additional electrical devices such as motion sensors, controllers, radars, 
computers, and servers.  

Due to the fact, that no electronical devices are used, the only way to operate the luminaires is throughout fixed 
settings. The intensity is constant at 70%. Based on that the energy consumption of a luminaire was computed 
according 14 and 15: 

ECdj = hf x tI =70%                                    (14) 	= 		∑ 		 		× 		 ,                               (15) 

The flow ‘Energy Supply’ is equal to the value of ‘ ′. The transmission and heat losses were calculated 
according to equation 16 and are equal to the value of the flow ‘Energy Losses’ leaving the process ‘luminaire’. = 	×	32.5%100 																																																																					(16) 
Setting up the equation (Annex) for each process of the luminaires leads to the values of the flows ‘Emitted 
Energy’ leaving the process ‘luminaire’. 

3.7 Assessment Indicators of Resource Efficiency 

The two energy flow models of the conventional LED lighting system and the smart lighting system facilitate an 
analysis by comparing the two models with the help of assessment indicators. A commonly used assessment 
indicator is the transfer coefficient. The transfer coefficient describes the partitioning of the input flow of the 
substance energy within a process x in output flow j.  

Because of the issue, that the luminaire used is the same in the conventional and the smart lighting system, the 
energy losses due to transmission and heat losses are also of the same magnitude. Moreover, having a 
steady-state system requires to assess the resource efficiency on another basis than on the transfer coefficient. 

Another indicator, which facilitated to assess the efficiency in energy is to compare the energy input from the 
process ‘distribution grid’ to the processes of the luminaires and in case of the smart system also to the additional 
electronical devices. A direct comparison of the energy flow ‘Energy Supply’ between the two systems was 
performed. 

3.8 Scaling up: Opportunity for Savings 

The purpose of the case study on lighting systems is to illustrate the development of the energy flows in different 
scaling up scenarios. It was considered that the average number of lamps and sensors would be equal to the case 
study boundaries of 2.5 km. 

The equation for calculating the quantities needed for each scaling up scenario is done according to the following 
equations:  	 	 = 	 1	 	150	 	× 		  	 = 	 	  	 = 	 4	10	 	× 		  

	 	 = 	 1	 	1000	 		× 	  

	 = 	 	 	 	× 		                (17) 

The internal server’s capacity needed stays constant, hence it is independent from the number of luminaires 
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needed, the increased amount of processing power needed was translated in increasing servers used. For 
computers was used the same methodology with one more table per 1000 luminaires. Tables 11 and 12 shows the 
number of items needed for the conventional and smart lighting system respectively.  

 

Table 11. Quantities of each element in different scaling up scenarios in comparison [-] (Produced by the authors, 
2017) 

System   Conventional lighting system 

 1st scenario 2nd scenario  
The commune of Ecublens 

3rd scenario 
Half of all residential streets in 
Switzerland 

4rd scenario 
All residential streets of 
Switzerland 

Luminaires 10 1050 103 700 207 400 
Radars - - - - 
Controllers - - - - 
Segment controllers - - - - 
Internal server - - - - 
Computers - - - - 
Total quantity 10 1050 103 700 207 400 

 

Table 12. Quantities of each element in different scaling up scenarios in comparison [-] (Produced by the authors, 
2017) 

System   Smart lighting system  

 1st scenario 2nd scenario 
The commune of Ecublens 

3rd scenario  
Half of all residential streets in 
Switzerland 

4th scenario 
All residential streets of 
Switzerland 

Luminaires 10 1050 103 700 207 400 
Radars 4 420 41 480 82 960 
Controllers 10 1050 103 700 207 400 
Segment controllers 1 7 691 1 383 
Internal server 1 1 104 207 
Computers 1 1 104 207 
Total quantity 27 2529 249 779 499 557 

 

Calculation of the Scaling up flows in the smart lighting system: , = 1,542,406.05	 	 × 		  , = 4,801.36	 	 ×  , = 23,652	 	 × 		  , = 23,652	 	 × 		  , = 21,313.08	 	 × 		  

Calculation of the Scaling up flows in the conventional lighting system: , = 1.892.160,0 	 × 		                     (18) 

When considering costs, since both luminaires are the same, and ceteris paribus for all other conditions, the cost 
of replacement parts should be the same. The maintenance cost is lower on the interoperable network because the 
problem is already known through the interface, this reduces maintenance time. The employee/hour dedicated to 
managing the system through the interface, was the same as the reduction in maintenance costs. 

For the system cost it was multiplied the most expensive luminaire (CHF 572 and CHF 400 for smart and 
conventional luminaires) by the number of luminaires in each of the four models, adding the electricity 
consumption per year in kWh, that was multiplied by the electricity cost for industrial users in Vaud of CHF 
0.1496 per kWh (Romande Energie, 2015). Then it was calculated the difference between the smart and 
conventional lighting costs, and modelling, with the Excel solver tool for which year it would become zero 
(through the parameters where the years had to be bigger or equal than zero, and smaller than 23 years, all 
calculations and solver can be seen at the Excel spreadsheet ‘Excel Model’ sent as attachment), to calculate the 
ROI, later it was calculated on 23 years the return.  
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The system provides a reduced carbon footprint in both scenarios due to the reduction in energy, which also, 
through savings, mitigate the price difference between the luminaires, thus generating a return on investment, 
from the difference on savings. Another strength is the perception of the adopter on innovation, which may 
increase the awareness of the municipality and attract more inhabitants.  

With governmental entities that might have debt, and the shift towards more energy saving products becomes 
more challenging, the financial return and image from innovation might attract cities, when already in the 
process of shifting to LED lighting, to choose the smart lighting system.  

Another opportunity, which can be derived from the money savings in operating along the whole lifetime of a 
pole is the possibility to outsource the costs through a Public Private Partnership (PPP) or bank loans, whom 
might have benefits in investing in a more expensive system to profit from the energy savings. The smart 
lighting system might also create new sources of revenue, for example, Los Angeles partnered with the telecom 
provider AT&T to provide internet to clients through the poles, with the company increasing its coverage and 
paying for the city to use the infrastructure, the company is also creating electrical vehicles charging stations on 
poles (Maddox, 2016). 

The energy flow model might not account for all externalities, such as the energy used for producing the 
electronic devices used to monitor the system, or for the internet production or data centres to store long-term 
data collection. Another variable is the number of items passing during the autonomous mode, since energy 
reduction is achieved through a decrease of passing items, it is therefore necessary to analyse for each street the 
major characteristics of district, the circumstances, and the inhabitants needs to enable a customized analysis and 
implementation of smart lighting systems. 

As for the electronic devices used, when assessing energy consumption, the energy savings achieved from the 
usage of smart lighting in 23 years outpace the energy used for the devices production, but as for materials, some 
resources used are scarce (e.g., lithium). From the environmental point of view the production of the electronic 
devices must be not only analysed from a material or an energy flow perspective, but rather also from a water 
usage perspective. The extraction of noble earths included in these electronical devices expend a huge amount of 
water. In times of water scarcity, this issue should be also studied to derive an integral positive environmental 
assessment of smart lighting. A lifecycle and full supply chain analysis, including the transition costs, regarding 
the material flow of a smart lighting transaction could be object of further studies.  

Considering that smart lighting systems (both autonomous and interoperable) have digital communications 
implied, the systems could be hacked, impacting on the city illumination. It’s necessary to increase digital 
security of those systems regularly to prevent attacks. Another threat is the long-term project status, where cities 
might not be willing to engage in long term activities and changes in government might create conflicts for the 
provider, even where contracts are in place. 

5. Conclusion 

This project focused on evaluating the energy consumption of LED street lighting, comparing smart and 
conventional systems, to assess how clean technologies innovation address the issues they propose to solve. It’s 
shown that smart lighting systems reduces the overall energy consumption even though there are more electrical 
equipment installed and in use, versus traditional lighting systems. 

With countries trying to reduce, through policy making, the use of energy, LED lighting for streets might be used 
as a new alternative, and as this research shows, the energy savings from the smart lighting systems pays the 
price difference from the conventional LED lighting system off through the savings in electrical consumption. 
Considering finances, some cases show the possibility of increasing the source of revenue, through WiFi 
connection on poles, or electrical vehicles charging stations, which brings even further financial results of 
adopting this new technology. 

In terms of energy savings, smart lighting systems reduces over 14% with a 10 lights system and 17% for 
207 400 lights, when comparing to the regular LED systems, this savings brings not only financial results, but 
also CO2eq reduction, especially when considering the Switzerland energy mix with imports from high emitting 
sources. Therefore, a transition to smart lighting systems can improve the environmental sustainability of cities. 

As for the downside, smart lighting is a tailor-made process, and every street should be evaluated for its potential. 
Since trees, houses, garages, crosswalks, cars passing (e.g., proximity to a hospital or police station might 
increase the traffic during the night time), and/or events can change the system structure, with an increased need 
for sensors, for example, or when it’s not possible to use the smart lighting system due to the complexity. 
Municipalities should use smart lighting systems where there’s the most possibility for impact, where dimming 
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the lights can be optimal and flows of items passing somehow controlled, like paths and parks.  

For achieving a sustainable status, one must account for externalities. For the smart lighting system to be 
possible it’s necessary to have more equipment and materials involved, and this needs to be taken into 
consideration. When going through the supply chain and considering the energy consumption for the production 
and usage phases of smart and regular LED lighting systems, the dimming from smart lighting still have an 
overall reduction in energy consumption, which shows that the transition to smart lighting system is overall more 
environmentally sustainable.  
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Appendix A 

Calculations on the Smart Lighting System 

Step 1 

The night hours are calculated as a mean for each of the four seasons according to the following equation: 

															 	= 	 	 																																																																																					(1) 
nj = the mean of night hours per day for seasonj 

mt = total night hours in monthi 

di = days in monthi 

 

 Mean of night 
hours per day 

Autonomous mode (fixed 
despite season) 

Fixed settings mode = night hours – autonomous mode 

Winter  14,47 ≈ 14 9 hours  5 hours (1*) 
Spring 10,87 ≈ 11 9 hours  2 hours (1**) 
Summer 9,56 ≈ 10 9 hours 1 hour (1***) 
Fall 12,68 ≈ 13 9 hours 4 hours (1****) 

 ℎ = 9	ℎ 																																																																																(2) 
Step 2 

The total energy consumption per year of radars based on the assumptions done before is calculated according to 
the following equation: = 	 × 365	 	 × 	9ℎ 	 	 × 	 × 1,5 	 × 1ℎ3600 + 						(3) 

= 2	 × 365	 	 × 	9ℎ 	 	0.6 	 × 	12	 × 	1,5 	 × 1ℎ3600 + 0.2 	 



jms.ccsenet

ECRy = En

n = Numbe

DetecEner

ConstantE

Step 3 

Scaling: T

Ii = Intens

MinP = M

MaxP = M

Step 4 

Calculatin

t≈I=100% = D

tI=40% = Du

Step 5 

The energ
following 

Insert (1*)

ECd, winter=

ECd, spring =

t.org 

nergy consump

er of radars us

rgy = Addition

Energy = Const

 ECRy eq

The necessary e

ity in per cent 

Minimal availab

Maximal availab

ng the general f

Duration of pas

uration at light 

gy consumptio
equation: 

),(1**),(1***),

= 9hours x (0.99

= 9hours x ( 0.9

J

ption of the rad

sed 

nal energy cons

tant energy con

qual to flow ‘E

equation to cal

[%] 

ble performanc

ble performan

formula for eac

≈
≈

ssing items at l

intensity 40%

on for the fou

,(1****), (2),(5

ECdj = ha x

95hours x 90W

995hours x 90 

Journal of Mana

= 1333.
dars per year

sumption beca

nsumption des

Energy Supply

lculate the perf=	 = {10,20,3

ce [W] 

nce [W] 

ch luminaire is

% = 	
% = 	1ℎ

% = 	12	 × 	1
% = 	1ℎ

light intensity 

% 

ur representativ

5),(9),(10) into

x ( tI=40% x PI=4

W + 0.005hours

ECd, winter =

W+ 0.005hour

agement and Sus

142 

.71	 = 48
ause of detected

spite item detec

y’ and ‘Energy 

formance depe+ 	 ×	130,40,50,60,70

s: 	 × 	 .
− 	 ≈1.5 	 × 	 =−	 ≈ % =

≈ 100% 

ve nights for 

o (11) 

40%  + t≈I=100% x

s x 150W) + 5h

= 5085.72 kJ/d

rs x 150W ) + 

stainability

801.36	 				
d item 

cted or not 

Emitted’ for e

endent on the i

100																		0,80,90} 

    

	× 	
%         = 0.005ℎ   = 0.995ℎ								
each season c

x PI=100% ) + hf 

hours x 120W 

day        

2hours x 120W

																									

each radar i={1

ntensity is: 																									

            

           

            

            																									
can be calcula

 x PI=70%       

= 1412.7Wh 

            

W = 1052.7Wh

Vol. 12, No. 1;

																									

1,2,3,4} 

																									

            

           

            

           																									
ated according

                 

           

h 

2022 

		(4)  

		(5) 

 (6) 

 (7) 

 (8) 

 (9) (10) 
g the 

 (11) 

(12)     



jms.ccsenet.org Journal of Management and Sustainability Vol. 12, No. 1; 2022 

143 

ECd, spring = 3789.72 kJ/day                             (13)  

ECd, summer = 9hours x ( 0.995hours x 90W + 0.005hours  x 150W ) + 1hour x 120W = 932.7Wh 

ECd, summer = 3357.72 kJ/day                             (14)    

ECd, fall =  9hours x ( 0.995hours x 90W + 0.005hours  x 150W ) + 4hours x 120W = 1292.7Wh 

ECd, fall = 4653.72 kJ/day                              (15)   

ha = hours in autonomous mode  

hf = hours in fixed settings mode   

ECd,j = Energy consumption per day in season j per luminaire 

Step 6 

The final consumption per year of each luminaire:  

Insert (12), (13), (14), (15) into (16) 	= 				∑ 		 		× 			 , 																																																						 (16) 

=		 3654 ×	(5085.72 + 3789.72kJ	 + 	3357.72kJ + 	4653.72	kJ	) = 1,540,927.8 /                           (17) 

ECLy = Energy consumption throughout the whole year per luminaire [kJ/year] 

ECd, j = Energy consumption per night in seasonj per luminaire[kJ/day] 

 ECLy equals the value of the flows ‘Energy Supply’ to each luminaire 

Step 7 

The amount of energy wasted is calculated as the percentage of the energy demand of each LED luminaire. 
Insert (17) into (18): = 	×	 . %

                             (18) 

= 1,540,927.8	 	 ×	 . % = 500,801.54	                 (19) 

 value of ‘Losses’ is equal to the value of the flows ‘Energy Losses’ leaving each 
luminaire	 	 	10	 	 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.  

The flow ‘Energy Emitted’ leaving each lumianaire, which represents the emitted light of the luminaires was 
calculated through setting up the equations for the in-and output flows for a luminaire.  = 	 , −	 	 , − 	 , = 0 	 , = 		 	 , − 	 	 , 																		(20) 
Step 8 

The energy supply and consumption for each controller (LuCo) on a luminaire: = 	0.75 	 × 	24	 × 	365																																																												(21) = 	0.75 	 × 	24ℎ 	 × 	365 = 6570 ℎ = 23652	 / 										(22) 
ECCy = Energy supply and consumption of controller per year 

 The value of ‘ECCy’ equals the flows ‘Energy Supply’ and ‘Energy Emitted’ for each radar i={1,2,3,4} 

Step 9: 

The energy supply and consumption for the segment controller: =	 = 23652	 																																																													(23) 
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ECSCy = Energy Consumption of a segment controller per year [Wh]  

 The value of ‘ECSCy’ equals the flows ‘Energy Supply’ and ‘Energy Emitted’ of the process segment 
controller 

Step 10: 

The energy supply and consumption per year: = 	3.16 	 × 	2ℎ + 0.45 	 × 	22ℎ	 	× 	365 																																		(24) = 	3.16 	 × 	2ℎ + 0.45 	 × 	22ℎ	 	× 	365 = 5920,3	 ℎ = 21,313.08	 /    (25) 

ECComy = Power consumption of the computer per year [kJ/year] 


 The value of ‘ECComy’ equals the flows ‘Energy Supply’ and ‘Energy Emitted’ of the process computer    

Step 11: 

The energy supply and consumption of the internal server: = 50 , = 50 	 × 	24ℎ 	 × 	365 = 438.000	 ℎ = 1,576.800	 	 × 	0.3	 = 473.040	 																																																																																						(26) 
 The value of ‘ECISy’ (26) equals the flows ‘Energy Supply’ and ‘Energy Emitted’ of the process ‘Server’ 

EFA Model: Smart lighting system 

 

Processi  Abbreviation 

Distribution grid DG 
Controller Coi, i={1,2,3,4,5,6,7,8,9,10} 
Segmentcontroller SC  
Luminaire + Driver + Motion Sensor 1 L1 
Luminaire + Driver 2 L2 
Luminaire + Driver 3 L3 
Luminaire + Driver 4 L4 
Luminaire + Driver 5 L5 
Luminaire + Driver 6 L6 
Luminaire + Driver 7 L7 
Luminaire + Driver 8 L8 
Luminaire + Driver 9 L9 
Luminaire + Driver + Motion Sensor 10 L10 
Radar  Ri, i={1,2,3,4} 
Internal server IS 
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	= 				∑ 		 		× 			 , 																																																																(6)  

	= 				 × 			 	6048	 + 4752	 + 4320	 + 5616	 = 1,892,160.0	 															(7)  

 Value (7) equals flows 	 , 	 	 ℎ	 	 	 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10) 
Step 2: 

Therefore, the transmission or heat losses were calculated also according equation (8).   = 	× 	32.5%		 × 	100																																																														(8) = 1,892,160.0		 	 × 	32.5	%100 = 614,952.0	 		 
 value of ‘Losses’ is equal to the value of the flows 	 	 , 		 	 = {1,2,3,4,5,6,7,8,9,10} 
leaving each Luminaire 

The flows 	 , 		 	 = {1,2,3,4,5,6,7,8,9,10} , which represent the emitted light of the 
luminaires, was calculated through setting up the equations for the in-and output flows for one luminaire. = 	 , −	 	 , − 	 , = 0 	 , = 		 	 , − 	 	 , 																														(9) 	 , = 1	277	208	 /  

 

EFA Model: Conventional lighting system 

Processi  Abbreviation 

Distribution grid DG 
Luminaire + Driver 1 L1 
Luminaire + Driver 2 L2 
Luminaire + Driver 3 L3 
Luminaire + Driver 4 L4 
Luminaire + Driver 5 L5 
Luminaire + Driver 6 L6 
Luminaire + Driver 7 L7 
Luminaire + Driver 8 L8 
Luminaire + Driver 9 L9 
Luminaire + Driver 10 L10 
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	 = 	 	 	 	× 		 	 	               (10) 

 

Table 1. Quantities of each element in different scaling up scenarios in comparison [-] 

System   Conventional lighting system 

 1st scenario 2nd scenario 
The commune of Ecublens 

3rd scenario 
Half of all residential 
streets in Switzerland 

4rd scenario 
All residential streets of 
Switzerland 

Luminaires 10 1050 103 700 207 400 
Radars - - - - 
Controllers - - - - 
Segment controllers - - - - 
Internal server - - - - 
Computers - - - - 
Total quantity 10 1050 103 700 207 400 

 

Table 2. Quantities of each element in different scaling up scenarios in comparison [-] 

System   Smart lighting system  

 1st scenario 2nd scenario 
The commune of Ecublens 

3rd scenario  
Half of all residential 
streets in Switzerland 

4th scenario 
All residential streets of 
Switzerland 

Luminaires 10 1050 103 700 207 400 
Radars 4 420 41 480 82 960 
Controllers 10 1050 103 700 207 400 
Segment controllers 1 7 691 1 383 
Internal server 1 1 104 207 
Computers 1 1 104 207 
Total quantity 27 2529 249 779 499 557 

 

Calculation of the Scaling up flows in the smart lighting system: , = 1.540.927,8	 	 × 		  , = 4.801,36	 	 × 		  , = 23.652	 	 × 		  , = 23.652	 	 × 		  , = 21.313,08	 	 × 		  , = 473.040	 	 × 	  

Calculation of the Scaling up flows in the conventional lighting system: , = 1.892.160,0 	 × 		                     (11) 

 

Table 3. Energy consumption [kJ/y] of each process in different scaling up scenarios in comparison 

System  Conventional lighting system - Energy Consumption 

 1st scenario 2nd scenario 
The commune of Ecublens 

3rd scenario 
Half of all residential 
streets in Switzerland 

4th scenario 
All residential streets of 
Switzerland 

Luminaires 18 921 600 1 968 768 000 196 216 992 000 392 433 984 000 
Radars - - - - 
Controllers - - - - 
Segment controllers - - - - 
Internal server - - - - 
Computers - - - - 
Total energy consumption 18 921 600 1 968 768 000 196 216 992 000 392 433 984 000 
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Table 4. Energy consumption [kJ/y] of each process in different scaling up scenarios in comparison 

System   Smart lighting system – Energy Consumption 

 1st scenario 2nd scenario 
The commune of Ecublens 

3rd scenario  
Half of all residential 
streets in Switzerland 

4th scenario 
All residential streets in 
Switzerland 

Luminaires 15 409 278 1 617 974 190 159 794 212 290 319 588 425 700 
Radars 19 205 2 016 571 199 160 413 398 320 826 
Controllers 236 520 24 834 600 2 452 712 400 4 905 424 800 
Segment controllers 23 652 165 564 16 351 416 32 702 832 
Internal server 473 040 496 692 49 054 248 98 108 496 
Computers 21 310 22 378,73 2 216 560 4 411 810 
Total energy consumption 16 183 005 1 645 509 996 162 513 707 300 325 027 394 500  

 

Appendix D 

Sensitivity Analysis on passing items 

Step 1 

The hours in which the smart lighting system operates in the autonomous mode stays constant. ℎ = 9	ℎ 																																																																																						(1) 
Step 2 

The total energy consumption per year of a radar in the three scenarios: = 	 × 365	 	 × 	9ℎ 	 	 × 	 × 1.5 	 × 1ℎ3600 + 			(2) 
1st scenario: 10% increase of variable ‘ItemPass’ = 2	 × 365	 	 × 	9ℎ 	 	0.6 	 × 	12	 × 1.10	 × 	1.5 	 × 1ℎ3600 + 0,2 = 4808.45	 								(3) 
2nd scenario: 25% increase of variable ‘ItemPass’ = 2	 × 365	 	 × 	9ℎ 	 	0.6 	 × 	12	 × 1.25	 × 	1.5 	 × 1ℎ3600 + 0,2 = 4819.1	 								(4) 
3rd scenario: 40% increase of variable ‘ItemPass’ = 2	 × 365	 	 × 	9ℎ 	 	0.6 	 × 	12	 × 1.40	 × 	1.5 	 × 1ℎ3600 + 0.2 = 4829.74	 	(5) 
4th scenario: 100% increase of variable ‘ItemPass’ = 2	 × 365	 	 × 	9ℎ 	 	0.6 	 × 	12	 × 2	 × 	1.5 	 × 1ℎ3600 + 0.2 = 4872.312	 			(6) 
Step 3 

The variable ‘ItemPass’ influences the duration of each intensity: 

≈ % = 	 	 ×	 . 	× 	                           (7) 

% = 	1ℎ −	 ≈ %                               (8) 

1st scenario: 10% increase of variable ‘ItemPass’: 

≈ % = 	12	 × 	1.1	 × 	1.5 	 ×	 1ℎ3600 = 0.0055ℎ 

% = 	1ℎ −	 ≈ % = 0.9945ℎ 

2nd scenario: 25% increase of variable ‘ItemPass’ 

≈ % = 	12	 × 	1.25	 × 	1.5 	 ×	 = 0.0063ℎ  
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% = 	1ℎ −	 ≈ % = 0.9938ℎ		 
3rd scenario: 40% increase of variable ‘ItemPass’ 

≈ % = 	12	 × 	1.4	 × 	1.5 	 ×	 = 0.007ℎ  

% = 	1ℎ −	 ≈ % = 0.993ℎ		 
4th scenario: 100% increase of variable ‘ItemPass’ 

≈ % = 	12	 × 	2	 × 	1.5 	 × 	 1ℎ3600 = 0.01ℎ 

% = 	1ℎ −	 ≈ % = 0.99ℎ		 
Step 5 

The energy consumption for the four representative nights for each season has to be adjusted due to the change 
of the variable ‘t≈I=100%’: 

ECdj = ha x ( tI=40% x PI=40% + t≈I=100% x PI=100% ) + hf x PI=70%                          (9) 
1st scenario: 10% increase of variable ‘ItemPass’: 

ECd, winter= 9hours x (0.9945hours x 90W + 0.0055hours x 150W) + 5hours x 120W = 5086.69kJ 

ECd, spring = 3790.69 kJ 

ECd, summer = 3358.69 kJ 

ECd, fall = 4654.69 kJ 

2nd scenario: 25% increase of variable ‘ItemPass’ 

ECd, winter = 5088.54kJ 

ECd, spring = 3792.53 kJ 

ECd, summer = 3360.54 kJ 

ECd, fall = 4656.54 kJ 

3rd scenario: 40% increase of variable ‘ItemPass’ 

ECd, winter = 5089.61 kJ 

ECd, spring = 3793.61 kJ 

ECd, summer = 3361.61 kJ 

ECd, fall = 4657.61 kJ 

4th scenario: 100% increase of variable ‘ItemPass’ 

ECd, winter = 5095.44 kJ 

ECd, spring = 3799.44 kJ 

ECd, summer = 3367.44 kJ 

ECd, fall = 4663.44 kJ  

Step 6 

Finally the energy consumption of each luminaire can be calculated:  	= 				∑ 		 		× 			 ,                             (10) 

1st scenario: 10% increase of variable ‘ItemPass’: 	= 				 3654 		× 			 (5086.69 + 3790.69kJ	 + 		3358.69kJ + 	4654.69	kJ	) = 	1,541,281.85  

2nd scenario: 25% increase of variable ‘ItemPass’: 
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	= 				 		× 			 (5088.54 + 3792.53kJ	 + 		3360.54kJ + 	4656.54	kJ	) = 1,541,956.19 /  

3rd scenario: 40% increase of variable ‘ItemPass’: 	= 				 3654 		×			 (5089.61	 + 3793.61	 + 3361.61	 + 4657.61	 	) = 		1,542,347.65	 /  

4th scenario: 100% increase of variable ‘ItemPass’ 	= 				 3654 		× 			 (5095.44		 + 3799.44		 + 3367.44	 + 4663.44	 	) = 	1,544,475.60	 / 	 
ECLy = Energy consumption throughout the whole year per luminaire [W/year] 

ECd, j = Energy consumption per night in seasonj per luminaire[W/day] 
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