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Abstract 

The study evaluates comparatively some physical and chemical properties of polyamide 6.6 standard and 
biodegradable. It also evaluates the period of biodegradation of the biodegradable yarn sample and standard 
sample. The physical properties analyzed were tensile strength, elongation, and tenacity. The chemical properties 
were related to the behavior of the samples in dyeing and the evaluation of subsequent strength dyeing. The 
evaluated samples were taken from knitwear produced with polyamide textured filament yarn 80 dtex f 68x1, 
standard and biodegradable, being purged, bleached, and dyed. The results of the physical tests, although 
statistically different, have values very near the average, which in practice represent acceptable values within the 
statistical control process. Both standard and biodegradable samples had the same chemical behavior and there is 
no difference. Concerning to biodegradation time under laboratory conditions, the carbon dioxide produced by 
the samples was monitored and measured to determine the percentage of biodegradation according to ASTM D 
5511. After 735 days the percentage of biodegradation of the biodegradable yarn was 81.7% and of the normal 
yarn was 5.2%. This is an expressive gain in ecological terms for synthetic fiber. 

Keywords: textile biodegradation, shorter life-cycle, sustainability, low environmental impact  

1. Introduction 

According to Milan (2010), a problem with the environment is currently related to the quality of life and future 
generations, which makes it a search for the development of a collective conscience. Market competition and a 
new perspective are companies that seek solutions and technologies focused on reducing risks and optimizing 
production processes, greater in social and ecological responsibility, products with added value and 
competitiveness. 

Textile is an indispensable element of human society throughout its history. In addition to the maintenance of 
basic needs—protecting themselves from the outside environment and maintaining necessary conditions for 
survival, human beings have been using textile products as means of expressing their identities, wealth, power, 
and the like, and it has been an important commodity traded globally over centuries (Tojo et al., 2012). 

According to Refosco (2012), the textile industry transforms fibers into yarns, yarns into fabrics and fabrics into 
garments and home products, and into technical textiles with diverse applications. By analyzing the industries by 
branches of activity, the textile industry, with the whole chain of clothing-related activities, has not developed 
proportionally to its worldwide expansion the concerns about the materials and processes, causing grave 
consequences as textile garbage and the exorbitant quantity of textile wastes from the production process.  

Pekhtasheva et al. (2012) state that along with general similarities in the structure of high molecular weight 
compounds, fibers differ from one another by chemical composition, monomer structure, polymerization degree, 
orientation, intermolecular bond strength and type, and so on which define the different physicomechanical and 
chemical properties of the different fibers. The resistance of fibers and fabrics to biodamage depends primarily 
upon the chemical nature of the fibers from which they are made. Plant-derived natural fibers, such as cotton and 
linen, are particularly susceptible to attack by saprophytic microflora. Man-made fibers and fabrics, especially 
synthetic ones, are more resistant to biodegradation, but biodegrading microorganisms can adapt so that they can 
use them as food sources.  
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etc. (Klun, 2003). A degradation of polymers may proceed by one or more mechanisms, including microbial 
degradation in which microorganisms such as fungi and bacteria consume the material (Chonde, 2012).  

Both the chemical and physical properties of polymers influence the mechanism of biodegradation. The surface 
conditions (surface area, hydrophilic, and hydrophobic properties), the first-order structures (chemical structure, 
molecular weight, and molecular weight distribution), and the high order structures (glass transition temperature, 
melting temperature, modulus of elasticity, crystallinity, and crystal structure) of polymers play important roles 
in the biodegradation processes (Tokiwa et al., 2009). 

Biodegradation is not dependent on the origin or the raw material base of a substance but is only a function of its 
chemical structure (Siegenthaler et al., 2011). 

Biodegradable polymers come from various sources, from synthetic to natural polymers, and can be classified 
according to their origin into three classes: naturally produced renewable polymers, synthetic polymers derived 
from renewable resources, and synthetic polymers derived from petroleum-based resources (Ashter, 2016). 

Biodegradable plastics can be transformed in nature into water and CO2 or CH4 during a period comparable to 
that of organic matter (Sanz-Lázar, 2021). 

1.4 Biodegradable Polyamide 6.6 Fiber 

Polyamide 6.6 had good mechanical strength but shows low biodegradability and has a high melting point 
(Okamura et al., 2002). According to Redondo (2018), the patented biodegradable polyamide fiber was obtained 
by adding a biodegradation agent during the melt-spinning extrusion of polyamide 6.6, so the biodegradation 
agent is melt-mixed with the polyamide, before the formation of the fiber. The additive enhances the 
biodegradation process through a series of chemical and biological processes when disposed of in a biologically 
active landfill. The biodegradation process begins with swelling agents that, when combined with heat and 
moisture, expand the polyamide molecular structure. The biodegradation agent causes the polyamide to be an 
attractive food source to certain soil microbes, encouraging the polyamide to be consumed more quickly than 
polyamides without the biodegradation agent. The polyamide 6.6 of this study is degraded by an anaerobic 
biodegradation process which is, according to Siegenthaler et al. (2011), typically found in aquatic degradation 
processes, in landfills or is used technically to produce biogas from biomass, because of the major gaseous 
degradation product is methane along with CO2. 

2. Materials and Method 

2.1 Materials 

In the experiments were used 100% standard and biodegradable polyamide 6.6 yar, both textured filament with 
yarn count 80 dtex f 68 x 2, produced by Rhodia Solvay in Brazil.  

Knitted fabrics were produced using both polyamide 6.6 yarn, resulting in a biodegradable and standard sample. 
The fabrics are constructed in a circular knitting machine in a single jersey and have the following 
characteristics: 

Regular sample: single jersey 100% polyamide 80 dtex f 68 x 2 standard  

Biodegradable sample: single jersey 100% polyamide 80 dtex f 68 x 2 biodegradable 

2.2 Textile Process 

After knitted fabrics were prepared, the following processes were done in the samples: 

2.2.1 Scouring 

The standard and biodegradable samples were boiled in an alkali scouring solution prepared from 1.0 g/L 
detergent and 2% g/L Na2SO3 at 80°C for 30 min with a liquor ratio of 1:20. After scouring the samples were 
washed for 10 min, neutralized with citric acid for 10 min, and washed again for 10 min. 

2.2.2 Scouring + Bleaching 

The samples were bleached to verify how the bleaching process can influence the biodegradable samples and 
simulate the industrial use of the yarn. 

Scoured samples were bleached according to the following conditions: Components of bleaching solution used 
were 0.1 g/l citric acid and 0.45% Uvitex NFW 450% (optical bleach); liquor ratio 1:20; heating from 30 to 
100 °C, exposure at 100°C for 60 min. 
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2.2.3 Scouring + Dyeing  

The dyeing of scoured samples was performed through the instructions of the dye manufacturer. The samples 
were dyed at 100  for 60 min with 0℃ .35% Blue Astracid ASG 200% (acid dye), 2% Lyogen P (Leveling agent), 
and 2 g/l Ammonium sulfate. After dyeing, the samples were washed three times. Dyeing was performed in 
closed beakers at a 1:20 liquor ratio in a laboratory dyeing machine. 

2.3 Methods 

 

Table 1. Tests and standards 

Test Standard 

Tensile strength and elongation at break ASTM D3822 
Color Fastness to Light ABNT NBR ISO – 105 B02:1994 
Color Fastness to Perspiration NBR 8431 
Color Fastness to Wash 
Transfer of color 

ABNT NBR 13097 
NBR 8429 And NBR 8430 

Determining Anaerobic Biodegradation of Plastic Materials Under High-Solids 
Anaerobic-Digestion Conditions 

ASTM D5511 

 

2.3.1 Tensile Strength and Elongation at Break 

Tensile property can be defined as the maximum force/load that is required to break the material. The tensile 
property is one of the key factors that determine the quality of the fabric. This type of measurement shows how a 
material will behave when it is subjected to a tensile pull or force. The breaking load and the elongation at break 
are the most valuable information derived from a tensile test. 

Tenacity is the measure of the breaking strength of a textile. It is also defined as ultimate breaking strength and is 
the maximum force a textile fiber, yarn, or fabric can bear without breakage. 

2.3.2 Color Fastness to Light 

Colorfastness to Light testing is an accelerated method that assesses the fabric’s ability to resist fading or other 
color degradation when exposed to a Xenon Arc light. Colorfastness to light testing is important in determining 
how well a textile will hold up to sunlight exposure over time. A blue scale is used to determine the color change. 

2.3.3 Color Fastness to Perspiration 

This test is used to assess the change in color of the fabric when exposed to perspiration.  

2.3.4 Color Fastness to Wash 

This method is used for assessing the resistance of the color of the dyed fabric of wash in water with soap and 
detergent. 

2.3.5 Determining Anaerobic Biodegradation of Plastic Materials Under High-Solids Anaerobic-Digestion 
Conditions 

For each, sample the test is run in triplicate and compared to a positive control, a negative control, and an 
inoculum control. The method consists of the selection and analysis of plastic samples to be placed in sealed 
fermentation vessels filled with a required amount of inoculum derived from a mix of composted solids and 
active wastewater treatment plant sludge. 

The percentage of biodegradability is obtained by determining the percentage of carbon converted to carbon in 
the gas phase (CH4 and CO2). 

2.3.6 Testing Planning 

The scope of the tests was determined according to the scheme shown in Table 2. 
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same. The samples had good results on the colorfastness to perspiration test, both alkaline and acidic. 

 

Table 6. Color fastness to perspiration after dyeing process (standard samples) 

Standard polyamide 

 Color Staining Color Change 
Color fastness to acidic perspiration 5 5 
Color fastness to alkaline perspiration 4/5 5 

 

Table 7. Color fastness to perspiration after dyeing process (biodegradable samples) 

Biodegradable polyamide 

 Color Staining Color Change 
Color fastness to acidic perspiration 5 5 
Color fastness to alkaline perspiration 4/5 5 

 

3.4 Color Fastness to Wash 

Polyamide standard and biodegradable obtained the same results of colorfastness to washing showed in Table 8. 
Both presented excellent results. 

 

Table 8. Color fastness to wash after dyeing process (standard and biodegradable samples) 

  Color Staining Color Change 

Color fastness to wash (40ºc ISO I) Standard samples 5 5 

Biodegradable samples 5 5 

 

3.5 Biodegradable Test 

Table 9 shows the percentage of biodegradation of normal and biodegradable polyamide samples. Values were 
measured after 735 days of testing. 

 

Table 1. Biodegradation percentage 

 Negative Control Positive Control Standard Sample Biodegradable Sample 

Biodegradation Percentage (%) - 2.4 87.3 4.5 71.3 
Adjusted Biodegradation 
Percentage (%) 

- 2.8 100% 5.2 81.7 

 

By analyzing the values presented in Table 9, it can be stated that under the conditions of the test carried out, 
after 735 days the biodegradable sample degraded 16 times more than the standard sample. Figure 6 shows the 
biodegradation graphic. 
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