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Abstract 

The knowledge on the significant factors that lead to environmental changes can be an attractive tool for 
directing priority actions of management, sustainability and impact minimization. In this regard, this work 
suggests the use of panel data analysis in environmental assessments, proposing a panel data regression model 
for the context of the Amazon forest, aiming to evaluate the role of primary activities over deforestation in Legal 
Amazon between 1988 and 2018. For this, the deforested areas in Legal Amazon were assessed regarding the 
potential explanatory variables: (i) area intended for soybean cultivation; (ii) area intended for palm oil 
cultivation; (iii) cattle ranching; and (iv) firewood and wood extraction. The model developed in this work 
evidenced cattle ranching and palm oil cultivation as significant factors for the increase of deforested areas, as 
well as the contribution of other factors besides primary activities in Amazon deforestation from 1988 to 2018. 
These results are in accordance with the literature, evidencing the applicability and assertiveness of the proposed 
method. This approach can help decision-makers of several other fields of environmental management. 
Additionally, this work also assessed the evolution of deforestation rates from 1988 to 2018, as well as possible 
regionalities and temporal trends in Legal Amazon deforestation. Statistically significant upward trends in 
deforestation rates in Amazonas, Mato Grosso, Pará, and Rondônia since 2012 were noticed. The spatial 
homogeneity in deforestation reinforces the need for effective oversight in Amazon. 
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1. Introduction 

1.1 Legal Amazon 

Legal Amazon comprises the Brazilian states of Acre (AC), Amapá (AP), Amazonas (AM), Mato Grosso (MT), 
Pará (PA), Rondônia (RO), Roraima (RR), Tocantins (TO), and part of Maranhão (MA). Instituted by Federal 
Law nº 1.806/53 (Brasil, 1953), it has an approximated area of 5.1 million km², which corresponds to 59.1% of 
Brazilian territory. This region is characterized by low socioeconomic development and high agriculture, 
extractivism, and livestock activity (SUDAM, 2019).  

Amazon is the largest tropical forest in the world. With forest-covered areas larger than 3.3 million km² (Brasil, 
2019), it is estimated that Amazon houses more than 40,000 plant species (Silva et al., 2005). Only in 2016, 
approximately 3.0 million m³ of wood products from native species were extracted from the Amazon forest and 
destined for the Brazilian market. Among the main marketable woody native species are Manilkara huberi (trade 
name: maçaranduba), Goupia glabra (trade name: cupiuba), and Erisma uncinatum (trade name: cedrinho). 
Furthermore, about 10,000 km² of Legal Amazon is occupied by planted forests and 80% of such area is destined 
for eucalyptus monoculture (Brasil, 2019). Agriculture and livestock are also one of the major economic 
activities of the Amazon biome. In 2018, soybean cultivation represented 51% of the agricultural production 
value of the states which comprises Legal Amazon, corresponding to an amount of approximately U$ 7.0 billion. 
In the same period, cattle ranching was responsible for a gross production of about U$ 5.0 billion in such states 
(Brasil, 2018).  
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1.2 Role of Brazilian Government to Monitor Deforestation in Legal Amazon 

Amazon deforestation, with the intent of land use and occupation, is not directly related to a single aspect 
(Alencar et al., 2004). Its motivation and dynamics are interconnected to several factors, mainly those of 
environmental and economic control. The latter reached a peak in 1995, due to the Real Plan—a Brazilian 
governmental plan for economic stability. Among the causes that potentially leaded to deforestation of this 
biome are: road constructions, land occupation surrounding highways, expansion of agriculture and livestock, 
family farming, wood extraction, and land speculation by land grabbers (Alencar et al., 2004; Fearnside, 2003; 
Fearnside, 2006; Ferreira et al., 2005; Laurance et al., 2004; Soares-Filho et al., 2004; Soares-Filho et al., 2005). 

Currently, to improve control over the situation, the Brazilian Government relies on projects, tools, and 
methodologies to monitor deforestation in Legal Amazon. The Amazon Deforestation Monitoring Project 
(PRODES) monitor clear-cuts in Legal Amazon using LANDSAT satellites (INPE, 2020a). DETER is a 
real-time system to detect changes in vegetation cover, serving as a basis for inspection (INPE, 2020b). 
DEGRAD maps degraded and vulnerable areas to deforestation (INPE, 2020c). TerraClass project qualifies 
deforestation in Legal Amazon based on changes in land use and land cover (INPE, 2020d). Additionally, the 
National System for the Control of the Origin of Forest Products (IBAMA, 2020) aims to promote the control of 
forestry products in Brazil. 

Besides, there are several other important controlling, regulatory, and protective tools in Brazil, such as: 

• the Environmental Rural Registry (CAR), mandatory since 2012, according to Law nº 12.651/12 (Brasil, 
2012), 

• the Annual Report on Potentially Polluting Activities and Users of Environmental Resources (RAPP), whose 
obligation has foreseen since 1981, in Brazil's National Environmental Policy advent (Brasil, 1981), and 

• the Conservation Units (UC), which enable conservation, preservation, and reforestation of green areas since 
Law nº 9.985/00 (Brasil, 2000). 

Nevertheless, only in 2019, more than 10,000 km² of was deforested in Legal Amazon (INPE, 2020a), 
evidencing the need to improve the effectiveness of the oversight.  

1.3 Review of Econometric Models Towards Decision-Making Processes for Environmental Management and 
Conservation 

Econometric models have been increasingly used with the aim of assessing the impacts of anthropic activities on 
the environment (Arraes et al., 2012; Diniz et al., 2009; Chiu, 2012; Scrieciu, 2007; Cheng et al., 2018; Salame 
et al., 2016; Zhang et al., 2017; Amare et al., 2017; Schmook & Vance, 2009). Through such approaches, it is 
possible to identify the factors that significantly contribute to the environmental changes, being extremely useful 
for management purposes, enabling simulations of possible future scenarios, and guiding priority efforts. 

In the deforestation context, relevant findings from econometric models can be cited. Amare et al. (2017) 
exposed the role played by the smallholder farmers on deforestation in Northern Ethiopia. Schmook and Vance 
(2009) evidenced the importance of agricultural policies for halting deforestation in Southern Mexico. Chiu 
(2012) and Scrieciu (2007) evidenced the influence of real income on deforestation. Furthermore, Arraes et al. 
(2012) proposed a linear regression model to predict the factors that contributed to diminishing the deforestation 
in Brazil between 1988 and 2002. The authors evidenced that the presence of environmental agencies in the 
municipalities, socioeconomic development, and the advent of regulatory laws for the delimitation of the 
expansion of the agricultural frontier were determinant factors to reduce deforestation. Diniz et al. (2009) 
pointed out a two-way Granger causality between deforestation and agricultural and socioeconomic 
variables—cattle herd size, cattle density, permanent and temporary crops, areas destined for agriculture, 
education, demographic density, and agricultural credits—during 1997 to 2006. Thus, demonstrating the 
effective influence of agriculture and livestock raising Amazon deforestation during these years, also the crucial 
role played by the environmental management agencies to reduce and prevent deforestation.  

Compared to correlation and usual regression methods, panel data regression analysis can provide a broader 
approach, since the evaluation of the effects of different factors under a phenomenon contemplates transversal 
and longitudinal variations (Gujarati & Porter, 2011). Thus, being able to account the spatio-temporal 
heterogeneity of environmental phenomena. Due to its methodological stringency, such analyses can potentially 
offer more reliable and assertive results (Duarte et al., 2007). There is an extensive application of this type of 
regression in the conception of econometric models in socioeconomic studies. However, the use of panel data 
regression models in environmental researches is still modest. Thus, there is a broad field to be explored in this 
context. It is expected that the methodology applied in this work contribute to the decision-making process 



jms.ccsenet.org Journal of Management and Sustainability Vol. 10, No. 2; 2020 

99 

guiding priority actions on environmental management and conservation. 

In this sense, this work aimed to demonstrate the applicability of panel data regression models in environmental 
assessments, by means of the conception of a model for verifying the role of primary activities over deforestation 
in Legal Amazon. Additionally, we also discussed the evolution of deforestation rates from 1988 to 2018, as well 
as possible regionalities, and temporal trends in Legal Amazon deforestation. 

2. Method 

2.1 Study Area 

Legal Amazon is characterized by considerable economic, political, and social heterogeneity. The state of AC 
had a native forest of about 144,065 km² in 2018 (MapBiomas, 2020), corresponding to approximately 88% of 
its size. In the state, cattle ranching has a strong influence in the primary sector of AC’s economy (Ronivaldo, 
Steingraber, & Caetano, 2018), with an average herd increase of 8% per year from 1988 to 2018 (IBGE, 2020a). 
AM is the largest state of Legal Amazon, comprising an area of 1,559,167.889 km² (IBGE, 2020b), with an 
estimated native forest of 1,466,745.400 km² in 2018 (MapBiomas, 2020). Wood extraction and livestock are 
among the main profitable activities of the primary sector in AM. These sectors were increased, respectively, by 
an average of 207% and 3% per year between 1988 and 2018 (IBGE, 2020c; IBGE, 2020a). AP is the smallest 
state of the region, with almost 84% of its extension covered by native forest (MapBiomas, 2020). Traditionally, 
vegetal extraction is the main primary activity in the region (Milheiras & Mace, 2018). But, since 2013, both 
wood extraction and soybean cultivation has been crescent (IBGE, 2020c; IBGE, 2020d).  

With the smallest Gross Domestic Product (GDP) per capita of the Legal Amazon region, of about U$ 2,302 per 
inhabitant in 2017 (IBGE, 2020b; IBGE, 2020e), MA is also the state with the second smallest native area 
(approximately 46,620 km² in 2018) (MapBiomas, 2020), which corresponds to 0.01% of its size. Agriculture 
and cattle ranching are pointed out as precursors for reducing the native forest of MA (Celentano et al., 2017). In 
the last years, cattle ranching has shown a considerable expansion in the state, increasing by an annual average 
of 3% from 1988 to 2018 (IBGE, 2020a). On the other hand, MT has GDP per capita of about U$ 6,710 in 2017 
(IBGE, 2020b; IBGE, 2020e), the highest between the states of Legal Amazon. In addition to present the highest 
area intended for soybean cultivation and the highest cattle herds (IBGE, 2020d; IBGE, 2020a), in MT, cattle 
ranching expanded by an average of approximately 5% per year from 1988 to 2018 (IBGE, 2020a), whereas the 
soybean cultivation increased 7.5% per year (IBGE, 2020d). 

Historically, PA was marked by an expansion of cattle ranching and soybean (Sauer, 2018; Barona, 2010). In the 
state, cattle ranching and soybean cultivation increased by 5% and 43% per year on average from 1988 to 2018. 
Additionally, the economy of PA is also great influenced by palm oil cultivation (Benami et al., 2018; Sauer, 
2018), which increased by an annual average of 8% from 1988 to 2018 (IBGE, 2020d). Currently, PA has about 
99% of the área intended for palm oil cultivation in Legal Amazon. RO has the second-highest GDP per capita of 
Legal Amazon (U$ 4,503 per inhabitant in 2017) (IBGE, 2020b; IBGE, 2020e). This fact may be associated with 
a great expansion of soybean cultivation, wood extraction, and cattle ranching (IBGE, 2020d; IBGE, 2020c; 
IBGE, 2020a), with increases rates in cattle herd of about 59%, and in soybean cultivation and vegetal extraction 
of 9% per year on average between 1988 and 2018.  

In RR, family farming is the major land use and slash-and-burn practice, to open new areas for crops or pasture, 
are pointed out as one of the main causes for deforestation in the state (Xaud et al., 2013). In TO, soybean 
cultivation expanded by an average of 28% per year during the period from 1988 to 2018 (IBGE, 2020d). TO has 
the smallest portion of Amazon forest between the states of the region, with only about 6.0 km² in 2018 
(MapBiomas, 2020). 

2.2 Data Collection 

Annual data on deforested areas (AD) in the states of Legal Amazon, as well as on primary activities conducted 
in the Legal Amazon extension, were collected as described in Table 1.  

 

  



jms.ccsenet.org Journal of Management and Sustainability Vol. 10, No. 2; 2020 

100 

Table 1. Description of the assessed data  

Data Data source Measure 
unit 

Time 
period 

Territorial unit 

Deforested areas (AD) PRODES (INPE, 2020a) km² 1988−2018 Each state of 
Legal Amazon 
(AC, AM, AP, 
MA, MT, PA, RO, 
RR, and TO) 

Soybean cultivation area (SOY) Municipal Agricultural Production survey (IBGE, 2020d) km² 
Palm oil cultivation area (POC) Municipal Agricultural Production survey (IBGE, 2020d) km² 
Production of firewood and 
wood extraction (FWE) 

Vegetal Extraction and Silviculture Production survey 
(IBGE, 2020c) 

m³ 

Cattle heads (CAT) Municipal Livestock Survey (IBGE, 2020a) - 

 

2.3 Data Treatment: Descriptive, Statistic, and Graphical Analysis 

Initially, a descriptive analysis of deforested areas (AD) in Legal Amazon was computed. Then, the Pearson’s 
Chi-square test (Pearson, 1900) was applied for validating the non-normality of the distributions. The 
Kruskal-Wallis (Kruskal & Wallis, 1952) test with multiple comparisons and a cluster analysis (Byrne & 
Uprichard, 2012) of the deforested areas in the distinct states were performed, aiming to identify states with 
similarities in their deforestation dynamics. These analyses, with the respective graphical results, were conducted 
in STATISTICA 10.0 software at 95% confidence level. Occasional temporal trends in AD in the states of Legal 
Amazon were also investigated using the Mann-Kendall test (Mann, 1945; Kendall & Stuart, 1967) available in 
USEPA’s ProUCL software. The magnitude of the trends was estimated by means of Sen’s slope coefficients 
(SEN, 1968). Additional graphs and spatial representations were generated with MS Excel and ArcGIS 10.5, 
respectively. 

2.44. Regression Model: Panel Data Analysis 

Panel data are a combination of time series and cross-sectional data and are used in regression models to 
describe the effects of variables in spatiotemporal dimensions (Gujarati & Porter, 2011). In this study, the panel 
data regression model aimed to investigate the primary activities cited in literature that significantly contributed 
to increasing the deforested areas during 1988 to 2018. The explanatory variables were chosen according to 
previous studies, which pointed such activities as important precursors of Amazon deforestation (Nepstad et al., 
2014; Laurance et al., 2004; Barona et al., 2010; Rivero et al., 2009; Domingues & Bermann, 2012; Diniz et al., 
2009; Benami et al., 2018; Carvalho et al., 2015; Butler & Laurance, 2009; Fearnside, 2006). Thus, the following 
variables were selected: 

(i) SOY: Area intended for soybean cultivation (km²);  

(ii) POC: Area intended for palm oil cultivation (km²); 

(iii) FWE: Firewood and wood extraction (m³); and 

(iv) CAT: Cattle ranching (number of heads). 

In view of this, the proposed model can be described by Equation 1. 

AD=β0+β1SOY+β2POC+β3FWE+β4CAT                             (1) 

There are different types of panel data regression models, such as pooled, fixed effects, and random effects 
models. In pooled models, the spatiotemporal variance of each individual may be neglected. In fixed effects 
models, it is admitted a distinct and time-invariant intercept for each individual. In random effects regression 
models, the intercept of each individual is treated as a random variable. Furthermore, adopting a model of fixed 
or random effects, the errors resulted from omitted or irrelevant variables can be diminished (Gujarati & Porter, 
2011; Duarte et al., 2007; Hill et al., 2011; Greene, 2002). 

There are some assumptions that must be considered to ensure the appropriateness of linear regression models, 
such as homoscedasticity and the absence of autocorrelation and multicollinearity (Gujarati & Porter, 2011; Hill 
et al., 2011; Greene, 2002). In this regard, in the presence of heteroscedasticity, the residual variance must be 
estimated. Similarly, autocorrelation of the regression residuals implies the need to estimate it. The 
autocorrelation may arise from an omitted variable—i.e., when the dependent variable is not sufficiently 
explained by the independent variables—and whenever the variables are correlated to an omitted one. The 
estimation of robust standard errors and the feasible generalized least squares method (FGLS) are techniques 
commonly applied to fix such problems, and may be chosen according to the number of variables and the size of 
the time series (Hill et al., 2011). The FGLS estimation consists of an auxiliary regression which is specially 
applied when the nature of the autocorrelation and/or heteroscedasticity is unknown. In this way, the auxiliary 
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confidence levels, respectively (Table 5). Previous studies also pointed to cattle ranching as the main threat to 
Amazon forest (Barona et al., 2010; Rivero et al., 2009; Domingues & Bermann, 2012). Is also relevant to 
mention that the cultivation of palm oil is historically correlated to deforestation, especially in PA (Benami et al., 
2018), which is the major producing state of palm oil in Brazil (IBGE, 2020d) and also has the highest 
deforested areas during 1988−2018, in average (Table 2). 

The proposed model also suggests that the soybean cultivation and legal wood and firewood extraction not led to 
Legal Amazon deforestation with the same weight as the other primary activities (cattle and palm oil cultivation) 
from 1988 to 2018. According to Domingues and Bermann (2012), the establishment of soybean crops occurs 
especially in degraded soils previously destined for cattle breeding. In fact, states situated in the ‘arc of 
deforestation’, PA, MT, and RO, have the most developed cattle herds and soybean cultivation. 

 

Table 5. Panel data regression model adjusted by FGLS proposed for Legal Amazon deforestation 

Variable SOY (β1) POC (β2) FWE (β3) CAT (β4) β0 
Coefficient -0.01658 1.83029 0.00001 0.00005 123.42130 
p-value 0.403 0.062** 0.337 0.004* 0.006* 

Note. * statistically significant evidence at 95% confidence level; ** statistically significant evidence at 90% confidence level. 

 

Furthermore, the Ramsey RESET test previously exposed the insufficiency of explanatory variables in the 
proposed model. This fact is endorsed by the p-value of β0, which evidenced the effective interaction of omitted 
variables leading Amazon deforestation. It is acknowledged that deforestation permeates several other factors 
besides primary activities, such as public governance, development of municipalities, and population growth, 
including elements deriving from illegal practices and which are infrequently quantified or expressed in 
databases (Arraes et al., 2012). 

As reported by Greenpeace et al. (2017), 24% of Legal Amazon deforestation in 2016 emerged from land 
grabbing. According to Amazônia Protege (MPF, 2020), a survey of Brazilian Federal Prosecution Service 
(MPF), in 2017, 36% of the deforested area equal or above 0.6 km² identified via PRODES was a proven effect 
of illegal activities. The survey disclosed that the largest areas illegally deforested in that year were identified in 
MT and PA, with 530 km² and 470 km², respectively, representing approximately 34% and 19% of total 
deforestation occurred in these states. However, according to a research conducted by ICV (2018), in MT, for 
about 89% of deforested areas identified by PRODES in 2017, were not issued authorizations by state or federal 
environmental agencies. 

In 2007, Greenpeace denounced the creation of phantom rural settlements by INCRA (Brazil’s National Institute 
for Colonization and Agrarian Reform) to promote the illegal wood extraction in PA. According to the 
investigation, the autarchy allowed the activity of logging companies in areas of virgin forest and Conservation 
Units (UC) under the cover-up of alleged social projects and improvements in the scope of the agrarian reform. 
Already in 2012, Greenpeace returned to document allegations of illegal logging in rural settlements of INCRA 
(Greenpeace, 2020). All these facts evidence the preponderance of illegality on practices inherent to 
deforestation. 

Additionally, other aspects also demonstrate notable participation in the suppression of native vegetation in 
Amazon. Sonter et al. (2017) exposed the parcel of mining in deforestation in several aspects, both during the 
implementation of infrastructures and the circumjacent urban expansion. Ramos et al. (2018) ratified the impact 
of road expansion on Amazon's vegetation cover. On the other hand, deforestation is not only a consequence of 
secondary activities, but it may also act as a conducting agent of various environmental problems. The literature 
reports deforestation for land use and occupation as a potential contributing factor to the occurrence of Amazon 
forest fires (Barni et al., 2015; Salame et al., 2016; Silva et al., 2018; Silva et al., 2018b), leading to expressive 
CO2 emissions and biodiversity loss.  

Finally, it is important to highlight that robust data analysis contributes to the environmental management, 
monitoring and studies of cause and effects. The methodology applied in the conception of the model presented 
in this work can provide valuable information on significant factors that lead to environmental effects and 
impacts, thus being able to guide decision-making processes and sustainable management strategies.  

4. Conclusions 

This work aimed to investigate the role of the primary activities in Legal Amazon deforestation during 1988 to 
2018. The regression model obtained in this study evidenced cattle ranching and palm oil cultivation as relevant 
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interveners for deforestation in Legal Amazon during that period. The model also showed a significant 
contribution of other factors for the degradation of the biome. The complexity of measuring each contribution, 
particularly in the context of illegal practices, was also pointed out. However, for local environmental managing 
purposes, the local land use dynamics must be considered. Key issues for reducing the progress deforestation 
include improvements in cattle productivity, reducing the m²/head ratio, advancing agriculture on degraded areas, 
incentives for sustainable crops cultivation and the combat of illegal activities. Mann-Kendall test also detected 
upward trends in deforested areas of AM, MT, PA, and RO between 2012 and 2018, possibly as a consequence of 
the attenuation of environmentally protective policies and the imminent weakening of environmental 
management agencies. Considering such increasing trends, further models may also be constructed considering 
different periods of the time-series to support predictive analyses of future scenarios of Legal Amazon 
deforestation. Additionally, the assessment of the spatial distribution of deforested areas during 2012 to 2018 
reiterates the inefficiency of current oversight actions. Finally, this paper showed the applicability of panel data 
regression analysis for identifying factors that lead to significant changes in environmental quality. Furthermore, 
in this work, the selection of variables was supported by the literature. Although, identifying critical 
environmental, political, cultural or socioeconomic issues also is fundamental for determining potential eligible 
variables. In this concern, analyses such as SWOT or PESTLE may be useful. Considering that the panel data 
regression analysis is able to account the spatio-temporal heterogeneity of environmental phenomena, we 
highlight that the use of panel data regression models in environmental studies may improve management and 
impact minimization, guiding priority efforts, actions, and decision-making processes.  
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