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Abstract 
The United States Environmental Protection Agency (EPA) in June 2015, took a step toward regulating carbon 
emissions from airlines, following an assessment that airlines contribute to climate change. On July 25, 2016, the 
final endangerment finding (Note 1) under section 231(a) (2) (A) of the Clean Air Act for aviation emissions was 
issued by the EPA. The European Union had issued a similar finding previously and had proposed implementing 
an emission trading scheme in which the airlines would be required to participate in a cap and trade scheme for 
emissions from jet fuel. Traditional jet fuel is derived from petroleum, whose price is volatile and depends on 
geopolitical stability. Fuel burn is a significant cost for airlines and affects their profitability and value. Fuel burn 
is also a significant source of greenhouse gas emissions. An investigation of alternatives to jet fuel and switching 
from conventional jet fuel based on varying emission profiles, production costs and varying carbon prices is 
therefore timely. We use a simple decision support system to examine the link between the life-cycle greenhouse 
gas emissions of a range of fuels, economic costs of production and varying carbon prices. This analysis should 
be of interest to regulators, traders, risk managers and executives in the airline industry as well as practitioners of 
sustainability management. 
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1. Introduction 

Petroleum products have always been the airlines’ fuel of choice because they offer optimal characteristics in 
terms of energy content, performance, availability, ease of handling, and price. Plunging crude oil prices, which 
dropped from more than $100 per barrel in June 2014 to around $50 per barrel in April 2017, together with 
accelerating economic growth, sparked increased profits for all US airlines, and drove rosy forecasts for carriers’ 
stocks. However, in October 2018, Brent crude touched $80 a barrel, a 28% increase in 2017’s average price of 
$54, leading to questions of profitability, before plunging back down to $50 in December 2018 and trading in 
September 2019 at around $60 a barrel. 

Jet fuel, derived from crude oil, accounts for as much as one-third of an airline’s expenses. However, this cost 
has varied greatly over the past five years. In 2014, US airlines spent more than $46 billion on about 16.2 billion 
gallons of jet fuel, according to the US Department of Transportation. Lower prices meant that airlines globally 
spent $70 billion less on fuel in 2015 compared to 2014, reducing spending by one-third, according to the rating 
agency Moody’s (Aviation Week, February 2015). With collapsing crude prices and improved GDP growth 
worldwide, airlines in 2015 posted their most robust margins in five years. Airline profitability increased 
dramatically. US carriers had a more than a three-fold increase in profits from a year earlier and collective global 
net profits of $33 billion in 2015, up from $16.4 billion in 2014 (International Air Transportation Association 
[IATA] Press Release No. 58, December 2015). According to the International Air Transport Association 
(IATA), this increase reflected the net impact of several global factors including improving economic prospects, 
record load factors, lower oil prices and the major appreciation of the US dollar. Fuel still represents a significant 
proportion of the industry’s operating cost structure and the drop in oil prices was a major contributor to the 
airlines’ profitability. Of course, low oil prices are not expected to last forever. Indeed, in June 2016, the IATA 
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stated that airlines were nearing the peak of the positive stimulus from lower oil prices (IATA Press Release No. 
27, June 2016). In fact, crude oil prices moved from a low of $30 per barrel in January 2016 to $53 per barrel in 
January 2017 to $80 in October 2018. It was projected that airline margins in 2018 were likely to be squeezed as 
oil prices increased and fuel costs rose to 23% of airline revenue in 2018 vs. 17% of revenue in 2017 (Center for 
Aviation, 2018).  

In June 2019, the IATA changed its 2019 outlook for the global air transport industry from a $35.5 billion profit 
forecast to $28 billion. It also stated that the business environment for airlines had deteriorated with rising fuel 
prices and a substantial weakening of world trade (IATA Press Release No. 27, June 2019). In 2019 overall costs 
were expected to grow by 7.4%, outpacing a 6.5% rise in revenues. As a result, net margins were expected to be 
squeezed to 3.2% (from 3.7% in 2018). Similarly, profits per passenger were expected to decline to $6.12 (from 
$6.85 in 2018). 

This volatility in the price of oil, combined with global warming concerns, regulatory changes, and energy 
security concerns has prompted the industry to explore alternatives to traditional fuel. When considering 
alternative fuels, the safe and reliable operation of the engine and aircraft are paramount. The environmental 
effects of any alternate fuels considered must include emissions from the engine and also the lifecycle effects 
associated with the production and use of the alternate fuel.  

Research into alternative fuels was initially conducted in the 1970s when fuel prices increased as a result of the 
energy crisis. Most of this work was on the conversion of biomass to fuel. However, for widespread, routine use, 
only petroleum-derived jet fuels were found to be economically practical. Traditional jet fuel is derived from 
petroleum, whose price is volatile and depends on geopolitical stability. Fuel burn is a significant source of 
airline expense that affects profitability. Previous research in this area has focused on examining the impact of 
jet fuel prices on airline profitability and the value of the firm (Government Accountability Office [GAO] Report, 
September 2014). Fuel burn is also a significant source of greenhouse gas emissions. Here again, there is 
literature that looks at the effect of energy prices and exchange-traded allowance units of carbon dioxide on 
airline profitability (Murphy, Li, Murphy, & Cummins, 2013). Today, with concerns about global warming, 
regulatory pressure on airlines to evaluate alternatives and discussions about the pricing of carbon emissions, it is 
important to consider viable alternatives to jet fuel. 

Our work investigates alternatives to jet fuel and switching from conventional jet fuel based on varying emission 
profiles, production costs and varying carbon prices. We use a simple decision support system to examine the 
link between the life cycle emissions of a range of fuels, economic costs of production and varying carbon prices. 
We investigate the impact of production costs and emissions from using various fuels on actual costs in a $0 
carbon price environment.  

We utilize data from the Life Cycle Analysis of Emissions and cost information from traditional and alternative 
jet fuel sources. Then, by varying the carbon prices, we examine the actual cost of fuel. Relying on emissions 
from individual fuels, carbon prices and production costs, we determine that depending on the price of carbon, 
there may be alternative fuels that are competitively priced. In addition, producers may consider switching from 
conventional jet fuel to specific alternative jet fuels because of the economic advantage. Of course, while 
considering alternate fuels, the safe and reliable operation of the engine and aircraft are paramount.  

Our contributions are in the decision-making area for fuel selection strategies for conventional and alternative jet 
fuels. Our findings contribute to research on decision making in the context of operations and emissions 
management, and provide a strategy for selecting fuel for the airline industry. Our research should provide useful 
information to regulators, traders, risk managers and executives of airlines as well as practitioners of 
sustainability management. 

2. Literature Review 

According to estimates, aviation accounts for approximately 5% of total anthropogenic radiative forcing (Note 2) 
(Lee et al., 2009; Dessens, Köhler, Rogers, Jones, & Pyle, 2014). The International Civil Aviation Organization 
(International Civil Aviation Organization [ICAO], 2013) predicts that as air traffic increases in the future 
(considering a 2010 baseline), total greenhouse gas (GHG) emissions from aviation will be about 500% higher in 
2050. The introduction of aviation biofuels on a large scale is paramount to carbon-neutral growth and reducing 
aviation GHG emissions (IATA, 2009). However, the large-scale deployment of aviation biofuels from pathways 
suited for aviation faces significant challenges. Examples include high production costs and the challenges of 
integrating aviation biofuels into regulatory regimes (Carriquiry, Du, & Timilsina, 2011; Carter, Stratton, 
Bredehoeft, & Hileman, 2011; Gegg, Budd, & Ison, 2014), feedstock availability and scaling-up issues (U.S. 
Department of Energy [DOE], 2011; Seber et al., 2014), the socio-economic and environmental consequences of 
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large-scale changes in land use and competition with food and feed needs (Searchinger et al., 2008; Kretschmer, 
Narita, & Peterson, 2009; Serra & Zilbermann, 2013), the amount of water associated with biomass cultivation 
(Scown, Horvath, & McKone, 2011; Staples et al., 2013), and the scaling-up time required for growing biomass 
and building conversion facilities (Richard, 2010; Winchester, Malinab, Staples, & Barrett, 2014). 

Aviation is responsible for 2% of the world’s carbon dioxide (CO2) emissions (Penner, Lister, Griggs, Dokken, 
& McFarland, 1999), which has caused a great deal of concern. In November 2007, the European Parliament 
voted to bring aviation into the European GHG emission trading system. The legislation was scheduled to take 
effect in 2011, and it would have required that all airlines flying within or into Europe cut their GHG emissions 
by 10% or buy CO2 allowances on the open market (Roosevelt, 2007; Wald & Kanter, 2007). Since 2012, 
emissions from all flights from, to and within the European Economic Area (EEA) —the 28 EU Member States, 
plus Iceland, Liechtenstein and Norway—have been included in the EU Emissions Trading System (EU ETS). 
The legislation, adopted in 2008, was intended to apply to EU and non-EU airlines alike. In order to allow time 
for negotiations on a global market-based measure applied to aviation emissions, the EU ETS requirements were 
suspended for flights in 2012 to and from non-European countries. For 2013–2016, the legislation was also 
amended so that only emissions from flights within the EEA fell under the EU ETS. The EU made this change 
following agreement by the International Civil Aviation Organization (ICAO) Assembly in October 2013 to 
develop a global market-based mechanism to address international aviation emissions by 2016 and apply it by 
2020. In December 2007, the attorney general of the state of California (in conjunction with many other states) 
filed a petition with the US Environmental Protection Agency (EPA) to reduce emissions from aircrafts that 
contribute to global warming (Roosevelt, 2007). On July 25, 2016, the EPA issued the final endangerment 
finding (Note 1) under section 231(a) (2) (A) of the Clean Air Act for aviation emissions. It noted that emissions 
from US aircraft accounted for 12% of all US transportation greenhouse gas (GHG) emissions and 3% of total 
US GHG emissions (Environmental Protection Agency [EPA], 2016). 

3. Description of the Issue 

For the long-term viability of transportation fuels, they must be both economical and environmentally 
sustainable. Alternatives to jet fuel also diversify the sources of energy. Jet fuels from renewable resources have 
a different profile than conventional fuels in terms of their extraction, production and combustion. Given that 
they are based on renewable resources, they can potentially reduce GHG emissions from aviation (ICAO, 2009).  

There has been work done in the literature on developing a methodology and tool for assessing feedstock 
readiness levels for converting plant-based feedstock into aviation biofuels (Steiner, Lewis, Baumes, & Brown, 
2012). There are also studies on the maturity of technological and commercial options for lignocellulosic based 
biomass feedstock for jet fuel (Mahwood, Gazis, Hoefnagels, & Jong, 2015), which documents extensive 
variation in both the technological capabilities as well as the commercial and manufacturing capabilities of 
different pathways. There has also been work done in the literature on how the aviation industry should respond 
to the global carbon cap, especially the role of offsetting aviation emissions and carbon credits (Becken & 
Mackey, 2017). Other studies have looked at how airlines should operate in a carbon-constrained world in terms 
of adjusting routes (Ko, Yang, & Kim, 2017).  

The focus of this paper is a comparison of GHG emissions from various alternatives to jet fuel, the associated 
production costs and the variations in carbon pricing in order to determine the optimal fuel selection in a 
carbon-constrained world. The data for each analysis come from the literature.  

To determine whether there are benefits from producing and using alternative jet fuels, we consider the 
economic benefits of putting a price on GHG emissions. Alternatives to traditional jet fuels may hold the 
promise of a solution to volatile oil prices, energy security, regulatory issues and environmental issues and may 
also help reduce the greenhouse gas impact from aviation. In addition, utilizing an alternative fuel source could 
help airlines comply with regulations without paying penalties or buying carbon credits from the marketplace. 

4. Method 

4.1 Conventional and Alternative Jet Fuels and Emission Profiles  

The metrics for comparing alternatives to jet fuels consider whether the alternative fuels can work with existing 
systems in the transportation infrastructure. They also consider issues related to engine operations such as the 
fuel’s density, flash point and stability. Additional concerns revolve around whether the production process 
currently exists on a commercial scale, the potential for producing alternative fuels to displace petroleum-based 
jet fuel, the cost of producing alternate fuel and the economic viability of doing so, the life cycle of the 
greenhouse gas and air emissions associated with the production of these alternative fuels and the relative 
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While Table 1 lists the GHG emissions from a variety of fuels (Stratton et al., 2010), Table 2 provides the cost 
for fuels (Hileman et al., 2009), and a wide range in carbon pricing as outlined historically (World Bank, 2015; 
Markets Insider, 2019) is considered. 

6. Development of the Decision Support System Model 
We developed a simulation (.xls and VBA model) to test a model of fuel production costs coupled with life cycle 
greenhouse gas emissions for conventional jet fuel and alternatives to traditional jet fuel. The model included 
consideration of the cost of environmental regulations, as reflected in GHG prices in a carbon-constrained world, 
in order to obtain the true cost of fuel. 

The actual low-price situation takes the base low cost of the fuel and adds the carbon cost based on the emission 
profile of the fuel and the cost of GHGs. The actual high price situation takes the base high cost of the fuel and 
adds the carbon cost based on the emission profile of the fuel and the cost of GHGs. This simulation allows for 
different costs of GHG to be considered and emission costs to be included as part of the fuel costs to allow for 
optimal fuel selection. 

We considered four different scenarios for GHG pricing: 

1) No charge for greenhouse gas emissions, meaning the GHG price is $0/ton 

2) GHG price is $5/ton 

3) GHG price is $50/ton 

4) GHG price is $100/ton 

 

Table 3. Actual price of fuel at $0/ton for GHG  

 Total WTW 
GHG 
Emissions 
(gCO2e/MJ) 

GHG 
emissions 
(ton/boe) 

GHG 
prices 
($/ton) 

GHG 
costs in 
$/barrel 

GHG 
costs 
in 
$/gal 

2017 
Base 
Low 
Cost 
($/gal) 

2017 
Base 
High 
Cost 
($/gal) 

2017 
Actual Low 
Price 
Situation 
($/gal) 

2017 
Actual 
High Price 
Situation 
($/gal) 

Jet Fuel 87.5 0.565   $0.00 $0.00 $1.20 $2.57 $1.20 $2.57 
Oil Sands 103.4 0.668   $0.00 $0.00 $1.19 $1.55 $1.19 $1.55 
FT NG 101 0.652   $0.00 $0.00 $1.40 $2.50 $1.40 $2.50 
FT Coal w/CCS 97.2 0.628   $0.00 $0.00 $1.60 $1.92 $1.60 $1.92 
FT (Coal + Biomass) 
with CCS 

2.8 0.018   $0.00 $0.00 $1.97 $2.39 $1.97 $2.39 

Palm Oil to HRJ with 
no land use 

30.1 0.194   $0.00 $0.00 $2.12 $2.78 $2.12 $2.78 

 

Table 4. Actual price of fuel at $5/ton for GHG  

 Total WTW 
GHG 
Emissions 
(gCO2e/MJ) 

GHG 
emissions 
(ton/boe) 

GHG 
prices 
($/ton) 

GHG 
costs in 
$/barrel 

GHG 
costs 
in 
$/gal 

2017 
Base 
Low 
Cost 
($/gal) 

2017 
Base 
High 
Cost 
($/gal) 

2017 
Actual Low 
Price 
Situation 
($/gal) 

2017 
Actual 
High Price 
Situation 
($/gal) 

Jet Fuel 87.5 0.565 $5.00 $2.83 $0.07 $1.20 $2.57 $1.267 $2.637 
Oil Sands 103.4 0.668 $5.00 $3.34 $0.08 $1.19 $1.55 $1.269 $1.629 
FT NG 101 0.652 $5.00 $3.26 $0.08 $1.40 $2.50 $1.477 $2.577 
FT Coal w/CCS 97.2 0.628 $5.00 $3.14 $0.07 $1.60 $1.92 $1.674 $1.994 
FT (Coal + Biomass) 
with CCS 

2.8 0.018 $5.00 $0.09 $0.00 $1.97 $2.39 $1.972 $2.392 

Palm Oil to HRJ with 
no land use 

30.1 0.194 $5.00 $0.97 $0.02 $2.12 $2.78 $2.143 $2.803 
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Figure 9. Actual high price situation for a range of GHG prices from $0/ton to $250/ton 

 

8. Conclusions and Recommendations 

As the results indicate, it seems clear that there is a place for sustainable alternatives to traditional jet fuel in 
aviation. While traditional jet fuel is the preferred fuel of choice when oil prices are low, the situation changes 
when GHG prices hit $70/ton. At this GHG price, Fischer Tropsch (Coal + Biomass) with CCS becomes the 
preferred choice of fuel. Similarly, when oil prices are high, oil sands are the preferred fuel of choice. However, 
when GHG prices hit $80/ton, oil sands are no longer the preferred fuel. At this GHG price, Fischer Tropsch 
(Coal + Biomass) with CCS becomes the preferred choice of fuel. 

While we have made contributions in the area, the study is not without limitations. While fuel selection is 
important, when evaluating a switch from conventional to alternate sources of jet fuel other considerations are of 
concern as well. Examples include the practical ramifications of supply chain issues, operational issues and 
infrastructure issues. All of the alternate fuels we studied can be made compatible with the current infrastructure. 
From a commercial standpoint, currently only jet fuel made from oil sands has the potential for large-scale 
production, depending on oil prices. There continue to be uncertainties related to FT fuels including technology 
and regulatory issues that affect production costs, as well as the technology for capturing carbon dioxide and 
regulatory issues around its sequestration. Additionally, for FT based fuels there may be feedstock supply or 
pricing challenges from competing needs for automotive fuel or energy production. For palm oil based HRJ, 
there are land use and feedstock supply issues affecting the selection of this source for aviation fuel, in addition 
to the food vs. energy debate. While it is clear that in the age of climate change, we need to seek alternatives to 
jet fuel derived from crude oil, researchers must investigate the above-mentioned issues in greater detail, 
providing opportunities for future research on this topic.  
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Notes 
Note 1. EPA’s Final Endangerment finding is the scientific evidence that greenhouse gases cause climate change. 

Note 2. Total anthropogenic radiative forcing is the radiative effect (the difference between the amount of energy 
absorbed by the Earth and that reflected) as a result of human activity. 

Note 3. Well to wake GHG emissions is a lifecycle analysis of greenhouse gases from the extraction and 
recovery of the feedstock to its transport, to the production of fuel, its transport and then its combustion. 
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