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Abstract

We will present two types of geometric hyperplanes of the dual half-spin geometry D5,3 , the class of subspaces of kind

p⊥ (p is a point in D5,3) and substructures called Shult sets are determined to be hyperplanes of such geometry. Moreover

we construct a binary constant weight code using the hyperplanes of the geometry.
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1. Introduction

In a certain class of point-line geometries the geometric hyperplanes were classified. In [Bruyn, B. D. & Pralle, H.,

2007] the hyperplanes of DH(5,4) were characterized. In [Bruyn, B. D., 2007, p307] and [Bruyn, B. D., 2007, p309] All

hyperplanes of DW(2n-1,q), q � 2 and DW(5, 2h) are determined. In this paper we presented two types of hyperplanes

of the dual half-spin geometry D5,3(q) and we constructed a new family of binary constant-weight codes using such

hyperplanes. First we present some definition of terminology’s that will be used. For most of the following definitions see

[Buekenhout, 1974]. Given a set I, a geometry Γ over I is an ordered triple Γ = (X, ∗,D), where X is a set, D is a partition

Xi of X indexed by I, Xi are called components, and ∗ is a symmetric and reflexive relation on X called incidence relation

such that: x ∗ y implies that either x and y belong to distinct components of the partition of X or x = y. Elements of X are

called objects of the geometry, and the objects within one component Xi of the partition are called the objects of type i.
The subscripts that index the components are called types. The obvious mapping τ : X −→ I, which takes each object to

the index of the component of the partition containing it is called the type map τ. A point-line geometry (P, L) is simply

a geometry for which | I | = 2, one of the two types is called points; in this notation the points are the members of P, and

the other type is called lines. Lines are the members of L. If p ∈ P and � ∈ L, then p ∗ � if and only if p ∈ �. In point-line

geometry (P, L), we say that two points of P are collinear if and only if they are incident with a common line. (We use

the symbol ∼ for collinear). The singular rank of a space Γ is the maximal number n (possibly ∞ ) for which there exist a

chain of distinct subspaces ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xn such that Xi is singular for each i, Xi � Xj , i � j. For example rank

(∅) = -1, rank (p) = 0 where p is a point and rank (�) = 1 where � a line.

x⊥ means the set of all points in P collinear with x, including x itself. A subspace of a point-line geometry Γ = (P, L)

is a subset X ⊆ P such that any line which has at least two of its incident points in X has all of its incident points in X.

< X > means the intersection over all subspaces containing X, where X ⊆ P. Lines incident with more than two points

are called thick lines, those incident with exactly two points are called thin lines. In a point-line geometry Γ = (P, L), a

path of length n is a sequence of n + 1 (x0, x1, · · · , xn) where, (xi, xi + 1) are collinear, x0 is called the initial point and xn

is called the end point. A geodesic from a point x to a point y is a path of minimal possible length with initial point x and

end point y. We denote this length by d(x, y), the length of the geodesic from x to y is called the distance between x and y.

The diameter of the geometry is the maximal distance of points. A geometry is called connected if and only if for any two

of its points there is a path connecting them. A subset X of P is said to be convex if X contains all points of all geodesics

connecting two points of X. A polar space is a point-line geometry Γ = (P, L) satisfying the Buekenhout-Shult axiom: For

each point-line pair (p, l) with p not incident with � ; p is collinear with one or all points of l, that is | p⊥ ∩ � |= 1 or else

p⊥ ⊃ �. Clearly this axiom is equivalent to saying that p⊥is a geometric hyperplane of for every point p ∈ P. A point-line

geometry Γ = (P, L) is called a projective plane if and only if it satisfies the following conditions [Cooperstein, 1977]:

i- Γ is a linear space; every two distinct points x, y in P lie exactly on one line,

ii- every two lines intersect in one point,

iii- there are four points no three of them are on a line.

A point-line geometry Γ = (P, L) is called a projective space if the following conditions are satisfied:

i- every two points lie exactly on one line (linear),

ii- if �1, �2 are two lines with �1 ∩ �2 � φ, then 〈�1, �2〉 is a projective plane. (〈�1, �2〉 means the smallest subspace of Γ

containing �1 and �2.
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A point-line geometry Γ = (P, L) is called a parapolar space if and only if it satisfies the following properties:

i- Γ is connected gamma space,

ii- for every line �; �⊥ is not a singular subspace,

iii- for every pair of non-collinear points x, y; x⊥ ∩ y⊥ is either empty, a single point, or a non-degenerate polar space

of rank at least 2.

If x, y are distinct points in P, and if |x⊥ ∩ y⊥| = 1, then (x, y) is called a special pair, and if x⊥ ∩ y⊥ is a polar space, then

(x, y) is called a polar pair or ( a symplectic pair). A parapolar space is called a strong parapolar space if it has no special

pairs.

A subspace of a point line geometry Γ = (P, L) is called a geometric hyperplane if it is a proper subspace containing at

least one point of every line. Shult set. A subset S of a geometry of diameter n is called a partial Shult set if the distance

between any pair of points of S is n. If the maximum is achieved then S is called a Shult set.

2. Definition of Dual half-spin geometry D5,3

(For the graph of D5,3 see figure 1 at the end of the paper).

Consider the classical polar space Δ = Ω+(10, F) that comes from a vector space of dimension 10 over a finite field

F = GF(k) with a symmetric hyperbolic bilinear form. The two classes M1, M2 consist of maximal totally isotropic 5-

dimensional subspaces. Two 5-subspaces fall in the same class if their intersection is of odd dimension. The geometry of

type D5,3(F) is the point-line geometry (P, L), whose set of points P is corresponding to the class S 3 that is: the collection

of all totally isotropic 3-dimensional subspaces of the vector space V , and whose lines are corresponding to the collection

of all 5-dimensional subspaces of the vector space V that are fall in the class M1. A point C is incident with a line B if and

only if C ⊂ B as a subspaces of V . To define the collinearity, let C1 and C2 be two point (the points are the T.I 3-spaces),

then C1 is collinear to C2 if and only if the intersection of C1 and C2 is a T.I 1-dimensional space. This intersection

in addition to the complement of C1 and C2 must form a T.I 5-dimensional space. The elements of the class M2 are

geometries of type A4,3(F) .

The symplecta of D5,3(F) are the Grassmannians of type A3,2(F) that are corresponding to the collection of TI 2 dimen-

sional spaces.

Notation. Let the map Ψ : P → V defined above, i.e., Ψ(p) is the T.I. 3-dimensional subspace corresponding to the point

p. We will use Ψ for the rest of the geometry; for example Ψ(D4,2) is the T.I. 1-dimensional subspace corresponding to a

geometry of type D4,2. The inverse map Ψ−1 will be used for the inverse; for example Ψ−1(C) is the point corresponding

to the T.I. 3-dimensional subspace C. The following two theorems was presented and proved in [Abdelsalam, 2007].

Theorem 2.1 [Abdelsalam, 2007]. Let Γ = (P, L) be a point-line geometry of type D5,3 , then the following are satisfied:

P1 Γ is a strong parapolar space of diameter 4.

P2 The symlecta of the geometry are of type A3,2.

P3 If (p, S ) is a pair of non-incident point-symplecton, then rank(p⊥ ∩ S )= -1 ,0, 2.

P4 If S 1 and S 2 are two different symplecta of D5,3 , then rank(S 1 ∩ S 2)= -1, 0.

Theorem 2.2 [Abdelsalam, 2007]. Let Γ = (P, L) be a point-line geometry of type D5,3 , then the following are satisfied:

i. Let (p, S ) be a non-incidence pair of a point p and a symplecton S . Then rank (p⊥ ∩ S )= -1 ,0 or 2.

ii. Let S 1 and S 2 be two symplecta in D5,3(F). Then rank(S 1 ∩ S 2)=-1 or 0 .

3. The main result

We will determine two types of hyperplanes for the dual half-spin geometry D5,3, theorem 3.1 is to prove that the first

kind of hyperplanes is of the form p⊥ for any point p. In Theorem 3.2 we show that the second type of hyperplanes is

Shult sets.

Theorem 3.1. Let p be a point in the geometry D5,3, then p⊥ is a geometric hyperplane of D5,3.

proof. Let (p, �) be a non incident pair of a point and a line. We prove that � intersects p⊥ nontrivially, so there are three

cases for the intersection of Ψ(p) =< x1, x2, x3 > and Ψ(�) =< y1, y2, y3, y4, y5 >:
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1- Ψ(p) ∩ Ψ(l) = 2-space, say < x, y >, where x = x1 = y1, y = x2 = y2 and x⊥3 ∩ < x, y, y3, y4, y5 >=< x, y, y3, y4 >. Now

we take a point r such that Ψ(r) =< x, y3, y4 >. Since Ψ(p)∩Ψ(r) = 1-space and < x, y, x3, y3, y4 > form a totally isotropic

5-space. Then r is a point in � and collinear to p, so r ∈ p⊥ and � ∩ p⊥ = r.

2- Ψ(p) ∩ Ψ(�) = 1-space, say < x >, where x = x1 = y1 and x⊥2 ∩ < x, y, y3, y4, y5 >=< x, y2, y3, y4 >, x⊥3 ∩ <
x, y, y3, y4, y5 >=< x, y, y2, y3, y5 >. Let s be a point in � such that Ψ(s) =< x, y2, y3 >, then Ψ(p) ∩ Ψ(s) = 1-space

and < x, x2, x3, y2, y3 > form a totally isotropic 5-space. Then p is collinear to s and � ∩ p⊥ = s.

3- Ψ(p) ∩ Ψ(�) = 0-space, then Ψ(p) is contained in a maximal totally isotropic 5-space D =< x1, x2, x3, u, v >. Since

the two maximal totally isotropic 5-spaces Ψ(�) and D fall in the same class of the classical finite polar space Ω+(10, F),

then D ∩ Ψ(�) =3-space, say < x, y, z >, where x = x1 = y1, y = u = y2 and z = v = y3 at the same time take

x⊥2 ∩ < x, y, z, y4, y5 >=< x, y, z, y4 > and x⊥3 ∩ < x, y, z, y4, y5 >=< x, y, z, y5 >. Then we choose a point t in the line � such

that Ψ(t) =< x, y, z > and since Ψ(p) ∩ Ψ(t) =< x >, p is collinear to t and � ∩ p⊥ = t .

Theorem 3.2. Any Shult set in the geometry D5,3 forms a geometric hyperplane.

Proof: Let � be a line and p be a point in Shult set such that Ψ(p) =< x1, x2, x3 > and Ψ(�) =< y1, y2, y3, y4, y5 >. The

proof is to find a point incident to � and at a distant equal 4 from the point p, now there are three cases for Ψ(p) ∩ Ψ(�):

1- Ψ(p) ∩ Ψ(�) = 0-space, then Ψ(p) is contained in maximal totally isotropic 5-space, < x1, x2, x3, u, v >. Then there are

a sequence of points r, s and t such that Ψ(r) =< y3, y4, y5 >, Ψ(s) =< y2, y3, u > and Ψ(t) =< x1, u, v >. If we choose a

point q incident to the line � such that Ψ(q) =< y1, y2, y3 >, then

Ψ(q) ∩ Ψ(r) =< y3 >,

Ψ(s) ∩ Ψ(r) =< y3 >,

Ψ(s) ∩ Ψ(t) =< u >,

Ψ(t) ∩ Ψ(p) =< x1 >

Since < y1, y2, y3, y4, y5 >, < u, y2, y3, y4, y5 >, < u, y2, y3, v, x1 > and < x1, x2, x3, u, v > are totally isotropic 5-space and

Ψ(�)∩ u⊥ =< y2, y3, y4, y5 >, Ψ(�)∩ v⊥ =< y2, y3, y1, y5 >, then q is collinear to r, r is collinear to s, s is collinear to t and

t is collinear to p. This means that d(p, q) = 4.

2- Ψ(p) ∩ Ψ(�) = 1-space = < x >, where x = x1 = y1. then Ψ(p) is found in a maximal totally isotropic 5-space

D =< x, x2, x3, u, v > and the points of the geodesic from p to q can be chosen to be r, s and t such thatΨ(r) =< u, y4, y5 >,
Ψ(s) =< y5, y3, v > and Ψ(t) =< x3, u, v >, where:

Ψ(q) ∩ Ψ(r) =< y4 >,

Ψ(s) ∩ Ψ(r) =< y5 >,

Ψ(s) ∩ Ψ(t) =< v >,

Ψ(t) ∩ Ψ(p) =< x3 >,

If Ψ(�) ∩ u⊥ =< y2, y3, y4, y5 > , Ψ(�) ∩ v⊥ =< y4, y3, y1, y5 >, then r is collinear to q with a line is corresponding to

< y2, y3, y4, y5, u >, r is collinear to s with a line < u, v, y3, y4, y5 >, s is collinear to t with a line < x3, y3, y5, v, u > and t is

collinear to p with a line corresponding to < x3, x2, x1, v, u >. Then d(q, p)= 4, i.e., � intersects H by q.

3- Ψ(p) ∩ Ψ(�) = 2-space = < x, y >, where x = x1 = y1 and y = x2 = y2. Ψ(p) is found in a maximal totally isotropic

5-space D =< x, y, x3, u, v > and the geodesic between the points p and q (Ψ(q) =< y3, y4, y5 >, Ψ(p) =< x, y, x3 >)

consists of the points r, s and t such that Ψ(r) =< u, v, y5 >, Ψ(s) =< y4, y3, u > and Ψ(t) =< x3, y4, v >. Then

Ψ(q) ∩ Ψ(r) =< y5 >,

Ψ(s) ∩ Ψ(r) =< u >,

Ψ(s) ∩ Ψ(t) =< y4 >,

Ψ(t) ∩ Ψ(p) =< x3 >,

If Ψ(�) ∩ u⊥ =< x, y3, y4, y5 > , Ψ(�) ∩ v⊥ =< y4, x3, y3, y5 > , then r is collinear to q with a line is corresponding to

< v, y3, y4, y5, u >, r is collinear to s with a line < u, v, y3, y4, y5 >, s is collinear to t with a line < x3, y3, y4, v, u > and t is

collinear to p with a line corresponding to < x3, y, x, y4, v >. Then d(q, p) = 4, and the point q is in Shult set.

4. Constant-weight codes using hyperplanes

The following definitions can be found in [Hoffman, 1992].

94 ISSN 1916-9795 E-ISSN 1916-9809



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 1; February 2011

A code C of length n and size M over a field F is just a subset of Fn of cardinality M, then we say that C is (n,M)-code.

Thus each code consists of ”codewords” (vectors in Fn) and the number of codewords is the size of the code.

The Hamming weight of u = (x1, x2, , xn) is the number of non-zero coordinates xi , i = 1, 2, , n, it is denoted by wh(u).

Let C be a code of length n and u, v be two codewords. The hamming distance between u and v, dh(u, v), is the number of

coordinate in which they differ, that is dh(u, v) = wh(u + v). If d = minimum {dh(u, v) : u, v ∈ C, u � v}; then d is called

the minimum distance of C, in this case we say that C is (n,M, d)-code. If C is a linear vector subspace of Fn, then C is

called a linear code and if the dimension of C is k; we say that C is [n, k, d]-code. If all codewords in C have the same

hamming weight w then C is called a constant-weight code. An (n,M, d,w)-code is a constant-weight (n,M, d)-code with

w as the common weight of all codewords.

The following two Propositions 4.1 and 4.2 will be used in the proof of the result in Theorem 4.3. The propositions and

their proofs can be found in [Cameron P.J., 1992].

Proposition 4.1 [Cameron P.J., 1992]. The number of subspaces of dimension k in a vector space of dimension n over

GF(q) is given by the formulae:

(qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)

Remark. This number in Proposition 4.2 is called a Gaussian coefficient, and is denoted by:[
n
k

]
q

proposition 4.2. [Cameron P.J., 1992]. Let V be equipped with a bilinear form then the number of totally isotropic

k-subspaces in the hyperbolic case Ω+(2n, q) is:

[
n
k

]
q

k−1∏
i=0

(qn−i−1 + 1).

We will use the hyperplanes of type p⊥ to construct a new family of binary constant- weight codes.

Theorem 4.3. Let Γ = (P, L) be a point-line geometry of type D5,3 and H be a hyperplane of type p⊥i , pi ∈ P. Let G = (gi j)

be the incidence matrix such that

gi j =

{
1 if p ∈ H,
0 if p not in H.

Then the rows of G represent a binary constant-weight (N,M, d,w) non-linear code of parameters: N = M = P,

w = q3(q3 − 1)(q4 − 1),

d = 2w − 2(q2 + 1)2(q + 1)2(q3 + 1)

Proof: Since p⊥i represents a hyperplane of Γ (pi ∈ P), the number of rows and the number of columns of the matrix G
are the same number of points of Γ , so the number of code word M (the size of the code) is the cardinality of P. Then

N = M =| P | . Now to compute the hamming weight of the code, let p j ∈ P. Then p j ∈ H if and only if p j is collinear

to pi (H is a hyperplane corresponds to p⊥i ) and that is true if Ψ(p j) ∩ Ψ(pi)=1-space . So the number of points in the

hyperplane H is equal the number of points that are collinear to pi that are the number of totally isotropic 1-space in the

3-space Ψ(pi) which is ( by Propositins 4.2 ) equal to

[
n
k

]
q

k−1∏
i=0

(qn−i−1 + 1).

where n =3 and k = 1. Then

w =
[

3

1

]
q

(q2 + 1),
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w =
(q3 − 1)(q3 − q)(q3 − q2)(q2 + 1)

q − 1

w = q3(q3 − 1)(q4 − 1).

Two rows of G that correspond to the hyperplanes p⊥i and p⊥j have 1 in the tth column if the points pt is incident with both

hyperplanes. Since any two hyperplanes intersect in a projective plane or disjoint, it follows that the corresponding two

rows differ in at least 2w − 2 | p⊥i ∩ p⊥j | positions. The least of these numbers is when the two hyperplanes intersect in a

projective plane, it follows that the distance is:

d = 2w − 2max | p⊥i ∩ p⊥j | .
Then

d = 2w − 2

[
4

3

]
q

2∏
i=0

(q3−i + 1),

d = 2w − 2(q2 + 1)2(q + 1)2(q3 + 1).
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