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Abstract

In this paper FRCA Solver for solving linear programming problems is presented. This software provides the computer-
ized implementation of Feasible Region Contraction Algorithm (FRCA) developed by Effanga (2009). The solver which
can solve linear programming problem of any size generates a sequence of interior feasible points that converges at the
optimal solution. The solver is validated by using it to solve several linear programming problems one of which involves
six bounded variables and three functional constraints presented in this paper. The solution obtains by the FRCA solver
compared favorably with that of others software like MATLAB and OPTIMIZER.

Keywords: FRCA Solver, Linear programming, Interior feasible point, Optimal solution, Canonical form

1. Introduction

A number of computer software is available for solutions of linear programming problems. Some are based on the simplex
algorithm and its variants, e.g. Optimizer in Corel Q Pro, CPLEX, LINDO, MATLAB, TORA, EXCEL SOLVER, AMPL,
LINGO, etc. see Taha (2006), and some are based on the interior point algorithms, e.g. MOSEX. Fourer(2001).

Although the simplex algorithm and its variants, hence the software based on them, have enjoyed widespread acceptance
and usage in solving linear programming problems, they solve linear programming problems in exponential time. An
algorithm that solves linear programming problem in polynomial time is considered to be efficient. A first attempt to
solve linear programming problems in polynomial time was the development of an interior point algorithm by Karmarkar
(1984). Since the development by Karmarkar there has been a growing interest in the interior point method for solving
linear programming problems. See Freun and Mizuno (1996), Ye (1997), Terlaky and Boggs (2005). How to solve large
scale linear programming problems by interior point method under MATLAB environment was reported by Zhang (1996).

The existing interior point algorithms have some drawbacks such as extensive calculation requirements, large number of
iterations and large computer space requirements. See Eiselt et al (1987), Terlaky and Boggs (2005). In this paper, new
software for solutions of linear programming problems called FRCA SOLVER is presented. This software provides the
computerized implementation of Feasible Region Contraction Algorithm (FRCA) developed by Effanga (2009).

The FRCA Solver has features such as the automated generation of the corresponding dual problem for the given primal
problem; saving and loading of data associated with the given linear programming problem; copying and pasting of data
and modification of data values as required; and generation and printing of linear programming problem solutions.

The main screen of the application consists of data grids which display the data value associated with a given linear
programming problem. The data grids are divided into two areas, the upper area and the lower area. The upper area
displays the objective function and the constraints. When the application is started the data grids in this area are initially
blank, and are not directly editable. The lower area contains the buttons for ‘New’, ‘Modify’, ‘Clear’, and ‘Solve’.
Information on the various options accessed by these buttons is given in the menu options.

The main window also features a menu bar where all the functions available in the application can be accessed. The menu
options are the File Exit option; Edit copy option, Edit paste option, Edit clear option, Edit reset option; View parameter
option, View detailed reports option; LP problem new option, LP problem save option, LP problem load option, LP
problem modify option and LP problem solve option.
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2. Step by Step Guide

This section provides a step by step guide for setting up and solving a linear programming problem using the FRCA
SOLVER.

Step 0: Set up linear programming problem in canonical form.

Step 1: Select the ‘New’ option under the LP problem menu or click on ‘New’ button at the bottom of the application
window.

Step 2: In the displayed dialog window,

(i) Under the LP problem section, specify the number of the decision variables and the number of constraints in the LP
problem, in the appropriate input fields.

(ii) Under the results section, select the desired report format, Detailed or sum- mary.

(iii) In the last section - Specify data?, select ‘Yes’, if you intend to input the data using the data screen, else, select ‘No’
to create a blank data set.

(iv) Click on the ’OK’ button to proceed or ‘Cancelled’ to abort the operation.

Step 3:

If a blank data set was specified in step 2, an empty data grid is displayed which the user can paste data, otherwise the data
input screen dialog window displayed. The following options are given for the input (or modification) of the LP problems:

(i) Select the objective of the primal problem from the drop down list. This will be either maximization or minimization.

(ii) Specify the value of the epsilon in the input field labeled value of ε.

(iii) Set the vertices to be used by the modified simplex splitting algo- rithm (MSSA). To do this click on the ‘set vertices’
button. A new window is displayed. Click ‘OK’ after inputting the values of the vertices or ‘cancelled’ to abort it.

(iv) Specify the coefficients of the objective function under the section labeled ‘objective function coefficients’

(v) Click the ‘OK’ button to set the data or ‘Canceled’ to abort.

Step 4:

The inputted data is displayed in the data grid of the application main window. The parameters such as the vertices and
epsilon can be viewed using the ‘parameter’ option under the view menu.

Step 5:

After verifying that the inputted data is correct, select the ‘Solve’ option to the linear programming problem. This brings
up the option dialog window. In this dialog, select the preferred method of getting the initial feasible solution for the dual
problem. When the desired option has been selected, click on the ‘OK’ button. A dialog window displaying an input
interface based on the selected option is displayed. Input the required data and click the ‘OK’ button. A report of the
problem solution is then generated.

Step 6:

The linear programming problem data can be saved at any time by selecting the ‘Save’ option under the LP problem menu.
The saved data can be loaded at a later time using the ‘load’ option under the LP problem menu.

3. Setting Vertices for the Initial Simplex

Given the linear programming problem in canonical form,

Maximize Z =
n∑

j=1
c jx j

subject to:

n∑
j=1

ai jx j ≤ bi, j = 1, 2, · · · ,m

xj ≥ 0, j = 1, 2, · · · , n

Effanga (2009) defined the vertices for the initial simplex enclosing the feasible region of the above linear programming
problem by the following (n + 1)n - dimensional vectors:

v1(R, 0, 0, · · · , 0); v2(0,R, 0, · · · , 0); · · · ; vn(0, 0, 0, · · · ,R); vn+1(0, 0, 0, · · · , 0),
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where the number R is determined as follows:

Let bi∗ = max
1≤i≤m

{|bi|}
Then

R = bi∗
M

and M = min
(

min
1≤ j≤n

{∣∣∣ai∗ j

∣∣∣} , 1
2

)
Solving Linear Programming Problem with FRCA Solver

Consider the linear programming problem below (Hillier and Lieberman, 2005)

Mminimize Z = 8x1 + 10x2 + 7x3 + 6x4 + 11x5 + 9x6

subject to:

12x1 + 9x2 + 25x3 + 20x4 + 17x5 + 13x6 ≥ 60

35x1 + 42x2 + 18x3 + 31x4 + 56x5 + 49x6 ≥ 150

37x1 + 53x2 + 28x3 + 24x4 + 29x5 + 20x6 ≥ 125

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1

0 ≤ x3 ≤ 1

0 ≤ x4 ≤ 1

0 ≤ x5 ≤ 1

0 ≤ x6 ≤ 1

The detailed report produced by the FRCA Solver is as follows.

< Table 2 >

4. Comparison OF FRCA with OPTIMIZER and MATLAB

In this section, the performance of our FRCA software is compared with the popular simplex algorithm under OPTI-
MIZER environment and the interior point algorithm by under MATLAB environment. The modes of comparison are the
objective function value, values of decision variables and number of iterations. The table below shows the comparison
of the three methods using the linear programming problem in Section 4. The allowed solution precision in each of the
methods is 0.01

< Table 1 >

Terlaky and Boggs (2005) showed that the interior point algorithms are more efficient than the simplex algorithm when
applied to large scale linear programming, but less efficient when applied to small scale linear programming like the
one in section 4. As one can see in the above table, FRCA performs better than the MATLAB in all ramifications.
The OPTIMIZER performs better than the other two in this example because of the small nature of problem. Hence by
implication FRCA would perform better than the simplex algorithm in a large scale problem.

5. Concluding Remarks

The FRCA Solver presented in this paper is a powerful software capable of solving large - scale linear programming
problems with some restrictions. The solver can only solve linear programming problems given in canonical form. The
solver generates sequence of interior feasible points which converge at the optimal solution. Setting up the vertices for
the initial simplex for both the primal and dual problems is very crucial for the working of the solver. Therefore, if the
value of R determine by the formula in section 2 leads to no initial feasible solution, it should be made to be large enough
for the confirmation of the existence of no initial feasible solution. It is worth noting that when the right - hand sides of
the constraints are scale down by a multiplication factor of 10−n for a positive integer n the rate of convergence of FRCA
would increase sharply.
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Table 1. Comparison of Different Softwares

MODE FRCA MATLAB OPTIMIZER
Decision variable 1, .611, .330, 1, .162, .885 .997, .587, .302, .999, .410, .634 1, .623, .343, 1, .048, 1
Objective function 32.157 32.177 32.155

Number of iterations 13 85 9

Table 2. F.R.C. Algorithm Solver Report

Solution of LP Problem using the Feasible Region Contraction Algorithm

Primal Problem

Maximize Z = −8x1 − 10x2 − 7x3 − 6x4 − 11x5 − 9x6

subject to:

1) −12x1 − 9x2 − 25x3 − 20x4 − 17x5 − 13x6 ≤ −60

2) −35x1 − 42x2 − 18x3 − 31x4 − 56x5 − 49x6 ≤ −150

3) −37x1 − 53x2 − 28x3 − 24x4 − 29x5 − 20x6 ≤ −125

4) x1 ≤ 1

5) x2 ≤ 1

6) x3 ≤ 1

7) x4 ≤ 1

8) x5 ≤ 1

9) x6 ≤ 1

xi ≥ 0, i = 1, · · · , 6.

Dual Problem

Minimize Z = −60y1 − 150y2 − 125y3 + y4 + y5 + y6 + y7 + y8 + y9

subject to:

1) −12y1 − 35y2 − 37y3 + y4 ≥ −8

2) −9y1 − 42y2 − 53y3 + 1y5 ≥ −10

3) −25y1 − 18y2 − 28y3 + y6 ≥ −7

4) −20y1 − 31y2 − 24y3 + y7 ≥ −6

5) −17y1 − 56y2 − 29y3 + y8 ≥ −11

6) −13y1 − 49y2 − 20y3 + y9 ≥ −9

yi ≥ 0, i = 1, · · · , 9.

Vertices

Vertex 1 = [300, 0, 0, 0, 0, 0]

Vertex 2 = [0, 300, 0, 0, 0, 0]
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Vertex 3 = [0, 0, 300, 0, 0, 0]

Vertex 4 = [0, 0, 0, 300, 0, 0]

Vertex 5 = [0, 0, 0, 0, 300, 0]

Vertex 6 = [0, 0, 0, 0, 0, 300]

Vertex 7 = [0, 0, 0, 0, 0, 0]

Dual Vertices

Vertex 1 = [22, 0, 0, 0, 0, 0, 0, 0, 0]

Vertex 2 = [0, 22, 0, 0, 0, 0, 0, 0, 0]

Vertex 3 = [0, 0, 22, 0, 0, 0, 0, 0, 0]

Vertex 4 = [0, 0, 0, 22, 0, 0, 0, 0, 0]

Vertex 5 = [0, 0, 0, 0, 22, 0, 0, 0, 0]

Vertex 6 = [0, 0, 0, 0, 0, 22, 0, 0, 0]

Vertex 7 = [0, 0, 0, 0, 0, 0, 22, 0, 0]

Vertex 8 = [0, 0, 0, 0, 0, 0, 0, 22, 0]

Vertex 9 = [0, 0, 0, 0, 0, 0, 0, 0, 22]

Vertex 10 = [0, 0, 0, 0, 0, 0, 0, 0, 0]

Epsilon

ε = 0.01

Results
Initial Feasible Solution
x(0) = [0.995, 0.995, 0.995, 0.995, 0.995, 0.995]

y(0) = [0.2328, 0.0892, 0.085, 1.1346, 3.3737, 3.428, 3.5355, 3.3737, 3.3737]

Iteration 1

Upper Z(UZ) = −19.7492, Lower Z(LZ) = −50.7467

(UZ − LZ) = 30.9975, is not < ε

New Constraint

10) −8x1 − 10x2 − 7x3 − 6x4 − 11x5 − 9x6 ≥ −35.2479

Feasible Solution: x(1) = [0.7353, 0.6023, 0.8266, 0.9065, 0.5523, 0.6622]

Iteration 2

Upper Z(UZ) = −19.7492, Lower Z(LZ) = −35.2479

(UZ − LZ) = 15.4988, is not < ε

New Constraint

10) −8x1 − 10x2 − 7x3 − 6x4 − 11x5 − 9x6 ≥ −27.4985

No feasible solution

Iteration 3

Upper Z(UZ) = −27.4985, Lower Z(LZ) = −35.2479

(UZ − LZ) = 7.7494, is not < ε

New Constraint

10) −8x1 − 10x2 − 7x3 − 6x4 − 11x5 − 9x6 ≥ −31.3732

No feasible solution

Iteration 4

Upper Z(UZ) = −31.3732, Lower Z(LZ) = −35.2479

(UZ − LZ) = 3.8747, is not < ε
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New Constraint

10) −8x1 − 10x2 − 7x3 − 6x4 − 11x5 − 9x6 ≥ −33.3106

Feasible Solution: x(2) = [0.6895, 0.5551, 0.7138, 0.9079, 0.5322, 0.6511]

Iteration 5

Upper Z(UZ) = −31.3732, Lower Z(LZ) = −33.3106

(UZ − LZ) = 1.9373, is not < ε

New Constraint

10) −8x1 − 10x2 − 7x3 − 6x4 − 11x5 − 9x6 ≥ −32.3419

Feasible Solution: x(3) = [0.785, 0.6861, 0.3562, 0.9914, 0.4729, 0.615]

Iteration 6

Upper Z(UZ) = −31.3732, Lower Z(LZ) = −32.3419

(UZ − LZ) = 0.9687, is not < ε

New Constraint

10) −8x1 − 10x2 − 7x3 − 6x4 − 11x5 − 9x6 ≥ −31.8576

No feasible solution

Iteration 7

Upper Z(UZ) = −31.8576, Lower Z(LZ) = −32.3419

(UZ − LZ) = 0.4843, is not < ε

New Constraint

10) −8x1 − 10x2 − 7x3 − 6x4 − 11x5 − 9x6 ≥ −32.0997

No feasible solution

Iteration 8

Upper Z(UZ) = −32.0997, Lower Z(LZ) = −32.3419

(UZ − LZ) = 0.2422, is not < ε

New Constraint

10) −8x1 − 10x2 − 7x3 − 6x4 − 11x5 − 9x6 ≥ −32.2208

Feasible Solution: x(4) = [0.9428, 0.6152, 0.3105, 0.9959, 0.4473, 0.6059]

Iteration 9

Upper Z(UZ) = −32.0997, Lower Z(LZ) = −32.2208

(UZ − LZ) = 0.1211, is not < ε

New Constraint

10) −8x1 − 10x2 − 7x3 − 6x4 − 11x5 − 9x6 ≥ −32.1603

Feasible Solution: x(5) = [0.9997, 0.611, 0.3303, 0.9999, 0.1615, 0.885]

Iteration 10

Upper Z(UZ) = −32.0997, Lower Z(LZ) = −32.1603

(UZ − LZ) = 0.0605, is not < ε

New Constraint

10) −8x1 − 10x2 − 7x3 − 6x4 − 11x5 − 9x6 ≥ −32.13

No feasible solution

Iteration 11

Upper Z(UZ) = −32.13, Lower Z(LZ) = −32.1603

(UZ − LZ) = 0.0303, is not < ε
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New Constraint

10) −8x1 − 10x2 − 7x3 − 6x4 − 11x5 − 9x6 ≥ −32.1451

No feasible solution

Iteration 12

Upper Z(UZ) = −32.1451, Lower Z(LZ) = −32.1603

(UZ − LZ) = 0.0151, is not < ε

New Constraint

10) −8x1 − 10x2 − 7x3 − 6x4 − 11x5 − 9x6 ≥ −32.1527

No feasible solution

Iteration 13

Upper Z(UZ) = −32.1527, Lower Z(LZ) = −32.1603

(UZ − LZ) = 0.0076, is not < ε

Optimal Solution Found.

Z∗ = −32.1565

x(5) = [0.9997, 0.611, 0.3303, 0.9999, 0.1615, 0.885]

Thus the optimal solution of the original primal problem is as follows:

x1 = 0.9997, x2 = 0.611, x3 = 0.3303, x4 = 0.9999, x5 = 0.1615, x6 = 0.885

and

Z∗ = 32.1565.

102 ISSN 1916-9795 E-ISSN 1916-9809


