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Abstract

In this paper, time-independent Schrödinger equation for a charged particle, in the presence of electric potential and vec-
tor potential, has been solved using He’s Homotopy Perturbation Method (HPM). HPM is one of the newest analytical
methods to solve linear and nonlinear differential equations. In contrast to the traditional perturbation methods, the Ho-
motopy method does not require a small parameter in the equation. In this method, according to the homotopy technique,
a Homotopy with an embedding parameter δ ∈ [0, 1] is constructed, and the embedding parameter is considered as a small
parameter. Using cylindrical coordinates, it has been found that the z-equation of the charged particle is a one-dimensional
harmonic oscillator and the r equation is actually a two-dimensional harmonic oscillator. The obtained results show the
evidence of simplicity, usefulness, and effectiveness of the HPM for obtaining approximate analytical solutions for the
time-independent Schrödinger equation for a charged particle in parallel electric and magnetic fields.

Keywords: Homotopy Perturbation Method, Scalar Potential, Vector Potential, Two-Dimensional Harmonic Oscillator,
Bessel functions.

1. Introduction

The dynamics of charged particles in electric and magnetic fields is of both academic and practical interest in physics
and engineering. The areas where this problem finds applications include the development of cyclotron accelerators,
free electron lasers, plasma physics, cathode-ray, and X-ray tubes. Classically, a charged particle in a time-independent
homogeneous magnetic field executes a circular motion in the plane perpendicular to the direction of the field. The
period of this motion is the inverse of the cyclotron frequency ωc = qB/m, where q is the charge of the particle, m is
the mass of the particle, and B is the strength of the magnetic field. A charged quantum particle in a time-independent
homogeneous magnetic field also executes this circular motion (Dirac, 1958). In addition, the probability distribution
oscillates harmonically with time. Jesus et al (1999) have studied the classical and the quantum dynamics of a charged
particle in oscillating magnetic and electric fields, which are related through the Faraday law. The equations of motion
show two resonance frequencies, one at the Larmor frequency (ωL) and another at the cyclotron frequency (ωc). When
the field frequency equals ωc, the particle is confined to a simple closed trajectory, but when ωL = ωc , it drifts away, the
same happening to off resonance particles whose frequencies are very close to ωc. In addition, the particle eigenstates and
eigenvalues are calculated.

The harmonic oscillator (HO) is one of the most discussed problems in physics. There is a large number of quantum
systems which can be approximated, at least in the limit of small amplitudes, by the HO equations. On the other hand,
there are ”quasi-classical” states for the quantum HO (coherent states) which illustrates the relation between quantum
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and classical mechanics when limit � → 0 is studied (semi-classical limit). Thus, the separability of the HO problem in
different coordinate systems as well as the corresponding eigenstates and eigenvalues are point of considerable interest
(Fendrik and Bernath, 1989). Apart from being one of the few exactly solvable quantum mechanical problems, the HO
physical relevance reaches far beyond the most obvious interpretation of the oscillator as an analogue of the classical
spring force problem. It can be applied rather directly to the explanation of the vibration spectra of diatomic molecules
(Robert and Thomas, 1985). Furthermore, it is the foundation for the understanding of complex modes of vibration in
larger molecules, the motion of atoms in a solid lattice, the theory of heat capacity, and the electromagnetic fields. Any
potential, of arbitrarily complicated form, which possesses a minimum or equilibrium, can, to lowest non-trivial order,
be treated as a harmonic oscillator. Higher order terms in the expansion of the physical potential can then be added as
perturbations (Shankar, 1994).

Ciann-Dong (2006) has demonstrated how quantum harmonic oscillator can be analyzed classically in complex domain.
It has been found that the motion in abstract eigenstate is characterized by eigen-trajectories constructed from the eigen-
functions of Schrödinger equation, along which a particle’s position, velocity, and acceleration in the related eigenstate
can be identified. Granados and Aquino (1999) have studied the correspondence between the states of a two-dimensional
isotropic harmonic oscillator and the states of a Morse oscillator (MO). They proved that the states of a well of the MO are
mapped in a degenerated multiplet of the harmonic oscillator. Gao-Feng et al (2008) have studied the isotropic charged
HO in uniform magnetic field in the non-commutative phase space. The corresponding exact energy is obtained, and
the analytic eigenstates is presented in terms of the confluent hypergeometric function. It has been also shown that in
the non-commutative space, the isotropic charged HO in uniform magnetic field has the similar behaviors to the Landau
problem. Fendrik and Bernath (1989) has solved the Schrödinger equation for the two-dimensional simple harmonic os-
cillator using elliptic coordinates where it is separable. It has been shown that the separability of the HO problem in such
coordinates is independent of the selection of the focal distance.

In this paper, the eigenstates and the corresponding eigenvalues of a charged particle, in the presence of electric potential
and vector potential, are obtained by solving the time-independent Schrödinger equation in cylindrical coordinates. The
separability of Schrödinger equation in cylindrical coordinates in turns leads to one-dimensional and two-dimensional HO
problems. The solution of the One-dimensional HO can be read off directly in terms of Hermit polynomials. On the other
hand, the solution of the two-dimensional HO will be carried out using He’s Homotopy Perturbation Method (HPM).

HPM was proposed first by He (1999). The HPM is designed for solving differential and integral equations, linear and
nonlinear, and has been the subject of extensive analytical and numerical studies. The method, which is a coupling of
a homotopy technique and a perturbation technique, deforms continuously to a simple problem which is easily solved.
This method, which does not require a small parameter in an equation, in contrast to the traditional perturbation methods,
has a significant advantage in that it provides an analytical approximate solution to a wide range of linear and nonlinear
problems in applied sciences. This method doesn’t need linearization, perturbation or un-justified assumptions. The HPM
yields the solution in terms of a rapid convergent series with easily computable components (He, 2003).

In the last two decades with the rapid development of differential equations science, there has appeared ever-increasing
interest in the analytical techniques for linear and nonlinear problems. The widely applied techniques are perturbation
methods. Latif (2005) applied the HPM to search for exact analytical solutions of linear differential equations with
constant coefficients. In addition, based on the precise integration method, a coupling technique of the variational iteration
method (VIM) and HPM is proposed to solve nonlinear matrix differential equations. Rezania et al (2009) used HPM and
VIM to solve the heat equations which are functions on time and space. This type of equation governs numerous scientific
and engineering experimentations. Zhang et al (2006) obtained an explicit analytical solution for nonlinear Poisson-
Boltzmann equation by the HPM. Wang et al (2007) applied HPM to solve reaction-diffusion equations which is governed
by the nonlinear ordinary differential equation. Furthermore, HPM is also applied to solve the Helmholtz equation, and
the results reveal that this method is very effective and simple (Bizzar et al, 2008). Recently, Mahasneh et al (2010) have
solved the heat conduction equation for a homogenous solid metallic sphere using HPM.

HPM has been also used to formulate a new analytical solution for free-particle radial dependent Schrödinger equation
(Mahasneh et al., 2010).

This paper has been divided into six parts. The first part discusses importance of HO in physics, and a brief overview of
the recent studies of the HO problems and the wide use of HPM has also been discussed. For the general Knowledge, part
two highlights on the quantum physics of one-dimensional and three-dimensional harmonic oscillators. Part three lays out
the separability on time independent Schrödinger equation in cylindrical coordinates for a charged particle in the presence
of electric potential and vector potential. The formulation of He’s HPM is given in part four. In part five, the solution
of two-dimensional harmonic oscillator using HPM will be solved and discussed in details. The main conclusions are
summarized in the last part.

2. Physics of Quantum Harmonic Oscillators

In the one-dimensional HO problem, a particle of mass M is subject to a potential V(z) given by:
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V(z) =
1
2

Mω2z2 (1)

where ω is the angular frequency of the oscillator. The Hamiltonian of the particle is

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−�2

2 M

d2

dz2︸����︷︷����︸
1

+
1
2

Mω2 z2︸������︷︷������︸
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

The first term in the Hamiltonian represents the kinetic energy of the particle, and the second term represents the po-
tential energy in which it resides. The quantity � is Planck’s reduced constant. In order to find the eigenvalues and the
corresponding eigenstates, we must solve the time independent Schrödinger equation

ĤΨ = EΨ ⇔ −�2

2 M

d2Ψ(z)
dz2 +

1
2

Mω2 z2Ψ(z) = EΨ(z) (3)

The solution of this second order differential equation in the coordinate basis turns out that there is a family of solutions,
which in the position basis given by (Griffiths, 1995)

Ψn(z) =

⎡⎢⎢⎢⎢⎢⎣√ 1
2n n!

(
Mω

π �

)1/4
× exp

[
−Mω z2

2 �

]
× Hn

⎛⎜⎜⎜⎜⎜⎝√Mω

�
z

⎞⎟⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎥⎦ , n = 0, 1, 2, ... (4)

The functions Hn are the Hermite polynomials, which are given by the generating function

Hn(z) = (−1)n exp (z2) × dn

dnz

(
exp (−z2)

)
(5)

The corresponding eigenvalues of HO are labeled by a single quantum number n,

En =
(
n + 1

2

)
�ω (6)

The eigenvalues of the first six eigenstates are shown in Fig.(1). The energy spectrum shown in Fig.(1) is noteworthy for
three reasons. Firstly, the energies are ”quantized”, and may only take the discrete half-integer multiples of �ω. This is
a feature of many quantum mechanical systems. Secondly, the lowest achievable energy is not zero, but �ω/2, which
is called the ”ground state energy”. In the ground state, according to quantum mechanics, an oscillator performs null
oscillations and its average kinetic energy is positive. It is not obvious that this is significant, because normally the zero
of energy is not a physically meaningful quantity, only differences in energies. The final reason is that the energy levels
are equally spaced, unlike the Bohr model or the particle in a box (Schiff, 1968).

In three dimensional HO problem, the potential V(x, y, z) is given by

V(x, y, z) = 1
2 M (ω2

xx2 + ω2
yy2 + ω2

z z2) (7)

and the time-independent Schrödinger equation

−�2

2 M
∇2Ψ(x, y, z) +

(
1
2 Mω2

xx2 + 1
2 Mω2

yy2 + 1
2 Mω2

z z2
)
Ψ(x, y, z) = EΨ(x, y, z) (8)

Let Ψ(x, y, z) = X(x) Y(y) Z(z) and substituting back in Eq. (8) to get⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−�2

2 M

1
X(x)

d2X(x)
dx2 +

1
2

M ω2
xx2︸�����������������������������������︷︷�����������������������������������︸

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−�2

2 M

1
Y(y)

d2Y(y)
dy2 +

1
2

M ω2
yy2︸����������������������������������︷︷����������������������������������︸

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−�2

2 M

1
Z(z)

d2Z(z)
dz2 +

1
2

M ω2
z z2︸���������������������������������︷︷���������������������������������︸

3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = Ex + Ey + Ez = E

(9)
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The first term is a function of x only, the second term only of y, and the third only of z. so each is a constant (call constants
Ex, Ey, Ez, with Ex+Ey+Ez=E). Therefore

(
−�

2

2 M
d2X(x)

dx2 +
1
2 Mω2

xx2X(x)
)
=ExX(x) (a)(

−�
2

2 M

d2Y(y)
dy2 +

1
2 Mω2

yy2Y(y)
)
=EyY(y) (b)(

−�
2

2 M
d2Z(z)

dz2 +
1
2 Mω2

z z2Z(z)
)
=EzZ(z) (c)

(10)

Each of these is simply the one-dimensional HO. Therefore the eigenvalues are

Ex =
(
nx +

1
2

)
�ωx (a)

Ey =
(
ny +

1
2

)
�ωy (b)

Ez =
(
nz +

1
2

)
�ωz (c)

(11)

So, the energy levels of the three-dimensional HO are denoted by

E =

(
nx +

1
2

)
�ωx +

(
ny +

1
2

)
�ωy +

(
nz +

1
2

)
�ωz (12)

with a non-negative integer n =
(
nx + ny + nz

)
. The corresponding eigenstates are

X(x) =
[√

1
2nx nx!

(
Mωx

π�

)1/4
× exp
[−Mωx x2

2 �

]
× Hn

(√
Mωx

�
x

)]
(a)

Y(z) =
[√

1
2ny ny!

(
Mωy

π�

)1/4
× exp
[
−Mωy y2

2 �

]
× Hn

(√
Mωy

�
y

)]
(b)

Z(z) =
[√

1
2nz nz!

(
Mωz

π�

)1/4
× exp
[
−Mωz z2

2 �

]
× Hn

(√
Mωz

�
z

)]
(c)

(13)

Hence, the general solution Ψ(x, y, z) = X(x) Y(y) Z(z) takes the form

Ψ(x, y, z) =
√

2−(nx+ny+nz )

nx!ny!nz!

(
M3ωx ωy ωz

π3 �3

)3/4
× exp

[
−M (ωx x2+ωyy2+ωzz

2)
2 �

]
× Hnx

(√
Mωx

�
x

)
× Hny

(√
Mωy

�
y

)
× Hnz

(√
Mωz

�
z

) (14)

The wave functions of the quantum HO contain the Gaussian form which allows them to satisfy the necessary boundary
conditions at infinity. However, as in the one-dimensional case, the energy is quantized. The ground state energy is three
times the one-dimensional energy, as we would expect using the analogy to three independent one-dimensional oscillators
(Eisberg and Rensik, 1985). There is one further difference: in the one-dimensional case, each energy level corresponds
to a unique quantum state. In three dimensions, except for the ground state, the energy level are degenerate, meaning there
are several states with the same energy. For isotropic harmonic oscillator where ωx = ωy = ωz = ω, the eigenvalues of the
HO are

En =
(
n + 3

2

)
�ω, n = nx + ny + nz (15)

It can be found in different quantum mechanics books that the degeneracy D(n) of the energy level En is (Cohen-Tannoudji,
1977)

D (n) =
(n + 1) (n + 2)

2
(16)

3. Separability of Schrödinger Equation in Cylindrical Coordinates

In this article, we consider a particle of mass M and charge q that moves in a magnetic field B and an electric field E, both
of which are independent of time. The Lagrangian of a non-relativistic particle in an electromagnetic field is (in SI Units)
is

L =
∑

i

1
2 M ẋ2

i +
∑

i

q ẋi Ai − qϕ (17)

6 ISSN 1916-9795 E-ISSN 1916-9809



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 2; May 2011

where ϕ is the electric scalar potential, and the Ai are the components of the magnetic vector potential. The generalized
momenta can be derived by:

pi =
∂L

∂ẋi

= Mẋi + qAi (18)

Rearranging, we may express the velocities in terms of the momenta, as:

ẋi =
pi − qAi

M
(19)

If we substitute the definition of the momenta, and the definitions of the velocities in terms of the momenta, into the
definition of the Hamiltonian we get (Flugge, 1971)

H =

⎛⎜⎜⎜⎜⎜⎝∑
i

ẋi pi

⎞⎟⎟⎟⎟⎟⎠ − L =
∑

i

(pi − qAi)2

2M
+ qϕ (20)

Rewriting Eq. (20) in terms of momentum operator gives

H =
1

2M
(−i��∇ − q�A) • (−i��∇ − q�A) + qϕ (21)

The time independent Schrödinger equation for the charged particle becomes

1
2M

(−i��∇ − q�A) • (−i��∇ − q�A)Ψ + qϕΨ = EΨ (22)

or

− �2

2M
∇2Ψ +

iq�
2M

(�∇ • (�AΨ) + �A • (�∇Ψ) ) +
q2

2M
A2 + qϕΨ = EΨ (23)

Using the identity
�∇ • (�AΨ) = (�∇ • �A)Ψ + �A • (�∇Ψ) (24)

In Eq. (23), we get

− �2

2M
∇2Ψ +

iq�
2M

((�∇ • �A)Ψ + 2�A • (�∇Ψ)) +
q2

2M
A2 + qϕΨ = EΨ (25)

Now, Let us consider the potentials

ϕ = α z2, and �A =
−Bo(y x̂ + x ŷ)

2
(26)

where α is the stiffness constant, and Bo is a uniform magnetic field. Consequently, the time independent electric and
magnetic fields are given respectively by

�E = −�∇ϕ = −2α z ẑ, �B = �∇ × �A = Boẑ (27)

In addition,

�∇ • �A = 0, �A • (�∇Ψ) =
Bo

2

(
x
∂Ψ

∂y
− y

∂Ψ

∂x

)
, A2 =

B2
o

4

(
x2 + y2

)
(28)

Hence, Equation (25) becomes

− �2

2M
∇2Ψ +

iq�Bo

2M

(
x
∂Ψ

∂y
− y

∂Ψ

∂x

)
+

q2B2
o

8M
(x2 + y2) + qα z2Ψ = EΨ (29)

But the angular momentum Lz is given by

Lz = −i�

(
x
∂

∂y
− y

∂

∂x

)
(30)

So, Eq. (29) takes the form

− �2

2M
∇2Ψ − qBo

2M
LzΨ +

q2B2
o

8M
(x2 + y2) + qα z2Ψ = EΨ (31)
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Since
LzΨ = m �Ψ (32)

Where m is the magnetic quantum number (m = 0, ±1, ±2, . . . . . . ), therfore(
− �2

2M
∇2 +

q2B2
o

8M
(x2 + y2) + qα z2

)
Ψ =

(
E +

qBo�
2M

m

)
Ψ (33)

Now let ω1 = qBo/m, ω2 = (2αq/m)1/2, and use the laplacian in cylindrical coordinates (r, ϕ, z):

− �
2

2M

[
1
r
∂
∂r

(
r ∂Ψ
∂r

)
+ 1

r2
∂2Ψ
∂ϕ2 +

∂2Ψ
∂z2

]
+[

Mω2
1r2

8 +
Mω2

2z2

2

]
Ψ =
(
E + m�ω1

2

)
Ψ

(34)

What is notable about expression (34) is that the coordinate ϕ does not appear except as a variable for differentiation.
When this happens in a classical Hamiltonian we say it is cyclic in the coordinate and the conjugate momentum Pϕ is a
constant of the motion (Goldstein, 2001). However

Lz = −i �
∂

∂ϕ
, so

∂2Ψ

∂ϕ2 = − 1
�2 L2

zΨ = − 1
�2 m2�2Ψ = −m2Ψ (35)

and using separation of variable Ψ(r, ϕ, z) = R(r)Φ(ϕ)Z(z), the expression (34) becomes

−�
2

2M

[
ΦZ 1

r
d
dr

(
r dR

dr

)
− m2

r2 RΦZ + RΦ d2Z
dz2

]
+(

1
8 Mω2

1r2 + 1
2 Mω2

2 z2
)

RΦZ =
(
E + 1

2 M�ω1

)
RΦZ

(36)

Divide by RΦZ and collect the terms to get

{
−�2

2M

[
1

r R

d

dr

(
r

dR

dr

)
− m2

r2

]
+

1
8

Mω2
1 r2
}

︸������������������������������������������������︷︷������������������������������������������������︸
1

+

{
−�2

2M

1
Z

d2Z

dz2 +
1
2

Mω2
2 z2
}

︸���������������������������︷︷���������������������������︸
2

=

(
E +

1
2

M�ω1

)
(37)

The first term depends only on r, the second only on z, so they are both constants; call them Er, and Ez. Therefore

−�2

2M

d2Z(z)
dz2 +

1
2

Mω2
2 z2 Z(z) = Ez Z(z) (38)

and
−�2

2M

[
1
r

d

dr

(
r

dR(r)
dr

)
− m2

r2 R(r)
]
+

1
8

Mω2
1 r2 R(r) = Er R(r) (39)

where,E = Er + Ez − (m�ω1/2). The z equation is a one-dimensional HO, and we can read off immediately that Ez =

(n2 + 1/2)�ω2, with n2 = 0, 1, 2, . . . ., and the corresponding eigenstates are

Z(z) =

⎡⎢⎢⎢⎢⎢⎣√ 1
2n2 n2!

(
Mω2

π �

)1/4
× exp

[
−Mω2 z2

2 �

]
× Hn2

⎛⎜⎜⎜⎜⎜⎝√Mω2

�
z

⎞⎟⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎥⎦ (40)

On the other hand, the r equation is actually a two-dimensional HO problem and will be solved in section five using He’s
HPM.

4. Basic Idea of He’s HPM

To illustrate the basic ideas of the new HPM, we consider the following nonlinear differential equation

A(u) − F(r) = 0, r ∈ Ω (41)

with boundary conditions

B (u,
du

dr
) = 0, r ∈ Γ (42)
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where A is a general differential operator , F(r) is a known analytic function, B is a boundary operator, Γ is the boundary
of the domain Ω . The operator A can, generally speaking, be divided into two parts L and N, where L is linear, while N

is nonlinear. Eq. (40), therefore, can be written as follows (He, 2003):

L(u) + N(u) − F(r) = 0 (43)

By the homotopy technique (Liao, 1997), we construct a homotopy v(r, δ) : Ω × [0, 1] → R which satisfies

H(v, δ) = (1 − δ)[L(v) − L(uo)] + δ [A(v) − F(r)] = 0, δ ∈ [0, 1] , r ∈ Ω (44)

H(v, δ) = L(v) − L(uo) + δ L(uo) + δ [N(v) − F(r)] = 0, δ ∈ [0, 1] , r ∈ Ω (45)

where δ ∈ [0, 1] is an embedding parameter, uo is an initial approximation of Eq. (40), which satisfies the boundary
conditions. Obviously, from Eq. (43) and Eq. (44), we have

H(v, 0) = L(v) − L(u0) = 0 (46)

H(v, 1) = A(v) − F(r) = 0 (47)

The changing process of δ from zero to unity is just that of v(r, δ) from uo(r) to u(r). In topology, this is called deformation,
and L(v)−L(uo), A(v)−F(r) are called homotopic. We use the embedding parameter δ as a “small parameter”, and assume
that the solution of Eq. (44) can be written as a power series in δ:

v = v0 + δ v1 + δ
2 v2 + δ

3 v3 + δ
4 v4 + ........... (48)

The approximate solution of Eq (48), therefore, can be readily obtained

u =lim v =
δ→1

v0 + v1 + v2 + v3 + v4 + ........... (49)

The series (49) is convergent for most cases. The convergence of the series (49) has been proved in [He (1999), He
(2000)]. The coupling of the perturbation method is called the homotopy perturbation method, which has eliminated
limitations of traditional methods. The HPM depends on the proper selection of the initial approximation vo. However,
the convergent rate depends upon the nonlinear operator N(v):

a. The second derivative of N(v) with respect to v must be small, because the parameter δ may be relatively large, i.e.
δ → 1.

b. The norm of L−1
(
∂N
∂v

)
must be smaller than one, in order that the series converges.

5. Solution of Two-Dimensional HO Problem Using He’s HPM

In this section, we implement the HPM, in a realistic and efficient way, to provide approximate solutions for the two
dimensional HO problem which is subjected to the condition that R(r) is finite at r = 0. For the sake of continuity, this
equation is rewritten here

−�2

2M

[
1
r

d

dr

(
r

dR(r)
dr

)
− m2

r2 R(r)
]
+

1
8

Mω2
1 r2 R(r) = Er R(r) (50)

that can be rewritten in the form

r2 d2R(r)
dr2 + r

d R(r)
dr

+
(
k2r2 − m2 − β2r4

)
R(r) = 0 (51)

where k = (2M Er/�2)1/2 and β = (Mω2
1/4�2)1/2.

In view of Eq. (44) or (45), the homotopy for Eq. (51) can be constructed as

H(R, δ) = r2 d2R(r)
dr2 + r

d R(r)
dr

+
(
k2r2 − m2 − δ β2r4

)
R(r) = 0, δ ∈ [0, 1] (52)

where the variation of δ from 0 to unity corresponds to the variation of H(R, δ) from Ro(r) .

The basic assumption of HPM is that the solution R(r) can be expressed as a power of series in δ.
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R(r) =
∑
n=0

δn Rn(r) = R0(r) + δR1(r) + δ2R2(r) + δ3R3(r).......... (53)

The terms up to δ3 are considered, where

R(r) ≈ R0(r) + δR1(r) + δ2R2(r) + δ3R3(r) (54)

dR(r)
dr

≈ dR0(r)
dr

+ δ
dR1(r)

dr
+ δ2 dR2(r)

dr
+ δ3 dR3(r)

dr
) (55)

d2R(r)
dr2 ≈ d2R0(r)

dr2 + δ
d2R1(r)

dr2 + δ2 d2R2(r)
dr2 + δ3 d2R3(r)

dr2 (56)

Substitution of Eqs. (54-56) into Eq. (52) yields

r2
(

d2R0(r)
dr2 + δ

d2R1(r)
dr2 + δ

2 d2R2(r)
dr2 + δ

3 d2R3(r)
dr2

)
+

r
(

dR0(r)
dr
+ δ dR1(r)

dr
+ δ2 dR2(r)

dr
+ δ3 dR3(r)

dr

)
+[

k2r2 − m2 − δ β2r4
] (

R0(r) + δR1(r) + δ2R2(r) + δ3R3(r)
)
= 0

(57)

Summing up the coefficient of like power of δ gives

δ0
(
r2 d2R0(r)

dr2 + r
dR0(r)

dr
+ (k2r2 − m2)R0(r)

)
+

δ1
(
r2 d2R1(r)

dr2 + r
dR1(r)

dr
+ (k2r2 − m2)R1(r) − β2r4R0(r)

)
+

δ2
(
r2 d2R2(r)

dr2 + r
dR2(r)

dr
+ (k2r2 − m2)R2(r) − β2r4R1(r)

)
+

δ3
(
r2 d2R3(r)

dr2 + r
dR3(r)

dr
+ (k2r2 − m2)R3(r) − β2r4R2(r)

)
= 0

(58)

where

δ0 : r2 d2R0(r)
dr2 + r

dR0(r)
dr
+ (k2r2 − m2)R0(r) = 0 (a0)

δ1 : r2 d2R1(r)
dr2 + r

dR1(r)
dr
+ (k2r2 − m2)R1(r) = β2r4R0(r) (a1)

δ2 : r2 d2R2(r)
dr2 + r

dR2(r)
dr
+ (k2r2 − m2)R2(r) = β2r4R1(r) (a2)

δ3 : r2 d2R3(r)
dr2 + r

dR3(r)
dr
+ (k2r2 − m2)R3(r) = β2r4R2(r) (a3)

:
δp : r2 d2Rp(r)

dr2 + r
dRp(r)

dr
+ (k2r2 − m2)Rp(r) = β2r4R(p−1)(r) (ap)

(59)

We will use the symbol Rp,m(r) to denote the solution of the differential equation number p for the discussed case m.
The equations group (59) will be solved for the case m = 0. Hence, R0(r) = R0,0(r), R1(r) = R1,0(r), R2(r) = R2,0(r), and
Rp(r) = Rp,m(r). In this case, Eq.(59-a0) can be rewritten as:

r2 d2R0,0(r)
dr2 + r

dR0,0(r)
dr

+ k2r2R0,0(r) = 0 (60)

The general solution of Eq. (60) using MATLAB is given by

R0,0(r) = c1 J0(
√

k r) + c2 Y0(
√

k r) (61)

where J0 is the first kind Bessel function of order 0, which is nonsingular at the origin, and it is sometimes called cylinder
function or cylindrical harmonic. Y0 is the second kind Bessel function of order 0, which is singular at the origin. c1 and
c2 are arbitrary constants. In order to get a bounded solution on an interval [0, a], we may take the conditions:

1. R(r) is finite (or bounded) as r → 0: i.e, lim
r→0

R(r) < ∞ , thus c2 = 0.

2. R(0) = 1 in order to have c1 = 1, since J0(0) = 1. Thus,

R0,0(r) = J0(
√

k r) (62)
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The series form of Jm(
√

k r) is given by

Jm(
√

k r) =
∞∑

n=0

(−1)n

n!(n + m)!

⎛⎜⎜⎜⎜⎝ √k r

2

⎞⎟⎟⎟⎟⎠2n+m

(63)

where the factorials can be generalized to gamma functions for non-integral m, therefore Eq. (63) takes the form

Jm(
√

k r) =
∞∑

n=0

(−1)n

Γ(n + 1)Γ(n + m + 1)

⎛⎜⎜⎜⎜⎝ √k r

2

⎞⎟⎟⎟⎟⎠2n+m

(64)

If J0(r) is approximated by:

J0(r) ≈ 1 −
(

r

2

)2
+

1
(2!)2

(
r

2

)4
− 1

(3!)2

(
r

2

)6
+

1
(4!)2

(
r

2

)8
(65)

In the interval [0, a], the absolute value of the maximum error will not exceed a10

210(5!)2 . If we take the interval to be [0, 4],
the maximum error will not exceed 0.071111.

Hence, R0,0(
√

k r) take the form

R0,0(
√

k r)
Approx

≈ 1 −
⎛⎜⎜⎜⎜⎝ √k r

2

⎞⎟⎟⎟⎟⎠2 + 1
(2!)2

⎛⎜⎜⎜⎜⎝ √k r

2

⎞⎟⎟⎟⎟⎠4 − 1
(3!)2

⎛⎜⎜⎜⎜⎝ √k r

2

⎞⎟⎟⎟⎟⎠6 + 1
(4!)2

⎛⎜⎜⎜⎜⎝ √k r

2

⎞⎟⎟⎟⎟⎠8 (66)

For k = 1 and m = 0, the solution R0,0(r) becomes

R0,0( r)
Approx

≈ 1 − 1
4

r2 +
1
64

r4 − 1
2304

r6 +
1

147 456
r8 (67)

Some selected value of the approximated solution of R0,0(r), for k = 1 and m = 0, are listed in Table.1, and the solution
R0,0(r) is also illustrated in Fig. (2). Similarly, Eq. (59-a1) can be written as:

r2 d2R1,0(r)
dr2 + r

dR1,0(r)
dr

+ (k2r2 − m2)R1,0(r) = β2r4R0,0(r) (68)

Substituting Eq. (66) in Eq. (68) leads to

r2 d2R1,0(r)
dr2 + r

dR1,0(r)
dr
+ (k2r2 − m2)R1,0(r) =

β2r4
(
1 − k
(

r
2

)2
+ 1

(2!)2 k2
(

r
2

)4
− 1

(3!)2 k3
(

r
2

)6
+ 1

(4!)2 k4
(

r
2

)8) (69)

Using MATLAB, the general solution of Eq. (69) is

R1,0(r) = c3 J0(
√

k r) + c4 Y0(
√

k r)+
β2

k2

(
−220 + 55 k r2 − 27

8 k2 r4 + 25
288 k3 r6 − 41

36864 k4 r8 + 1
147456 k5r10

) (70)

In order to get a bounded solution as r → 0, we choose c4 = 0, and with the condition R1,0(0) = 1 we get (c3 = 1 + 220β2

k2 ).
Thus,

R1,0(r) ≈
(
1 + 220β2

k2

)
J0(

√
k r)+

β2

k2

(
−220 + 55 k r2 − 27

8 k2 r4 + 25
288 k3 r6 − 41

36864 k4 r8 + 1
147456 k5r10

) (71)

Using the approximation given by Eq. (66), we get

R1,0( r)
Approx

≈
(
1 + 220β2

k2

) (
1 − k
(

r
2

)2
+ k2

(2!)2

(
r
2

)4
− k3

(3!)2

(
r
2

)6
+ k4

(4!)2

(
r
2

)8)
+

β2

k2

(
−220 + 55 k r2 − 27

8 k2 r4 + 25
288 k3 r6 − 41

36864 k4 r8 + 1
147456 k5r10

) (72)
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After collecting the similar terms, we get the solution of Eq. (59-a1)

R1,0( r) ≈ 1 −
(

k
4

)
r2 +

(
k2

64 +
β2

16

)
r4

−
(

k3

2304 +
5 k β2

576 r6
)
+

(
k4

147456 +
7 k2 β2

18432

)
r8 +

β2 k3

147456 r10
(73)

For k = 1 and m = 0, the solution R1,0(r) becomes :

R1,0( r)
Approx

≈ 1 − 1
4

r2+
5
64

r4 − 7
768

r6 +
19

49152
r8 +

1
147456

r10 (74)

Some selected value of the approximated solution of R1,0(r), for k = 1, β = 1, and m = 0, are listed in Table.2, and the
solution R1,0(r) is also illustrated in Fig. (3). Similarly, Eq. (59-a2) can be written as:

r2 d2R2,0(r)
dr2 + r

dR2,0(r)
dr

+ k2r2R2,0(r) = β2r4R1,0(r) (75)

Substituting Eq. (72) in Eq. (75) leads to

r2 d2R2,0(r)
dr2 + r

dR2,0(r)
dr
+ k2r2R2,0(r) =

β2r4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1 −
(

k
4

)
r2 +

(
k2

64 +
β2

16

)
r4 −
(

k3

2304 +
5 k β2

576

)
r6+(

k4

147456 +
7 k2 β2

18432

)
r8 +

β2 k3

147456 r10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (76)

that can be simplified to

r2 d2R2,0(r)
dr2 + r

dR2,0(r)
dr
+ k2r2R2,0(r) =

β4 k3

147456 r14 +

(
k4β2

147456 +
7 k2 β4

18432

)
r12−
(

k3β2

2304 +
5 k β4

576

)
r10 +

(
k2β2

64 +
β4

16

)
r8 −
(

kβ2

4

)
r6+β2r4 (77)

Using MATLAB, the general solution of Eq. (77) is

R2,0(r) = c5 J0(
√

k r) + c6 Y0(
√

k r) + β4k2

147456 r12 +
(β2k3− 88 β4k)

147456 r10+

(7520 β4 −164 β2k2)
147456 r8 +

(−472064 β4 +12800 β2k2)
147456 k

r6 +
(16994304 β4− 497664 β2k2)

147456 k2 r4+

(8110080 β2k2− 271908864 β4)
147456 k3 r2 +

(1087635456 β4− 32440320 β2k2)
147456 k4

(78)

Again, in order to get a bounded solution as r → 0, we choose c6 = 0, and with the condition R2,0(0) = 1 we get
c5 = 1 − 1087635456β4−32440320β2k2

147456k4 . Thus,

R2,0(r) =
(
1 − 1087635456β4−32440320β2k2

147456k4

)
J0(

√
k r) + β4k2

147456 r12 +
(β2k3− 88 β4k)

147456 r10+

(7520 β4 −164 β2k2)
147456 r8 +

(−472064 β4 +12800 β2k2)
147456 k

r6 +
(16994304 β4− 497664 β2k2)

147456 k2 r4+

(8110080 β2k2− 271908864 β4)
147456 k3 r2 +

(1087635456 β4− 32440320 β2k2)
147456 k4

(79)

Using the approximation given by Eq. (66), we get

R2,0( r)
Approx

≈
(
1 − 1087635456β4−32440320β2k2

147456k4

) (
1 − k
(

r
2

)2
+ k2

(2!)2

(
r
2

)4
− k3

(3!)2

(
r
2

)6
+ k4

(4!)2

(
r
2

)8)
+

β4k2

147456 r12 +
(β2k3− 88 β4k)

147456 r10 +
(7520 β4 −164 β2k2)

147456 r8 +
(−472064 β4 +12800 β2k2)

147456 k
r6+

(16994304 β4− 497664 β2k2)
147456 k2 r4 +

(8110080 β2k2− 271908864 β4)
147456 k3 r2 +

(1087635456 β4− 32440320 β2k2)
147456 k4

(80)

For k = 1 and m = 0, the solution R2,0(r) becomes :

R2,0( r)
Approx

≈ 1 − 1
4

r2 +
5
64

r4 − 7
768

r6 +
67

49152
r8 − 29

49152
r10 +

1
147456

r12 (81)

Some selected value of the approximated solution of R2,0(r), for k = 1, β = 1 and m = 0, are listed in Table.3, and the
solution R2,0(r) is also illustrated in Fig. (3).
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As a result, according to Eq. (49), the general solution R(r) can be approximated by

R(r) ≈ R0,0 + R1,0 + R2,0 + ....

≈ 3 − 3
4 r2 + 11

64 r4 − 43
2304 r6 + 259

147456 r8 − 43
73728 r10 + 1

147456 r12 + ....
(82)

However, this work will be extended to compare this approximate solution with some analytical solutions. In addition
solution of Eq. (52) for the case m = 1 will be also investigated.

6. Conclusion

An approximate solution of the time-independent Schrödinger equation for a two-dimensional harmonic oscillator has
been obtained using an effective and realistic method, which is He’s HPM. HPM works successfully in handling the
differential equation directly and produces the solutions in terms of convergent series with easily computable components.
HPM requires less computational work when compared with other methods. Consequently, this research has thrown up
many questions in need of further investigation, and will serve as a base for future studies.
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Table 1. Some selected values of the approximated of R0,0(r), k = 1 and m = 0.

.

r R0,0( r)
Approx

r R0,0( r)
Approx

0.2 0.9900249722 2.2 0.1105364805
0.4 0.9603982266 2.4 0.0029209600
0.6 0.912004863 2.6 −0.0958910360
0.8 0.8462873600 2.8 −0.1831324400
1.0 0.765197753 3.0 −0.2562866210
1.2 0.6711331600 3.2 −0.3130683733
1.4 0.5668570555 3.4 −0.3513561277
1.6 0.4554094933 3.6 −0.3690652400
1.8 0.340010088 3.8 −0.3639515027
2.0 0.2239583333 4.0 −0.3333333333

Table 2. Some selected values of the approximated of R1,0(r), k = 1, β = 1 and m = 0.

r R0,0( r)
Approx

r R0,0( r)
Approx

0.2 0.9901244176 2.2 0.8168524930
0.4 0.9619629207 2.4 0.8786768896
0.6 0.9197062836 2.6 0.9674550064
0.8 0.8696762482 2.8 1.1110582081
1.0 0.8194037543 3.0 1.3702392578
1.2 0.7764881104 3.2 1.8590684615
1.4 0.7473973310 3.4 2.7729654818
1.6 0.7364307740 3.6 4.4261964496
1.8 0.7451374457 3.8 7.3010302439
2.0 0.7725694444 4.0 12.111111111
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Table 3. Some selected values of the approximated of R2,0(r), k = 1, β = 1 and m = 0.

r R0,0( r)
Approx

r R0,0( r)
Approx

0.2 0.9901244201 2.2 −0.145136575
0.4 0.9619634982 2.4 −1.582538338
0.6 0.9197190923 2.6 −4.770734773
0.8 0.8697764745 2.8 −11.30131161
1.0 0.8197903103 3.0 −23.85821533
1.2 0.7770524613 3.2 −46.77714119
1.4 0.7449314374 3.4 −86.80331713
1.6 0.7146651325 3.6 −154.0849165
1.8 0.6475182442 3.8 −263.4353635
2.0 0.4392361111 4.0 −435.8888889

Figure 1. Energy Levels of the one-dimensional harmonic oscillator

Figure 2. Approximated solutions R0,0(r) of Eq.(59-a0): k = 1, β = 1, and m = 0
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Figure 3. Approximated solutions R1,0(r) of Eq.(59-a1): k = 1, β = 1, and m = 0

Figure 4. Approximated solutions R2,0(r) of Eq.(59-a2): k = 1, β = 1, and m = 0.
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