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Abstract

Loh (Loh, W.L, 1996b) established a Berry-Esseen type bound for W, the random variable based on a latin hypercube
sampling, to the standard normal distribution. He used an inductive approach of Stein’s method to give the rate of
convergence % without the value of C,. In this article, we use a concentration inequality approach of Stein’s method to
obtain a constant C,.
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1. Introduction

A latin hypercube sampling (LHS) was introduced by McKay, Beckman and Conover in 1978 (McKay, M.D., 1979) as a
tool to improve the efficiency of different important sampling method. After the original paper appeared, LHS has been
widely used in many computer experiments. For example, it is a way to choose the points to compute the integral

M= f(x)dx,
[0,1)

where f is a measurable function from [0, 1]¢ to R. Approximating this integral is equivalent to finding u = E(f(X)),
where X is a random vector uniformly distributed on a unit hypercube [0, 1]¢.

For positive integers n and d, d > 2, a latin hypercube sample of size n (taken from the d-dimensional hypercube [0, 1]9)
is defined to be {X(171(7), 72(0), ..., n4(i)) : 1 < i < n}, where

I.forall 1 <iy,..,ig<n, 1 <j<d,

X(i1, i) = (A= Uiy iy /0, and X(iy, ..., ig) = (X1, s ia)s oo Xa(ils ons 1))

2. = (D), mi(2), ..., me(n)), 1 < k < d, are random permutations of {1, ..., n} each uniformly distributed over all the
n! possible permutations;

3. Uiy, igjr 1 Sit,sig <0, 1 < j < d, are [0, 1] uniform random variables;

4. the U,

is,j s and n¢’s are all stochastically independent.

Hence an unbiased estimator for u based on a latin hypercube sampling is
1 n
fin = = " FX U0, (8, ., 1 (K))).
=

McKay, Beckman and Conover (McKay, M.D., 1979) futher proved that in a large number of instances, the variance of 1,
is substantially smaller than that the estimators based on simple random sampling. Many years later, Stein (Stein, M.L.,
1987) showed that the asymptotic variance of 1, is less than the asymptotic variance of an analogous estimator based on
an independently and identically distributed sample. Later, Owen (Owen, A.B., 1992) gave the multivariate central limit
theorem for [, when f is bounded. In addition to the LHS, there are several ways to sample X;’s in order to estimate y,
namely, lattice sampling (Patterson, H.D., 1954), the orthogonal array sampling ((Loh, W.L., 1996a), (Neammanee, K. &
Laipaporn, K., 2008), (Tang, B., 1993)), and scrambled net sampling ((Owen, A.B., 1997a), (Owen, A.B., 1997b)).

If Var(fi,) > 0, we define
ﬂn —H

VVar(i,)
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Then

EW =0 and VarW = 1. (D)

To use the Stein’s method to approximate the distribution of W with the standard normal distribution, Loh (Loh, W.L.,
1996b) wrote

W= Z VG, . ... na0)),
i=1
where

1 d
V(its i) = ——===[f 0 X(i1. cvia) = ) posis) +(d = Dpr] and

n+/Varf, =

Wi, ia) = Ef 0 X, cria) and pili) =~ DU ulin s ia),

J#k Q=1

Cy . . .
and gave the rate of convergence 751 without the value of C; under the finiteness of the absolute third moment. Theorem
n

1.1 is his result.

Theorem 1.1 There exists a positive constant C; which depends only on d such that for sufficiently large n,

sup |[P(W < 2) = D(2)] < Cyp,
zeR

where @ is the standard normal distribution and 83 = — 37 _, ... 27| E|V(iy, ... i)l

Corollary 1.2 If E|f o X|? < co, then

Cq
sup |[P(W < 2) = D(z)] < —.
ey Vi

In 2006, Rattanawong (Rattanawong, P., 2006) showed that there exist random permutations ry,...,m;_; on {1,2,...,n}
which are uniformly distributed over all the n! possible permutations such that

n
W= Yi,m@),..., w1 (D)
i=1
and Y(iy, . ..,ig)’s and m;’s are stochastically independent. Indeed, for j € {1,...,d}, let mj(w) = 1+ (W) (w)™") and for

eachiy,...,iy € {1,...,n}, define

d-1

1
Y(i1, onig) = ———=[f 0 X(i1, ccoriag) + ) Uslit, ey ia) + (=1)p], (2
n+/var(it,) kZ::‘
where
. o e Lo
v, oia) = Ef 0 X1, o ba), Uplins it = —= Z | Do uhs ),
I<ji<p<.<jksdq; =1  gq;=1
and

|- qp it p=ji . ji
"7 1i, otherwise.

Note that the definition of Y(iy, ..., iy)’s are different from Loh (Loh, W.L., 1996b) in order that the random variable W
satisfies the following property:

ZEY(il,...,id)=0 for each je{l,2,...,n}. 3)
i=1
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Furthermore, Neammanee and Rattanawong (Neammanee, K. & Rattanawong, P., 2008) used a concentration inequality
approach of Stein’s method and assumed the finiteness of fourth moment to give a constant C,. This is their result.

Theorem 1.3 Suppose that E(f o X(ij, ...,iq))* < 00, 1 < i, ...,iy < n. Then for n > 67 + 3,

1 3
11.68 2.075ds;  (2V2m+10.027d)5;

sup|P(W < z) — O(z)| <(11.765 + 23.531d)64 + + - + ] ,
R \n ns ns
where @ is the standard normal distribution and 54 = dii ;‘1:1 e Zl’.fi:l E|Y(iy, ..., i)
n2

1
Corollary 1.4 Suppose that E(f o X(i1, ..., ig))* < 00, 1 < iy, ...,ig < n.If 64 ~ —, then

v

28.729 + 35.633d
sup|PW <2) - P0)| £ —————.
zeR \/ﬁ

In this article, we use a concentation inequality approach of Stein’s method with ideas of Neammanee and Rattana-
wong ((Neammanee, K. & Rattanawong, P., 2008), (Neammanee, K. & Rattanawong, P., 2009b)) and Neammanee and
Rerkruthairat (Neammanee, K. & Rerkruthairat, N.) to obtain a constant C,; by assuming the finiteness of the absolute
third moment. Theorem 1.5 is our main result.

Theorem 1.5 Suppose that E|f o X(iy, ..., i) < oo, 1<iy,..,ig<n. Forn> 64,

3.88 +2.09d Co Cs s
Sup|P(W < 2) — O()| < (22.88 + 28.99d)63 + o =20 110362 + (<L) (=2 + Cntol) + O(=),
zeR \/ﬁ ’ nx  ns n

where
n

1 N S
63= =5 D0 ) EV G i)l
=1 ig=1

i
and the definition of Y(iy, ..., i) is given by (2).
1
Corollary 1.6 Suppose that E|f o X(ij, ..., ig)]? <o, 1 <ij,...,ig <n.Ifn> 6% and 63 ~ 7, then
n

26.76 + 31.084d 2.92d 1
sup [P(W < z) - D(z)] < + +0(—).
z€R Vn n ne

Example. In the case of d = 2, we observe that this is a special case of the combinatorial central limit theorem (For
more detail see Von Bahr (Von Bahr, B., 1976), Ho and Chen (Ho, S.T., 1978)). Under the finiteness of absolute third
moment, Neammanee and Suntornchost (Neammanee, K. & Suntornchost, J., 2005) gave the uniform rate of convergence

198
and obtained the rate —. Recently, Neammanee and Rerkruthairat (Neammanee, K. & Rerkruthairat, N.) improve the

n
constant to be 78.36. For this work, Corollary 1.6 yields the constant 93.17. Althought this constant is not shaper than the
previous result, we establish a uniform bound on a generalization of a combinatorial central limit theorem by assuming
the finiteness of absolute third moment.

2. Auxiliary Results

In this section, we will give some lemmas which are used in the next section. Almost of them, we generalize the results
of Neammanee and Rerkruthairat (Neammanee, K. & Rerkruthairat, N.) and improve the results of Neammanee and
Rattanawong (Neammanee, K. & Rattanawong, P., 2009b) under the finiteness of absolute third moment. Throughtout
this work, we let

ol

1 n n ) ) 1 n n ) ]
6y = = Yo Y EW G ia)f and 6= —p 3o 3 BV G i)
=1 ig=1

n =1 ig=1
Lemma 2.1 Suppose that E|f o X(iy, ..., i)]> < o0, 1 <y, ...,ig < n. For n > 36,

5, < 1.02943
R
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Proof. By (1), we have
1=EW?

= DVEYam (@) ma @)+ ) D EYEm @)kt DY G (), s a1 ()
i=1 =1 j=1
J#

= \/1_162+Wimii--~iEY(il,...,id)EY(jl,...,jd)

a=l =l =l =l
Ji#i Ja#ia

_ (_l)d - - . . \12
= N ; ;[EY(:I,...,M)] :

Thus

1 . - \nd,
<l —— S NEYG i < 1+ Y02
Vi = Sy 2 2 S

ig=1

This implies that for n > 36 and d > 2,

5
Vndy <1+ ‘3/222 =1 +0.02858 Vs,

and hence
1 1.02943

< <
(1 - 0.02858) Vi N

62

Foreachiy,...,iy €1{1,2,...,n}, we define

YO(ilv' '~’id) = Y(il" ’ld)H(lY(llvyldN > 1)3 YO(ila"'vid) = Y(l],,ld)H(|Y(l1, ’ld)| < 1)7 and

Y(m) = Y Yolisma(@), ., a1 (D),
i=1

where I is the indicator function, i.e., for a nonempty set A, the indicator function of A is defined by

if weA,

1
A w) = {o ifweA

Next, we note that for any integer m, n and r which m > 0, and n, » > 0,

ElY"(iy, ..., i)Yo Gy, .. il < EIY" (i, . i)Y G - i) Yo, -]
< ElY(iy,..., i)™,
Lemma 2.2 Suppose that E|f o X(ij, ..., iy)]? < 00, 1 <iy,...,ig <n.If n > 36, then

n

E[Z Z YG, 1K), . .., wg1 (kK)]? < 1.02943n.

i=1 k=1

Proof. Observe that

E[Y, Y Ylm),... w1 ()

i=1 k=1

n n

= Z Z EY*(i,my(k), ... 7oy (K)) + Z Z DU EYGm ), g KDY L (m), g (m)

i=1 k=1 i=1 k=1 [=0 m=0
(i,k)#(l,m)
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= i Zn:EYz(i,ﬂl(k), NN ,ﬂd,l(k)) + i Zn: i iEY(l',ﬂ'l(k),. . ,ﬂfz,l(k))Y(l,ﬂl(m),. . .,ﬂd,l(m))

i=1 k=1 i=1 k=1 [=1 m=1
m#k

+ O EYG ), ()Y L (), e ()

i=1 k=1 [=1

1#i
1 n n 1 n n n n n
=— Z--~ZEY2(i],...,id)+ s ZZZ -~-ZEY(i],...,id)ZEY(ll,...,ld)
s (n(n — 1)) i=1 dg=l bh=1 =1 =1
L+#iy ly#ig
1 n n n

+—5 ~--ZZEY(il,...,id)EY(l,iz,...,id).

n =1 ig=1 ll¢=11|

By Lemma 2.1, (3) and (4), we have
E[ Y(@i,m(k), ..., w1 (k)] < 1.02943n.
i=1 k=1

[}

From now, we use the following system giving by Ho and Chen (Ho, S.T., 1978) and Neammanee and Rattanawong
(Neammanee, K. & Rattanawong, P., 2008). Let I, K, L,,...,Ls_1, Mj,..., My, be uniformly distributed random vari-
ableson {1,2,...,n}and py,...,p4-1 and 7y,..., T4 are random permutations of {1,2,...,n}. Assume that
{I,K,Ly,....,Lg_1,My,...,My_1,01,...,04-1-T1>--->Ta—1} 1s independent of Y(iy,1)’s,
(I,K), (L, My),...,(Lg—1,My_1) are uniformly distributed on{(i, k)|i,k = 1,2, ...,n and i # k},
(I,K),(Ly,My),...,(Lg—1,M4_y) and 7y,...,74-1 are mutually independent,
(I,K) and py,...,pq-1 are mutually independent, and
(@) if a# LK1 (L), 7 (M),
L; if a=1,
pila) =< M; if =K,
() if e=1'(D),
7i(K) if a:‘ri"l(M),

where p,-(pi’l(a)) = pi’l(pi(a)) =afori=1,2,...,d — 1. Now, we define some notations;

Y(p) =Y(p) — S10—Sa0+S30+S4g.

where
Yp) = D" Yolipr(D, . pa1 (D),
P
S10=Yol,pr(D),....pa (1), Sa0 = Yo(K,pi(K),...,pa1(K)),

S50 = YoL,pi(K), - .., pa-1(K)), Sa0 = Yo(K,pr(D),...,pa-1(D).

It is easy to see that 3‘\1,0,3’\2,0, :8‘\3,0, 3'\4,0 have the same distribution.

Lemma 2.3 Suppose that E|f o X(ij, ..., iy)]> < 00, 1 <iy,...,ig < n. Then

2né, n''s3

V2
(1) EY*(m) <1+ (n— )T + (n- l)d—l'

1 —
(2) Forn > 6% and 63 < 300 Ve have EY*(1) < C(n + n’53).

(3) ElY(p) - Y(p)P? = % + R, where

4n®163 4n®?63
IRl < 3662 + 89 + Z 4 3
Vin—=1) n—-1 (@m=-1)¢ (n-1)4"!
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Proof. By using the same argument of Neammanee and Rerkruthairat (Neammanee, K. & Rerkruthairat, N.), we have
this lemma. o

1
Corollary 2.4 Suppose that E|f o X(iy, ..., iDP <o, 1<iy,...,ig <n. Forn>6%and §; < 30’ we get that

(1) EY*(n) < 1.05998.

4.27125 1
+ O(n—z).

) ElY(p) - Y(p)l* <

n—1

Proof. We apply the idea of Neammanee and Rattanawong (Neammanee, K. & Rattanawong, P., 2008) and the fact that

d-1
< — > 64
15733 for all n > 6%, we have

a1 o 00Er<103 5
(—"' < +;(n_l)_ 03, 5)
By Lemma 2.1 and (5), we obtain this corollary. O

3. Proof of Theorem 1.5

We will prove this theorem by using ideas in two papers of Neammanee and Rattanawong ((Neammanee, K. & Rattana-
wong, P., 2008), (Neammanee, K. & Rattanawong, P., 2009b)) and a paper of Neammanee and Rerkruthairat (Neammanee,

1
K. & Rerkruthairat, N.). Since |P(W < z) — ®(z)| < 0.55 (Chen, L.H.Y., 2001, p. 246), we can assume 93 < 30" Assume

that z > 0. In case of z < 0, we use the fact that ®(z) = 1 —®O(—z) and then apply the result to —W. Using the same argument
of Neammanee and Rattanawong (Neammanee, K. & Rattanawong, P., 2009b), we have

IP(W < 2) — D) < P(W # Y(n)) + |[P(Y(7) < 7) — D)
<03 +|T1| + |To| + T3] + |T4l,

where

00

T\ = Eg.(Y(1)) f " K~ E f g.(Y(p) + DK (1)d1,

T, = Eg/(Y(1)E f ) K(n)dt — Eg,(Y(7)) f N K(t)dt,

00

Eg.(Y(v)) - Eg.(Y(1))E f K(dt,

—00

T;

Ty

1 . n n .
SE:(Y(0) ) > Yolipr(k).....pa-r (k).

i=1 k=1
n—1 ~ - — — — -
K(0) = ——=(p) = Y(e)IO < 1 < Y(p) = Y(p)) - L(¥(p) = Y(p) < 1 < 0))
and g is the solution of the Stein’s equation for normal distribution function
gw)—wgw) =I(w<z)—Oz), forall weR.

21 1
First, we bound T4 by using Lemma 2.2 and the fact that 0 < g,(w)) < min(g, —) (Chen, L.H.Y,, 2001, p. 246).

|z]
Indeed,

1 . n n 1 - n n
ITal < ~Elg:(Y@DI ), D YiprK)......pacs (k)] + ~ Elge KD Y Y Yol pr(K). ... paa ()

i=1 k=1 =1 k=1
1 . | n n . | \/ﬂ n_n ]
< SAELYEHELY ) > YGpi(b)...opia RDP) + == ElYo(G,p1(R), . . pa1 ()
i=1 k=1 =1 k=1
2 1 n n
< Y INT02943n + —— > - S EYGrs .. ig)]
\/_ d-2
n n
=1 ig=1
63582
< 003982 6266603,
n
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We apply Lemma 2.3(3) and the fact that |g/(w)| < 1 (Stein, C.M., 1986, p. 23) to obtain

_ 0o ~ DEY(p) - Y(p)I?
|T3|SE|g§(Y(T))||1—Ef K(I)dﬂsu_(n )|4(1p) -

—00

1
| <265 + 1.036% + O(-).
) n

Next, we will bound 7. Let B be the o-algebra generated by

{I,K,Ll,...,Ld,l,Ml,...,Md,l,Y(il,...,id) 1< i1,0p,...,0g < n}
A={r(I)# L;,7«(K) # M;, 7;(I) # M;,7«(K) # L;,i=1,...,d -1}, and
G =Yo,My,...,My-1) + Yo(K, L1, ..., La-y) = Yo, L1, ..., La-1) = Yo(K, My, ..., My_1).

Observe that this is a generalization of the definition of Neamanee and Rerkruthairat (Neammanee, K. & Rerkruthairat,
N.). By the same argument of Neammanee and Rattanawong (Neammanee, K. & Rattanawong, P., 2008, p. 24-25), we

have
n

o —1) 4 - .
E®I(A) < L—LZ(d 1) < 2001 1y and |1 < =L EIG2ES1AY).
n r=1 r n 2

By Lemma 2.3(3), we get that
2n—1) v (d -1\, .~ - 1
7y < 221 Z( )E|Y<p) ~YI = 0¢).
n p— r n

Finally, we will bound 7';. Denote AY = ?(p) -Y(7). Again, by using the same argument of Neammanee and Rerkruthairat
(Neammanee, K. & Rerkruthairat, N.), we have

T <By+ B>+ B3+ B4+ Bs, (6)

where

B, =E f e Kdt  By=E f [Y(OIAY|K()dt, Bs;=E f [Y(O)lltlK ()dt,
Y(T)+A?+t>z R R

_ V2r
T4

2

EflA?lK(t)dt, Bs Eflth(t)dt, and
R R

i
Cs;

C
|By + B3 + By + Bs| < 26.9862d63 + 13.2496903 + (—:1)[

5

5 1

3+ Cnssi+ 0(=). ™
nas ns n

Hence, it suffices to bound B,. For each ¢ > 0 and a,b € R, where a < b, we define the function fs by

—~ib-a)-¢ ift<a-5¢,
i =1-5b+a)+t if a-=5<t1<b+4,
ib-a)+6 ifb+o<t.

Then {
Ifs(0)] < E(b —a)+ ¢ forevery t € R. ®)

Note that £ IA?II‘ is bounded by a sum of (4d)* terms each of the form E IYO(I 01D, . .., pa—1(D)F. This implies

. . k
E|AY| <4d and EIAY[ < (4‘?71& 9)
nz
for k € {2, 3}. Similar to T4, we obtain
- 1.01461 = 1
[Afs(Y ()| < Vi (Ef2Y(p)? + (2d + 6)6s. (10)

By the same argument of Neammanee and Rerkruthairat (Neammanee, K. & Rerkruthairat, N.) Lemma 2.1, 2.3(1, 3) and
(8) to (10), we have

323695 2.08919d
Vn Vn

| < +(2d + 6)53 +0(%). (11)
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We use (6), (7) and (11) to conclude that

3

3.23695 2.08919d c, Cé3 5 1
1 < + +28.9862d63 + 19.2496965 + (—d)[—3 + Cn%64] + O(-). (12)
\/ﬁ \/ﬁ ni n% 3 n
By the same argument of (12), we have
3
-3.23695 2.08919d c,; Co; | 5 1
1> - —28.9862d63 — 19.2496965 — (—d)[ ER Cnsdil—0O(-)
1 1 3
\a Vi ¥ ns "
(see (Neammanee, K. & Rattanawong, P., 2008, p. 13) for more detail). Hence
3.23695 2.08919d Cé% o 1
|T| < 0 + o19 +28.9862d55 + 19.2496955 + (ﬂ)[ R Cn3oil+ O(-).
1 1 3
\/ﬁ \/ﬁ na ns n
Therefore,
3.87277 2.08919d C Cé% | 5 1
[P(W < z2) — D(z)| < 22.8763565 + + +28.9862d55 + 1.0362 + ( d )i ER. Cnséi]1+ O(-).
3 1 1 3
\/ﬁ \/;l n@  ns n
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