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Abstract

A mathematical model consisting of two systems of Hepatitis B virus (HBV) infection is set up based on the model of
virus dynamics and experimental observation of anti-viral drug therapy for HBV infection patients provided by Nowak. A
mathematical analysis of dynamic behaviors shows that the model has two kinds of equilibrium points, which represent the
patients’ complete recovery and HBV persistent infection at the end of the treatment with drug lamivudine, respectively.
Our model may provide possible quantitative interpretations for the long-time treatments of chronic HBV infections with
the drug lamivudine according to different model parameters, in particularly it may explain why the plasma virus of
Nowak et al’s patients turnover the original level after stopping the lamivudine treatment.
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1. Introduction

Hepatitis B is a potentially life-threatening liver infection caused by the hepatitis B virus (HBV). It is a major global health
problem and the most serious type of viral hepatitis. It is a viral infection that attacks the liver and can cause both acute
and chronic disease (WHO, 2002). About 2 billion people worldwide have been infected with the virus and about 350
million live with chronic infection. An estimated 600 000 persons die each year due to the acute or chronic consequences
of hepatitis B (WHO, 2010). About 25% of adults who become chronically infected during childhood later die from liver
cancer or cirrhosis (scarring of the liver) caused by the chronic infection. HBV is 50 to 100 times more infectious than
HIV (WHO, 2010). HBV is an important occupational hazard for health workers, and 50 million new cases are diagnosed
annually (WHO, 2010).

Recently drugs called interferon or lamivudine have been used to treat patients with chronic hepatitis B. Considering
the need for various long-term treatments, it is necessary to construct a mathematical model that enables us to study the
dynamics of HBV (Moskovitz, 2005; Nowak, 2000).

In (Nowak, 2000), 95 patients were treated with various dose of lamivudine for 28 days or 24 weeks respectively. Based
on the clinical data, Nowak proposed a mathematical model with three variables: uninfected cells, infected cells, and free
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virus (Nowak, 2000). This model can describe some viral dynamics in HBV infection. But, the model did not analyzed
mathematically, and the model cannot describe the phenomena that the plasma virus of most patients resurged rapidly as
soon as the drug was withdrawn.

In this paper, a mathematical model consisting of two systems is designed. One system is the model proposed by Nowak
which describes the viral dynamics in HBV infection after withdrawing the lamivudine therapy. The other system is a
model with four state variables: uninfected cells, infected cells, free virus and cytotoxic cells, which represent the viral
dynamics in HBV infection during the lamivudine therapy. The mathematical analysis of the dynamics of our model
shows that the two systems have two kinds of equilibrium points, which represent the patient’s complete recovery and
HBV persistent infection, respectively. And the numerical simulation can explain why the plasma virus of Nowak et
al’s patients turnover the original level after stopping the lamivudine treatment, and it also may predict the long-time
treatments of chronic HBV infections with the drug lamivudine according to different model parameters,.

2. Immune Model of HBV Infection and Analysis

2.1 The HBV Model

we propose the following mathematical model to describe the viral dynamics of the anti-HBV infection treatment with
lamivudine.

During processing the lamivadine therapy, we assume that the immune model of HBV infection has the form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt
= λ − dx − bxv

dy

dt
= bxv − ay − k3y

dv
dt
= ky − uv − k1y

de
dt
= k1y − k2e

(1)

where the 4 variables-x, y, v and e represent the numbers of uninfected cells, infected cells, free virus, and cytotoxic cells,
respectively. λ is the rate of reproduced susceptible cells. Uninfected cells die at rate dx, and become infect at rate bxv,
where b is the rate constant describing the infection process. Infected cells are produced at rate bxv and die at rate ay.
Free virus are produced from infected cells at rate ky and removed at rate uv. k1, k3 represent the pharmacological effect
of the lamivadine to infected cells and free virus, respectively. Cytotoxic cells are produced at rate k1y and removed at
rate k2e. λ, d, b, a, k, u, k1, k2, k3 are positive constant and will be determined by antiviral immune responses.

After withdrawing the lamivadine therapy, the dynamic model of HBV infection is still described by Nowak’s model at
(Nowak, 2000): ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dx
dt
= λ − dx − bvx

dy

dt
= bvx − ay

dv
dt
= ky − uv

(2)

Eq(1) has two equilibrium points:

Q∗
1 = (

λ

d
, 0, 0, 0),

Q∗
2 = (x∗,

λ − dx∗

a + k3
,
λ − dx∗

bx∗
,

k1(λ − dx∗)
k2(a + k3)

).

where
x∗ =

u(a + k3)
b(k − k1)

.

Eq(2) has two equilibrium points:

Q1 = (
λ

d
, 0, 0),

Q2 = (
au

bk
,

d

a
(
λ

d
− au

bk
),
λ

b
(
bk

au
− d

λ
)).

Clearly, the equilibrium points Q1,Q
∗
1 and Q2,Q

∗
2 stand for the patient’s complete recovery and HBV persistent infection,

respectively.
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2.2 Analysis of Equilibrium Points

Lemma 1:

a = [a0, a1, · · · , an−1],

p(s, a) = sn + an−1sn−1 + · · · + a1s + a0,

�n = {a ∈ Rn : p(s, a) = 0 ⇒ Re[s] < 0},
�3 = {a ∈ R3 : a1a2 > a0, ai > 0, i = 0, 1, 2},
�4 = {a ∈ R4 : a1a2a3 > a2

1 + a0a2
3, ai > 0, i = 0, 1, 2, 3}.

Lemma 2: Denote
Ẋ = f (X)

where

X = (x1, x2, · · · , xn) ∈ Rn,

f (X) = ( f1(X), f2(X), · · · , fn(X))T,

A(X∗) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂ f1(X)
∂x1

· · · ∂ f1(X)
∂xn

...
. . .

...

∂ fn(X)
∂x1

· · · ∂ fn(X)
∂xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
X=X∗

If f (X∗) = 0 and f is differentiable on X∗,

1. If ∀λ ∈ σ(A) ⇒ Re(λ) < 0, then X∗ is an asymptotically stable equilibrium point;

2. If ∀λ ∈ σ(A) ⇒ Re(λ) > 0, then X∗ is an unstable equilibrium point.

Where σ(A) are the eigenvalues of A(X∗).

2.2.1 Analysis of Equilibrium Points Q1,Q2

Case 1: If the parameters satisfy the inequality:

A =
λbk

adu
< 1, (3)

then the equilibrium point Q1 is an asymptotically stable equilibrium point because all the eigenvalues of the linearized
equation of Eq(2) at Q1

λ1 = −d,

λ2 =
−(a + u) + [(a + u)2 + 4( λbk

d
− au)]

1
2

2
,

λ3 =
−(a + u) − [(a + u)2 + 4( λbk

d
− au)]

1
2

2
,

are less than 0.

For another equilibrium point Q2, it can be proved that the eigenfunction of the Jacobean matrix of the linearized equation
of Eq(2) at Q2 has the form

p(s, a) = s3 +
a2u + au2 + λbk

au
s2 +

abkλ + bkuλ

au
s + λbk − adu

�
= s3 + a2s2 + a1s + a0

Because
a0 = λbk − adu < 0,

from Lemma 1, p(s, a) = 0 has a root with positive real part. This means that Q2 is unstable.
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Case 2: If the parameters satisfies the inequality

A =
λbk

adu
> 1,

then the equilibrium point Q1 is unstable equilibrium point because one of the real parts of the eigenvalues of the Jacobian
matrix of the linearized equation of Eq(2) at Q1 is larger than 0. On the other hand, we can get

ai > 0, i = 0, 1, 2, a1a2 > λbk > a0.

From Lemma 1 and 2, we have Q2 is asymptotically stable.

2.3.2 Analysis of Equilibrium Points Q∗
1,Q

∗
2

Case 1: If the parameters satisfies the inequality

A∗ =
λb(k − k1)
(a + k3)du

< 1, (4)

then the equilibrium point Q∗
1 is an asymptotically stable equilibrium point because all the eigenvalues of the Jacobian

matrix of the linearized equation of Eq(1) at Q∗
1

λ1 = −d,

λ2 = −k2,

λ3 =
−(a + u + k3) + [(a + u + k3)2 + 4( λb(k−k1)

d
− (a + k3)u)]

1
2

2
,

λ4 =
−(a + u + k3) − [(a + u + k3)2 + 4( λb(k−k1)

d
− (a + k3)u)]

1
2

2
,

are less than 0.

For another equilibrium point Q∗
2, it can be proved that the eigenequation of the Jacobean matrix of the linearized equation

of Eq(2) at Q∗
2 has the form

p(s, a) = s4 +
λk2 + q(u + a + k2 + k3)

q
s3 +

(λ(k2 + u + a) + q)(a + u + k3)
q

s2 +
(λk2 + u − duq)(u + k3)

q
s

+
uk2(u + k3)(λ − dq)

q

�
= s4 + a3s3 + a2s2 + a1s + a0,

where

q =
(a + k3)u
b(k − k1)

,

Because

a0 =
uk2(u + k3)(λ − dq)

q
=

uk2(u + k3)
q

(λ − d
(a + k3)u
b(k − k1)

) =
uk2λ(u + k3)

q
(1 − 1

A∗
) < 0

then from Lemma 1 and 2, Q∗
2 is unstable.

Case 2: If the parameters satisfies the inequality

A∗ =
λb(k − k1)
(a + k3)du

> 1,

then the equilibrium point Q∗
1 is unstable because one of the real parts of the eigenvalues of the Jacobean matrix of the

linearized equation of Eq(2) at Q∗
1 is larger than 0. On the other hand, we can get

A∗ > 1 ⇒ k > k1 ⇒ q > 0 ⇒ ai > 0, i = 1, 2, 3,

λ − dq = λ − (a + k3)du

b(k − k1)
= λ(1 − 1

A∗
) > 0 ⇒ a0 > 0,
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a1a2a3 − (a2
1 + a0a2

3)

=
(λ2(k3 + u + a) + λ(qa2 + u2 + q(a + k3)u) + dq2(a + k3)u)((a + k3)(qk2

2 + k2λ + u(λ − dq)) + k2
2uq + k3

2q + k2
2λ)

q3

>
(λ2(k3 + u + a) + λ(qa2 + u2 + q(a + k3)u) + dq2(a + k3)u)((a + k3)(qk2

2 + k2λ) + k2
2uq + k3

2q + k2
2λ)

q3

> 0

From Lemma 1 and 2, we can get Q∗
2 is asymptotically stable.

Because
A =
λbk

adu
< 1 ⇒ A∗ =

λb(k − k1)
(a + k3)du

< 1,

then when
A =
λbk

adu
< 1,

Q1,Q
∗
1 are both asymptotically stable equilibrium points; because

A∗ =
λb(k − k1)
(a + k3)du

> 1 ⇒ A =
λbk

adu
> 1,

then when
A∗ =

λb(k − k1)
(a + k3)du

> 1,

Q2,Q
∗
2 are both unstable.

3. Numeric simulation

Now let us use our model (Eq(1) and (2)) to simulate the antiviral treatment of chronic HBV infection with drug lamivadine
reported by Nowak(Nowak, 2000) using MATLAB program.

Take {a, d, u, k1, λ} = {0.053, 0.053, 0.67, 0.05, 8.48 × 106} and different values of other parameters and initial values, the
simulation result is displayed in Figure 1.

From Figure 1, it can be concluded that our model may provide possible quantitative interpretations for the treatment
of chronic HBV infection with the drug lamivudine reported by Nowak(Nowak, 2000), in particularly explain why the
plasma virus of patients turnover the original level after stopping the lamivudine therapy.

If we prolong the treatment time, we can get Figure2.

The values of patient 1-6 for criteria of the stabilities of equilibrium points are listed in Table 1:

From Table 1, we can see that for the patient 1,3,5, Q1,Q
∗
1 is unstable equilibrium point and Q2,Q

∗
2 is stable one and for

the patient 2,4,6, Q2,Q
∗
2 is stable and Q1,Q

∗
1 is unstable. So, if we prolong treatment time, Patient 2,4,6 may recovered

completely, and Patient 1,3,5 may hardly be cured even we prolong the time of therapy.

In summary, we can obtain following conclusions:

(1). If inequality (3) and (4) holds, prolonging treatment time makes v(t∗) < 0 at some time t∗ then the patient can
recovered completely. In fact, it has been found that if prolonging patient 4’s treatment time from 28 days to about 200
days, the virus can be deleted (see Figure 2).

(2). If inequalities (3) or (4) do not hold, then the necessity of treatment with drug lamivadine seems to be questionable.
Although the population of infected cells and virus are reduced, and the population of uninfected cells is increased re-
markably, prolonging treatment time may not make the patient recovered. As soon as withdrawn treatment of drug, the
population of infected cells, uninfected cells and free virus will return the level before therapy (see Figure 1).

4. Conclusion

In this paper, a mathematical model consisting of two systems of Hepatitis B virus (HBV) infection is set up which has two
kinds of equilibrium points, representing the patients’ complete recovery and HBV persistent infection, respectively. Our
model can explain why the plasma virus of Nowak et al’s patients turnover the original level after stopping the lamivudine
treatment, and it may provide possible quantitative interpretations for the long-time treatments of chronic HBV infections
with the drug lamivudine according to different model parameters.

Some parameters of models of HBV infection are difficult (if not impossible) to be obtained directly. However, theoretical
analysis may be helpful for figure out them. Practically, the dynamic behaviors of HBV infection are very complex
and puzzling. Our research might provide a possible interpretation for some of them. More and accurate experimental
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data are needed for modeling dynamics of HBV infection. It seems that new treatment approaches are expected to treat
patients. The quantitative understanding of HBV dynamics will make it possible to devise optimal treatment strategies for
individual patients. Further research for HBV dynamics is promising.
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Table 1. The dynamic values of patients

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6

A 23.008 9.0000 21.000 26.000 26.000 9.000

A∗ 6.0157 0.2757 1.0647 0.3271 1.3182 0.4563

Figure 1. Dynamic routs of improved HBV immune model(the circles are the numbers reported by Nowak
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Figure 2. Long-Time dynamic routs of improved HBV immune model
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