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Abstract

The aim of the present paper is to find some exact solutions of steady two dimensional finitely conducting incompressible

fluid flow under the presence of transverse magnetic field using transformation of variables. We have considered, vorticity

distribution proportional to the stream function perturbed by a quadratic stream. The results are shown by various graphs.
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Nomenclature

Latin Symbols

u, v,w non-dimensional velocity component

H1,H2,H3 non-dimensional components of the magnetic field vector H

H non-dimensional transverse components of the magnetic field vector H

p non-dimensional pressure

T non-dimensional temperature

Re Reynolds number

RH magnetic pressure number

Rσ magnetic Reynolds number

J generalized energy function

L,M,N,Z,H,G, P functions

x, y variables

K,U,m, n real constants

A1(θ), ..., A9(θ) real constants dependent on the parameter θ , and −π ≤ θ < π
B1(θ), ..., B9(θ) real constants dependent on the parameter θ , and −π ≤ θ < π
Greek symbols

μ non-dimensional viscosity of the fluid

ψ stream function

ω vorticity function

Ψ functions

ξ, η, θ variables

Subscripts
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x, y, z, xx, yy differentiation with respect to Cartesian coordinates x and y.

ξ, η, ξξ, ηη differentiation with respect to ξ and η.

superscripts

′ dimensional quantities

1. Introduction

In order to describe the flow behavior of any fluid, we have to solve the Navier-Stokes equations arising in fluid flow.

The importance of Navier-Stokes equations comes from their wide applicability for different kind of fluid flow, ranging

from thin film to large scale atmospheric, even cosmic flows. However, Navier- Stokes equations are highly non-linear in

nature and hence we face difficulties in solving them exactly. The full set of general solution of Navier-Stokes equations

has not been found and is an open problem till the date. In order to overcome this difficulty one adopt transformations,

inverse or semi- inverse method for the reformulation of equations in solvable form. Following the Martin’s formulation

(Martin, M.H., 1971), some researchers (Chandna, O.P., et al, 1982; Siddiqui, A.M., et al, 2008) have used hodograph

transformation (Ames, W.F., et al, 1965) in order to linearized the system of governing equations and successfully got

some exact solutions. Some authors (Chandna, O.P., et al, 1994; Hayat, T., et al, 1988 ) have used inverse method

(Nemenyi, 1951) where some a priori condition is assumed about the flow variables and have found some exact solutions.

The above said solutions have been found for the flow of fluid with constant viscosity. But in many situations in the fluid

flow, where the pressure and temperature gradients are high or in case of electrically conducting fluid flow where the

magnetic field plays dominant role, the viscosity is no longer constant (Myers, et al, 2006; Sunil, et al, 2008; Kannan, et
al, 2008). So In order to study fluid flows in such situations, we have to consider the viscosity of fluid as a variable, which

gives rise the corresponding Navier-Stokes equations in more complicated form. The exact solution of Navier-Stokes

equations for the fluid of variable viscosity are rare and very few work has been done in this aspect. As for the analyt-

ical solution is concern, Martin’s approach, where system of equations are reformulated in curvilinear coordinates, was

previously employed by Naeem in the compressible fluid of constant viscosity. This work was extended by Naeem and

Nadeem (1996) for incompressible fluid of variable viscosity. Naeem (1994), utilizing one parameter group of transfor-

mation, transformed the governing equations of an incompressible fluid with variable viscosity into a system of ordinary

differential equation and successfully got some exact solutions.

Moreover, exact solutions of the steady plane incompressible fluid flow with variable viscosity, employing transformation

of variables (Naeem, et al, 2009) and von-mises variables (Naeem, et al, 2001) have been obtained. Recently Naeem and

Jamil (2006), defined a one dimensional transformed variable ξ = (x cos θ + y sin θ); −π ≤ θ ≤ π, converted the governing

equations into simple ordinary differential equations and have got a class of exact solutions to flow of fluid of variable

viscosity for which the vorticity function is proportional to the stream function perturbed by a uniform stream parrellel

to X-axis. Further, Jamil and Khan (2006), using the same technique, extended this work by taking electrically conduct-

ing fluid of variable viscosity under the presence of transverse magnetic field and considering the vorticity distribution

proportional to the stream function perturbed by a uniform stream, U(x + y); where U is a real constant, inclined to the

X-axis.

In the present analysis we have extended the work of Jamil and Khan (2006) to find some exact solutions of governing

equations of the flow of electrically conducting fluid of variable viscosity under the presence of transverse magnetic

field H = (0, 0,H)by considering the vorticity distribution proportional to the stream function perturbed by a generalized

quadratic stream, U(x + y) − (A(θ)x2 + B(θ)y2), where A(θ), B(θ) are parametric constants depending on the parameter θ.

2. Equations of Motion

The non-dimensional equation of steady plane flow of an incompressible electrically conducting fluid of variable viscosity

under the presence of transverse magnetic field following Jamil and Khan (2006) are

ux + vy + wz = 0, (1)

[
uux + vuy + wuz

]
= − Px +

1

Re

[
(2μux)x +

(
μ

(
uy + vx

))
y
+ (μ (wx + uz))z

]
+ RH

[
H3 (H1z − H3x) − H2

(
H2x − H1y

)]
,

(2)

[
uvx + vvy + wvz

]
= − Py +

1

Re

[(
2μvy

)
y
+

(
μ

(
vz + wy

))
z
+

(
μ

(
uy + vx

))
x

]
+ RH

[
H1

(
H2x − H1y

)
− H3

(
H3y − H2z

)]
,

(3)
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[
uwx + vwy + wwz

]
= − Py +

1

Re

[
(2μwz)z + (μ (wx + uz))x +

(
μ

(
vz + wy

))
y

]
+ RH

[
H2

(
H3y − H2z

)
− H1 (H1z − H3x)

]
,

(4)

(vH1 − uH2)x − (uH3 − wH1)z =
1

Rσ

(
H1xx + H1yy + H1zz

)
(5)

(wH2 − vH3)z − (vH1 − uH2)x =
1

Rσ

(
H2xx + H2yy + H2zz

)
(6)

(uH3 − wH1)x − (wH2 − vH3)y =
1

Rσ

(
H3xx + H3yy + H3zz

)
. (7)

Since we have considered transverse plane flow i.e magnetic field is applied normal to the plane of flow, so we must have

(u, v,w) = (u, v, 0)

(H1,H2,H3) = (0, 0,H) (8)

Now in view of equation (8) we have the two dimensional form of governing equations as

ux + vy = 0, (9)[
uux + vuy

]
= −Px +

1

Re

[
(2μux)x +

(
μ

(
uy + vx

))
y

]
, (10)

[
uvx + vvy

]
= −Py +

1

Re

[(
2μvy

)
y
+

(
μ

(
uy + vx

))
x

]
(11)

with magnetic diffusion equation as

uHx + vHy =
1

Rσ

[
Hxx + Hyy

]
. (12)

Where H is the transverse component of magnetic field and P = p + RH
H2

2
. Further for non-dimensionalisation we have

used the scaling parameters L, U0, μ0 and ρU2
0 as reference length, velocity, viscosity and pressure. These are defined as

u =
u′

U0

, v =
v′

U0

, w =
w′

U0

, μ =
μ′

μ0

, p =
p′

ρU2
0

, Re =
ρU0L
μ0

. (13)

Symbols in the above equations have there usual meaning and are listed in the Nomenclature. Equation (9) implies the

existence of stream function ψ as

u = ψy, v = −ψx. (14)

Utilizing (14) in above equations we get

ψxω = −Jx +
1

Re

[
μ

(
ψyy − ψxx

)]
y
, (15)

ψyω = −Jy − 4

Re

(
μψxy

)
y
+

1

Re

[
μ

(
ψyy − ψxx

)]
x
, (16)

ψyHx − ψxHy =
1

Re

(
Hxx + Hyy

)
, (17)

ω = −
(
ψxx + ψyy

)
, J = P +

1

2

(
ψ2

x + ψ
2
y

)
− 2μψxy

Re
. (18)

Now we let

ψxx + ψyy = K
(
ψ − Ux − Uy + Ax2 + By2

)
. (19)

Again from equation (18) and (19) we have

ω = −KΨ (20)
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where

Ψ = ψ − Ux − Uy + Ax2 + By2. (21)

Now using (20) and (21), equations (15) and (16) becomes

Lx = UKΨ − 2KAxΨ +
1

Re

[
μ

{(
Ψyy − Ψxx

)
+ 2(A − B)

}]
y

(22)

Ly = UKΨ − 2KByΨ − 4

Re

(
Ψxy

)
y
+

1

Re

[
μ

{(
Ψyy − Ψxx

)
+ 2(A − B)

}]
y

(23)

where L = J − 1
2
KΨ2, now using the Integrability criteria Lxy = Lyx we get

(
Mxx − Myy

)
− 4

Re

(
μΨxy

)
xy
− 2K

(
ByΨx − AxΨy

)
+ KU (Ψx − Ψx) = 0 (24)

where M = μ(Ψyy−Ψxx+2(A−B))
Re

.

(17) employing equation (21) becomes

(
Ψy + U − 2By

)
Hx − (Ψx + U − 2Ax) Hy =

1

Re

(
Hxx + Hyy

)
(25)

3. Solutions

In this section we find exact solutions of the governing equations. Using equations (19) and (21) we have

∇2Ψ = KΨ + 2(A + B). (26)

Now we seek the solution of the above equation of the form

Ψ(x, y) = N(ξ) (27)

where

ξ = (x cos θ + y sin θ) , −π ≤ θ ≤ π. (28)

Using (27) in equation (26) we have

N′′(ξ) − KN(ξ) = 2(A + B) (29)

Now for the solution of above equation we have two cases

Case (I): K = −n2, n ≥ 0

Case (II): K = m2, m ≥ 0

Now considering the case I we have the solution of (29) as

N(ξ) = A1(θ) cos (nξ + A2(θ)) +
2(A + B)

n2
(30)

Now using (27), (28) and (30) in (34) with suitable choice of

A = −V cot θ, B = V tan θ (31)

where

θ ∈ (−π, π) \
{
−π

2
,
π

2

}
and V is some real constant, we have[{

n2A1(θ)

Re
cos (nξ + A2(θ)) − 4V

Re
cot 2θ

}
μ

]
ξξ

= nKA1(θ)
[
U (cos θ − sin θ) − 2Vξ

]
sin (nξ + A2(θ))

(32)

Thus using (28), (30) and (31) we the function Ψ(x, y) as
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Ψ(x, y) = A1(θ) cos (n (x cos θ + y sin θ) + A2(θ)) − 4V
n2

cot 2θ (33)

again using (21) and (33) we have the stream function as under:

ψ(x, y) = A1(θ) cos (n (x cos θ + y sin θ) + A2(θ)) − 4V
n2

cot 2θ

+ U(x + y) + V(x2 cot θ − y2 tan θ)

(34)

Now introducing new variable

η = nξ + A2(θ) (35)

the equation (32) becomes

Zηη = (A3(θ) + A0η) sin η (36)

where

Z = (cos η + A4(θ)) μ, (37)

A0 = − 2KVRe
n4 , A3(θ) = KRe

n3

{
U (cos θ − sin θ) + 2A2(θ)V

n

}
and A4(θ) = − 4V cot 2θ

n2A1(θ)
.

Now on solving (36) and using (37) we get viscosity as

μ = − 1

(cos η + A4(θ))

[{(A3(θ) + A0η) sin η + 2A0 cos η} + A5(θ)η + A6(θ)
]

(38)

where A5(θ) and A6(θ) are parametric constants. Using (17), (21), (28) and (35) we have

Hηη = (A7(θ) + H0η) Hη (39)

where A7(θ) = RσU(cos θ−sin θ)
n and H0 = −2 Rσ

n . which gives the solution as

H = A8(θ)

∫
e

1
2H0

((A7(θ)+H0η)2

dη + A9(θ) (40)

where A8(θ) and A9(θ) are parametric constants. Finally using (28) and (35) we have viscosity and magnetic field in

cartisian coordinates.

Case (II): K = m2, m ≥ 0

Considering this case, solving equation (29) and then using (27), we have the solution for stream function as

Ψ(x, y) = B1(θ)emξ + B2(θ)e−mξ +
2

m2
(A + B) (41)

Now using (27) (28) and (41) in (24) with suitable choice of

A = −V cot θ, B = V tan θ (42)

where

θ ∈ (−π, π) \
{
−π

2
,
π

2

}
We have

S ξξ =
{
B3(θ)emξ + B4(θ)e−mξ

}
ξ + B5(θ)emξ + B6(θ)e−mξ. (43)

where

S = μ
{(

B1(θ)emξ + B2(θ)e−mξ
)
+

4V
m2

cot 2θ

}
(44)

and

B3(θ) = −2KVReB1(θ)

m
, B4(θ) =

2KVReB2(θ)

m

B5(θ) =
B1(θ)ReKU(cos θ − sin θ)

m3
, B6(θ) = −B2(θ)ReKU(cos θ − sin θ)

m3

(45)
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using (39) and (40) we have

Ψ(x, y) = B1(θ)emξ + B2(θ)e−mξ − 4V
m2

cot 2θ (46)

Again using (46) and (21), we have the stream function as

ψ(x, y) = B1(θ)emξ + B2(θ)e−mξ − 4V
m2

cot 2θ

+ U(x + y) + V(x2 cot θ − y2 tan θ).

(47)

Now on solving equation (43) we have

S =
1

m2

(
B3(θ)emξ + B4(θ)e−mξ

)
ξ + B7(θ)emξ + B8(θ)e−mξ

+ B9(θ)ξ + B10(θ)
(48)

where B7(θ) =
(

B5(θ)
m2 − 2 B3(θ)

m3

)
, B8(θ) =

(
B6(θ)
m2 + 2 B4(θ)

m3

)
, B9(θ) and B10(θ) are arbitrary constants. Again using (17), (21),

(28) and (35) we have

Hξξ = (B11(θ) + B0ξ) Hξ (49)

where B11(θ) = Rσ(cos θ − sin θ)U and B0 = −2Rσ.

Now solving equation (49) we have

H = B12(θ)

∫
e(B11(θ)+B0ξ)

2

dξ + B13(θ) (50)

where B12(θ) and B13(θ) are arbitrary constants depending on parameter θ.

4. Result and Discussion

Stream lines patterns have been obtained for two different cases k = −n2 and k = m2. In the analysis we observe that when

quadratic perturbation term, Ax2+By2 dominates over uniform perturbation term U(x+y) then stream lines are hyperbolic

in nature and there exist stagnation point, Figure 1 and 2. If uniform perturbation term U(x + y) dominates over quadratic

term (Ax2 + By2) then stream lines obtained are of wavy nature including some closed graphs, Figure 1(a), (b), (c), (d), (e)

and ( f ).

Moreover for the solution in the case (II) when k = m2 where the exponential terms dominates over all other perturbed

terms resulting no wavy solution and hence there are stream lines patterns of hyperbolic nature including some closed

curves shown in Figure 2(g), (h), (i), ( j) and (k).

At last we have shown some viscosity variation in three dimensional surface graphs shown in Figure 3(a), (b), (c), (d)

which shows there are significant variation of viscosity in the flow field corresponding to the considered kinematical

condition for the vorticity.

5. Concluding Remark

In this paper we have taken the vorticity distribution proportional to the stream function perturbed by the more general

quadratic stream and obtained the exact solution of equations of motion of a finitely conducting incompressible fluid of

variable viscosity under the presence of transverse magnetic field. Transformation of variables has been used to find the

solutions in terms of one dimensional variable, depending on the single parameter θ. Moreover, by means of graphs, we

have presented stream line patterns and variation of viscosity corresponding to the various solutions. Further, we can get

more exact solutions by taking different values of parameter θ, U and V . Moreover the result in all cases for A = B = 0,

recovers the result of Jamil and Khan (2006). This guarantees the correctness of the mathematical calculations.
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