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Abstract

In this work, we show through a numerical approach the extended spectral controllability of the wave equation over a
portion of a regular domain, and that the spectrum obtained is quasi-symmetrical. Numerical simulations also verify the
analytical estimates demonstrated in Niane and al. [4] and the graphic illustrations relating to this spectral controllability
were done.
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1. Introduction

1.1 Introduce the Problem

For the wave equation in Niane and al. [4], the authors has been proved the existence of a C∞-control with a support in an
open portion ω of the domain Ω as small as they wish control a finite number of uncontrolled eigenmodes. Furthermore
the disruption on other modes is inversely proportional to the control duration. Thus, the estimates related to the spectral
controllability have been analytically proven for the wave equation.

In the sequel, let Ω be a bounded smooth domain of R2, T > 0 the maximum observability time and ω an open subset of
Ω. We consider the wave equation with state φ

φ′′ − ∆φ = v.χω in QT = Ω × ]0,T [
φ(t) = 0 on ΓT = Γ × ]0,T [

φ(0) = φ0
φ′(0) = φ1

(1)

where φ0 ∈ H1
0(Ω) and φ1 ∈ L2(Ω).

1.2 Explore Importance of the Problem

The problem of exact internal controllability of the wave equation is to find a control v ∈ L2(0,T ; L2(ω)) such that if φ is
the solution of (1), then φ(T ) = φ′(T ) = 0.

Existence results were already established from the HUM method Lions [6, 7], and Niane [4].

Thus, we know that three major difficult achievements of these controls appear:

• If ω is too widely open as support controls.

• If ω is too small on the usual functional spaces.

• If the time t of observability is too small.

To avoid these difficulties, we use the concept of extended spectral controllability of seeking control whose support is
smaller and exactly control a finite number of specific modes of the system (1) and we study the structure of the associated
spectrum. The effect of pertubation caused by such control is not estimated and its evaluation conditions the possibility to
use such a method to control the state of distributed systems.
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Thus, the objective of this work is to prove that at a certain time depending on the number of controlled and support
modes of control, the perturbation is inversely proportional to the time control and the spectrum is quasi symetric. A
consequence of this result is that for the initial data in L2(Ω) × H−1(Ω) and an open non-empty ω of the domain Ω, there
is an internal control class C∞ which brings the system to as near state as we want a state considered in L2(Ω) × H−1(Ω).

1.3 Reminders on the Spectral Theory

Consider the homogeneous wave equation 
ϕ′′ − ∆ϕ = 0 in QT

ϕ(0) = ϕ0
ϕ′(0) = ϕ1

(2)

and let the family (w j) for { j ∈ N?} the sequences of eigenfunctions of the operator −∆ϕ and (λ j) j∈N? the sequence of
eigenvalues associated rows in ascending order. If N ∈ N?, posing

FN = Vect(w j) j∈{1,...,N} (3)

the vector space generated by the eigenfunctions w1, ...,wN . If initial conditions (ϕ0, ϕ1) ∈ F2
N , then we have:

ϕ0 =

N∑
j=1

ϕ0, jw j and ϕ1 =

N∑
j=1

ϕ1, jw j (4)

And the only solution of the homogeneous wave equation (2) ϕ ∈ C(O,T ; FN). Moreover, it is known by Lions[6, 7]:

ϕ(x, t) =

N∑
j=1

ϕ0, jcos(
√
λ jt) + ϕ1, j

sin(
√
λ jt)√
λ j

 w j(x) (5)

For j ∈ N?, let

ζ j = cos(
√
λ jt)w j(x) and ξ j =

sin(
√
λ jt)√
λ j

w j(x). (6)

Theorem 1 (Niane [3, 4])
Let N ∈ N∗ and the initial couple (y0, y1) ∈ F2

N , it exist T0 > 0 such that for all T > T0, there exist a C∞ control v with
support in ω × ]0,T [ such that the solution y of (1) verify:

1. The orthogonal projection of (y(T ), y′(T )) on F2
N in (L2(Ω))2 is null.

2. ||(y(T ), y′(T ))||H1
0 (Ω)×L2(Ω) ≤

C(N,ω)
T ||(y0, y1)||H1

0 (Ω)×L2(Ω) where C(N, ω) depend only of N and ω.

Remark 1
Thus allow the flow of time, we can bring the system to a condition as nearly as we want its state equilibrium.

2. Main Results: Differential Characterization and Decomposition Theorem

Theorem 2
Let the quadratic functional J defined over FN × FN by

J(ϕ0, ϕ1) =
1
2

∫ T

0

∫
ω

ϕ2(x, t)dxdt + (y1, ϕ0) − (y0, ϕ1) (7)

where ϕ is the solution of (1) for the initial data (ϕ0, ϕ1), has a unique minimum attained at a point (ψ0, ψ1) caracterised
by

J′(ϕ0, ϕ1)(ψ0, ψ1) =

∫ T

0

∫
ω

ϕ(x, t)ψ(x, t)dxdt + (y1, ψ0) − (y0, ψ1) = 0 (8)

for all ψ solution of (2) corresponding at initial data (ψ0, ψ1) ∈ FN × FN .

Proof.
Functional J is convex and differentiable, so if it admits a minimum, it is characterized by equation (8). So just to show
that (8) has a unique solution.
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To do this, we can divide the relation (2.7) by T (It may be noted that this division is not essential to show existence and
uniqueness).

Let i ∈ {1, ...,N} and j ∈ {1, ...,N} and posing:

ai j =
1
T

∫ T

0
cos(

√
λit)cos(

√
λ jt)dt

∫
ω

wiw jdx (9)

ai, j+N = a j+N,i =
1

T
√
λ j

∫ T

0
cos(

√
λit)sin(

√
λ jt)dt

∫
ω

wiw jdx (10)

ai+N, j+N =
1

T
√
λi

√
λ j

∫ T

0
sin(

√
λit)sin(

√
λ jt)dt

∫
ω

wiw jdx (11)

where (wi) form a Hilbert basis of eigenvectors.

Let us define the matrix of rigidity A = (ai j)1≤i, j≤2N ;a square matrix of order 2N then the euclidean matrix norm:

|||A||| = ||A||2 =
[∑

1≤i, j≤2N a2
i j

] 1
2 .

Let us rewrite the relation (8) under the following conditions:

1. ψ0 = wi and ψ1 = 0, which gives

N∑
j=1

(
ai jϕ0 j + ai, j+Nϕ1 j

)
= −

1
T

y1,i (12)

2. ψ0 = 0 and ψ1 = wi, which gives

N∑
j=1

(
ai+N, jϕ0 j + ai+N, j+Nϕ1 j

)
=

1
T

y0,i (13)

The relations (12) and (13) form the linear system of order 2N:

AΦ =
1
T
.Y (14)

where Φ = (ϕ0,1, ϕ0,2, ..., ϕ0,N , ϕ1,1, ϕ1,2, ..., ϕ1,N) ,

Y = (−y1,1,−y1,2, ...,−y1,N , y0,1, y0,2, ..., y0,N) and A is the symmetric matrix whose coefficients are defined by (12) and
(13).

And we remark that ∀ i, j ∈ {1, ...,N}, 
ai, j = 1

T (ζi, ζ j)
ai, j+N = 1

T (ζi, ξ j)
ai+N, j+N = 1

T (ξi, ξ j)
(15)

where (., .) denotes the scalar product in L2(ω × [0,T ]).

Therefore, A is a Gram matrix; Knowing that the system {ζi} ∪ {ξi} for i ∈ {1, ...,N} form a free family, we deduce that
the matrix A is positive definite, so reversible. So, the system (14) admits a unique solution.

Hence the existence and uniqueness of the minimum of the functional J �

2.1 Decomposition Theorem

Now, let’s get down to give a representation of the solution of the linear system (14).

Let D be the diagonal square matrix of order 2N defined as follows
D = (di j)1≤i, j≤2N with

dii =
∫
ω

w2
i dx and

di+N,i+N = 1
λi

∫
ω

w2
i dx,∀i = 1, ...,N

(16)
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Theorem 3

1. The matrix A (14) is writen in the form

A =
1
2

[
1
T

B + I
]

+ D (17)

where B is a matrix of which the euclidean norm is majored by a constant RN independant of T and I the unit matrix.

2. There exist a constant T0 > 0 such that for all T > 0, the solution of the linear system (14) is writen: Φ = v1 + v2
with

v2 = 2Σ∞k=1
1

T k+1

[
−D−1B

]k
D−1y

and

v1 = (v0,11, v0,12, ..., v0,1N , v1,11, v1,12, ..., v1,1N)

where 
v0,1i = −2

T
∫
ω

w2
i (x)dx

y1i

v1,1i = 2λi

T
∫
ω

w2
i (x)dx

y0i

(18)

Proof.
∀i, j ∈ {1, ...,N} we obtain by simple calculations the components of the stiffness matrix:

•

ai,i =

(
1
2

+
sin(2

√
λiT )

√
λiT

) ∫
ω

w2
i dx (19)

• If i , j, then we have:

ai, j =

 sin(
√
λi +

√
λ j)T

2(
√
λi +

√
λ j)T

+
sin(
√
λi −

√
λ j)T

2(
√
λi −

√
λ j)T

 ∫
ω

wi.w jdx (20)

• Then, we have

ai,i+N =
1

2λiT
(1 − cos(2

√
λiT ))

∫
ω

w2
i dx. (21)

• Also, if i , j, we have

ai, j+N =
1

2
√
λ jT

cos(
√
λi −

√
λ j)

(
√
λi −

√
λ j)T

+
cos(
√
λi +

√
λ j)T

√
λi +

√
λ j

−
2
√
λ j

λi − λ j

 ∫
ω

wi.w jdx (22)

• Finally,

ai+N,i+N =

 1
2λi
−

sin(2
√
λiT )

4λ
3
2
i T

 ∫
ω

w2
i dx. (23)

• At least i , j, we have

ai+N, j+N =
1√

λ j
√
λiT

 sin((
√
λi −

√
λ j)T )

√
λi −

√
λ j

+
sin((

√
λi +

√
λ j)T )

√
λi +

√
λ j

 ∫
ω

wi.w jdx (24)
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Of the various components of the matrix A is deducted 1. of Theorem �

For the 2. of Theorem , it will suffice to prove that∣∣∣∣∣ 1
T

D−1B
∣∣∣∣∣ < 1 ie

||D−1||||B||
T

< 1 (25)

To do this, pose the constant

T0 = ||RN ||||D−1||

where RN = ||D−1||||B||;
And for T > T0, according to Von Neuman Lemma (see Brezis [1]), we deduce that:(

I +
1
T

D−1B
)−1

= I +

∞∑
k=1

1
T k

[
−D−1B

]k
(26)

Hence the solution Φ of the linear system (14) is written as

Φ = 2

I +

∞∑
k=1

1
T k

[
−D−1B

]k
 1

T
D−1y (27)

We deduce the 2. of Theorem �
3. Numerical approaches to estimates for extended spectral controllability Consider the plan regular domain Ω following:
Let us return to the linear system (14) of order 2N where A is the stiffness matrix, Φ the unknown vector, T time

X
0

Г
1

Г
0 Ω

Г= Г
0
 U Г

1

Figure 1. Regular plan domain

observability and Y the second member vector.

Consider the domain Ω see fig1 an open area of R2 with a regular border.

The finite element method we’ll use allows us to achieve high levels of convergence with the Free-fem ++ software;
Once the triangulation is made, the assembly of the stiffness matrix and the second member vector set, we can obtain
estimates related to increases standards for extended internal spectral controllability of the wave equation. 3.1 Variational
Formulation Let (Th) a regular triangulation of the domain Ωh into triangles of diameter less than h, the positive and
constant step tending to 0.

We define the space Wh approximate solutions by:

Wh =
{
vh ∈ Vh; (vh)|K ∈ P1(K),∀K ∈ Th

}
(28)

And, thereafter we define the discrete problem:

Find uh ∈ Wh such that: ∀i, j ∈ {1, ...,N}
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i.

ai,i(uh, uh) =

1
2

+
sin(2

√
λh

i T )√
λh

i T


∫
ω

u2
i,hdx (29)

ii. If i , j, then

ai, j(uh, vh) =


sin(

√
λh

i +

√
λh

h)T

2(
√
λh

i +
√
λh

j )T
+

sin(
√
λh

i −

√
λh

h)T

2(
√
λh

i −

√
λh

j )T


∫
ωh

ui,h.v j,hdx (30)

iii. Afterwards,

ai,i+N(uh, vh) =
1

2
√
λh

i T

(
1 − cos(2

√
λh

i T )
) ∫

ωh

u2
i,hdx (31)

iv. Also,

ai,i+N(uh, vh) =
1

2
√
λh

i T

(
1 − cos(2

√
λh

i T )
) ∫

ωh

u2
i,hdx (32)

v. At last, if i , j

ai, j+N(uh, vh) =
1

2
√
λh

jT


cos((

√
λh

i −

√
λh

j ))

(
√
λh

i −

√
λh

j )T
+

cos((
√
λh

i +
√
λh

j )T )

(
√
λh

i +
√
λh

j )
−

2
√
λh

j

λh
i − λ

h
j


∫
ωh

ui,h.v j,hdx (33)

vi. Also,

ai+N,i+N(uh, vh) =

 1
2λh

i

−

sin(2
√
λh

i T )

4λh, 3
2 T

i


∫
ωh

u2
i,hdx (34)

vii. At last if i , j,

ai+N, j+N(uh, vh) =
1√

λh
i

√
λh

jT


sin((

√
λh

i −

√
λh

j ))

(
√
λh

i −

√
λh

j )
+

sin((
√
λh

i +
√
λh

j ))

(
√
λh

i +
√
λh

j )


∫
ωh

ui,h.v j,hdx (35)

By assembling the various components of (i.) relations to (vi.), one draws the stiffness matrix A.

Let Yh the second member of the discrete spaceWh defined by:

Yh = (−yh
1,1,−yh

1,2, ...,−yh
1,N , y

h
0,1, y

h
0,2, ..., y

h
0,N) (36)

And, f h
k (s) =

∫
Ω

f h(x, s)ωh
k(x)dh =

∫
Ω

Φh(x, s)ωh
k(x)dh
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3.2 Mesh Viewing

Considering the regular domain Ω meshed below:

Figure 2. Refined mesh without ω Figure 3. Refined mesh with ω

And so:

1. After assembly of the stiffness matrix and the second member vector, Freefem++ allows us to determine the spec-
trum of the rigidity matrix. And also determining the values approximate coefficients (eigenvalues) and solutions
of the associated linear system.

2. In the domain Ω set (figure 2 and 3), by restricting to a portion of ω of Ω and an internal control, we see that for
values below the caused disturbance is inversely proportional to the duration of the control t on a fixed interval
]0,T ]; Hence the values obtained are quasi-symmetric numerically relative to the values of each sets of eigenvalues
see fig.4 to fig. 8.

3.3 Mesh Size Characteristics are as Follows

Table 1. Characteristics tested meshes

Parameter N 100 200 300
Number of Triangles NT 1176 3582 4900

Number of nodes NN 639 1891 2501

3.4 The Spectra

And the spectra is in the following table

Table 2. The spectra of solutions

Spectrum 1 2 5 5 8 10
Spectrum 2 10 13 13 17 17
Spectrum 3 18 20 20 25 25
Spectrum 4 26 26 29 29 32
Spectrum 5 34 34 41 41 50

Remark 3 The approximation errors in the calculation of the eigenvalues associated with this domain (Ωh) range from
−8.953.10−14 and +4.13202.10−14 with Freefem ++ Software.
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IsoValue
-4.04755
-3.46932
-3.08383
-2.69835
-2.31286
-1.92737
-1.54189
-1.1564
-0.770913
-0.385426
6.05562e-005
0.385547
0.771034
1.15652
1.54201
1.92749
2.31298
2.69847
3.08396
4.04767

Eigen  Vector 11 valeur =491.04

Figure 4. Spectrum 1

IsoValue
-3.92827
-3.36708
-2.99296
-2.61884
-2.24472
-1.87059
-1.49647
-1.12235
-0.748226
-0.374103
1.94392e-005
0.374142
0.748265
1.12239
1.49651
1.87063
2.24475
2.61888
2.993
3.92831

Eigen  Vector 9 valeur =433.367

Figure 5. Spectrum 2

IsoValue
-4.08619
-3.50245
-3.11329
-2.72413
-2.33497
-1.9458
-1.55664
-1.16748
-0.778321
-0.389159
1.95594e-006
0.389163
0.778324
1.16749
1.55665
1.94581
2.33497
2.72413
3.11329
4.0862

Eigen  Vector 12 valeur =546.17

Figure 6. Spectrum 3

IsoValue
-4.0771
-3.51059
-3.13292
-2.75524
-2.37757
-1.99989
-1.62222
-1.24455
-0.866872
-0.489198
-0.111524
0.26615
0.643824
1.0215
1.39917
1.77685
2.15452
2.53219
2.90987
3.85405

Eigen  Vector 14 valeur =597.933

Figure 7. Spectrum 4

IsoValue
-4.21255
-3.61053
-3.20919
-2.80785
-2.40651
-2.00517
-1.60383
-1.20248
-0.801142
-0.3998
0.00154215
0.402884
0.804226
1.20557
1.60691
2.00825
2.40959
2.81093
3.21228
4.21563

Eigen  Vector 19 valeur =806.595

Figure 8. Spectrum 5

3.4 Graphical Representation of Spectra

Numerical Interpretations

- All eigenvalues obtained in all spectra are ranked in ascending order as demonstrated by the spectral theory. But
the symmetry of the spectrum is not linked to the rank of a fixed eigenvalue.

- Numerical simulations amply illustrate two types of almost or quasi-symmetric spectra.

- And, this confirms the virtual symmetry of each spectrum recorded in Table 2 by an eigenvalue.

- Moreover, it can be seen that even by further refining the mesh and by increasing the number of series of eigenvalues
obtained, the observations remain globally the same.

4. Conclusion

Thus, the aim of this work was to prove that from a certain time depending on the number of eigen modes controlled and
the support of the control, the perturbation is inversely proportional to the control time. A consequence of this result is
that for appropriately selected initial data, there is an internal control over a portion of the considered domain to a near
state that we wants. And, the theoretical results obtained have been proved numerically.
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