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Abstract

The dynamics of a system composed of hematopoietic stem cells and its relationship with neutrophils is ubiquitous due
to periodic oscillating behavior induce cyclical neutropenia. Underlying the methodology of state feedback control with
two time delays, double Hopf bifurcation occurs as varying time delay to reach its threshold value. By applying center
manifold theory, the analytical analysis of system exposed the different dynamical feature in the classified regimes near
double Hopf point. The novel dynamics as periodical solution and quasi-periodical attractor coexistence phenomena are
explored and verified by numerical simulation.
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1. Introduction

Mathematically and Biologically, the discussion of the complex dynamics of hematopoietic cell model is ubiquitous
and interesting due to its inherent highly nonlinear attribute. The hematopoietic stem cells(HSCs) originates from the
bone marrow to proliferate and differentiate into all other types of blood cells. Underlying biomedical discpline, people
introduced population dynamics to describe the relationship between cells compartments and the application of delay
differential equations is the necessary useful tool on hand.

The definition of a HSC has two properties: self-renewal and multipotent differentiation to cells with different function
capabilities. People set forth all kinds of mathematcical models with the good understanding of how introduce com-
partment cells of proliferating phase into comparment cells of nonproliferating phase. Therefore, HSCs system is build
on the basis that both nonproliferating phase and proliferating phase can produce, by successive divisions, all types of
blood cells(white cells, red blood cells and platelets). Mackeys model proposed at the end of the seventies describe a
decoupled quiescent phase of HSCS to study the dynamics of HSCs and its related diseases (Mackey, 1978). Since then
it has been improved and analyzed by many authors, including Mackey and coauthors (Pujo−Menjouet & Mackey, 2004;
Pujo−Menjouet et al., 2005; Fowler & Mackey, 2002). In their models, delay is an salient factor in introducing HSCs
population models. Proliferating cells can die with apoptosis and divide after a given time to produce two daughter cells,
then immedieatelly enter a new nonproliferating phase.

Due to the dysfunction in regulatory control process of blood cell production, some haematological disease emerge and
cyclical neutropenia(CN) is the most extensively studied with low level oscillating phenomena happening. Medical ob-
servation have exhibited that the neutrophils fall down into abnormally level in a period about 19 to 21 days, and longer
period happen in some patients with 40 to 80 days in human being. With the exception of period oscillating from 11
to 15 days, the similar oscillation character of cyclical neutropenia have been observed in the contrast experiment result
of grey collie. With the assumption that neutrophils experience maturation time to release into circulation through the
body, people have put forth the cyclical neutropenia dynamical system which is based on the negative feedack regulation
mechanism (Fowler & Mackey, 2002; Bernard et al., 2003; Santillan et al., 2000; Ma et al.,2010). Haurie suggests that
oscillation mechanism in cyclical neutropenia is due to destabilization of HSCs regulatory would explain the fact that
other cell lineages oscillate with the same period as cyclical neutropenia (Haurie et al., 1998; Haurie et al., 2000; Hearn
et al.,1998). Hopf bifurcation phenomenon has been observed in cyclical neutropenia model which lead to periodical
oscillation of neutrophil numbers and the stable periodic solution branches out from equilibrium (Haurie et al., 1998).
Biological meaningfully, Lei have developed CN model by introducing granulocyte-colony stimulating factors (G-CSF)
into CN administration with the assumption that G-CSF may decrease the amplification coefficient in neutrophil line for
the treatment of cyclical neutropenia (Lei & Mackey, 2014; Zhuge et al., 2012). Recently, the dependence of neutrophil
response on the period of simulated chemotherapy and the secondary response to G-CSF adminstaration is also reported
physiologically and mathematically (Haurie et al., 1998).
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Lei developed cyclical neutropenia model including G-CSF administration which can be described as follows:

dQ
dt
= −(β(Q) + kN(N) + kδ)Q + 2e−rsτsβ(Qτs )Qτs ,

dN
dt
= −γN N + ANkN(NτN )QτN

(1.1)

Wherein, HSCs exist in its proliferating phase with nonlinear rate β, and enter into CN compartment with nonlinear rate
kN . Commonly, both β and kN are given by the Holling function which listed

kN(N) =
f0θm

1

θm
1 + Nm β(Q) =

kcθ
n
2

θn
2 + Qn

kN(NτN ) =
f0θm

1

θm
1 + N(t − τN)m β(Qτs ) =

kc0θ
n
2

θn
2 + Q(t − τs)n

In model (1.1), HSCs can be self-renewal and differentiate to produce all kinds of blood cells including white blood cells,
platelets and erythrocytes with rate kδ. γs denotes apoptosis rate and τs denotes proliferation time. The delay in circulating
neutrophil is τN which can be decomposed as different time period experienced, that is, the proliferation time τNP (days)
of its progenitor cells and the maturation time τNM (days) of cyclical neutropenia. ηNP expresses the proliferation rate and
γ0 is the death rate in its maturation phase. Therefore, the amplification coefficient in circulating neutropenia is

AN = eηNPτNP−γ0τNM

In this paper, we introduce state feedback control mechanism to describe system (1.1) as

dQ
dt
= −(β(Q) + kN(N) + kδ)Q + 2e−rsτsβ(Qτs )Qτs + K(QτN + Qτs − 2Q),

dN
dt
= −γN N + ANkN(NτN )QτN

(1.2)

Hopf bifurcation and the instability of system (1.2) may bring out the complex dynamical behavior as varying parameter
continuously. However, it is tremendous rough work to work out the threshold of Hopf bifurcation as varying time delay.
Recently, DDE-Biftool is developed to effectively solve the root attribution of the related characteristic equation and
compute the stability of the equlibrium solution of system (1.2). Hopf bifurcation occurs as a pair of imaginary roots of
the characteristic equation cross the imaginary axis from left half plane to right half plane transversally and gives rise
to oscillating periodic solutions with small amplitudes. In system (1.1), Hopf bifurcation point is tracked by regarding
amplification coefficient as bifurcation parameters and bistable regime of steady states and periodic solution is found by
using DDE-biftool software (Engelborghs et al., 2001; Green et al., 2002).

In this paper, we explore double Hopf bifurcation point of system (1.2) by tracking the secondary Hopf bifurcation lines
which form the resonant region near ”death island” (Zhang & Xu, 2013; Zhang & Xu, 2011; Ma et al., 2009). Different
features as asymptotically stability in ”death island” and periodic or chaotic attractor after double Hopf bifurcation exhibit
the richness of system dynamics inherently. In section 2, we discuss the stability of the related linearized system and dou-
ble Hopf bifurcation point which is highlighted by ”death island” is explored by using DDE-Biftool. In section 3, by using
center manifold method and normal form theory, dynamics of the linearized system near the double Hopf bifurcation point
is analyzed. In section 4, dynamics of nonlinear system near the double Hopf point is analyzed. Numerical simulation
further verifies the classified dynamical results, and coexistence of periodical solutions and torus are detected near double
Hopf bifurcation point.

2. Double Hopf Bifurcation

Suppose E(Q∗,N∗) is a positive equilibrium solution of (1.1), by using DDE-Biftool, stability of equilibrium solution
E(Q∗,N∗) is computed with accuracy and Hopf bifurcation line is tracked by varying parameter continuously. We choose
γN = 2.5, ηNP = 2.542, γ0 = 0.25, f0 = 0.8, kδ = 0.012, θ1 = 36, θ2 = 0.16, rs = 0.0631, τNP = 5, ϵ = −0.0583, τs =

2.6902 fixed and set parameter k0, τN free, instability of the equilibium solution is detected after Hopf bifurcation happens.
Therefore, Hopf bifurcation lines is drawn on (k0, τN) plane as shown in Figure 1. It is seen that the secondary Hopf
bifurcation happens at double Hopf bifurcation points which brings out the so-called ”death island”.

The linearized equation of system (1.2) is written as

x′ = a11x + a12y + b1x(t − τs) + K(x(t − τN) + x(t − τs) − 2x)
y′ = −γNy + b2x(t − τN) + b3y(t − τN) (2.1)
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where
a11 = −β(Q∗) − kN(N∗) − kδ − β′(Q∗)Q∗, a12 = −k′N(N∗)Q∗,
b1 = 2e−rsτs (β(Q∗) + β′(Q∗)Q∗), b2 = eτNPηNP−γ0τNM k(N∗),
b3 = eτNPηNP−γ0τNM k′(N∗)Q∗,

The related characteristic equation of linearized system (2.1) is

∆(λ, γs, τs) =

∣∣∣∣∣∣ (a11 − 2K) − λ + (b1 + K)e−λτs + Ke−λτN a12
b2e−λτN −γN − λ + b3e−λτN

∣∣∣∣∣∣ = 0 (2.2)
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Figure 1. Double Hopf bifurcation occurs in system(1.2). (a)Hopf bifurcation lines drawn on (k0, τN) parameter plane£(b)
The so-called ”death island” is found near double Hopf bifurcation point and denoted by the shaded regime

Roots of the characteristic equation (2.2) with zero real parts appears along Hopf bifurcation line, and one denotes λ =
±iω1 which satisfies Eq(2.2) with ω1 > 0. The transversallity of Hopf bifurcation can be verified which expresses the
necessary condition of stability switching of the equilibrium solution E(Q∗,N∗), that is, equilibrium solution E(Q∗,N∗)
becomes unstable when entering into the regime enclosed and bounded by Hopf bifurcation line. The secondary Hopf
bifurcation line is also detected with roots λ = ±iω2(ω2 > 0) and the double Hopf bifurcation point is explored at
critical parameters k0 = 0.83739666, τN = 14.79810125. At the double Hopf point DH, both transversallity condition as
dℜ(λ)

dτN
|λ=iω1 < 0 and

dℜ(λ)
dτN

|λ=iω2 > 0 are satisfied. As shown in Figure 1(a), ahead of the double Hopf bifurcation point

DH, equilibrium solution E(Q∗,N∗) changes from local asymptotically stable to be unstable as increasing time delay to
cross over Hopf bifurcation line, then retrieve its stability again. The stability switching of equilibrium solution E(Q∗,N∗)
brings out the ”death island” which is shown by shaded regime in Figure 1(b) which is the amplification of Figure 1(a).

3. Double Hopf Bifurcation

As analyzed in section 2, Double Hopf bifurcation happened at pairs of critical values (kc0, τN0). For convenience, set
β = kcβ1 hereinafter. By setting x→

√
ϵx, y→

√
ϵy and k0 = kc0 + ϵkϵ , τN = τN0 + ϵτϵ , system (1.2) is equivalent to

x′ = a11x + a12y + b1x(t − τs) + K(x(t − τN0) + x(t − τs) + 2x) + ϵl11x + ϵl12x(t − τs)
+K(x(t − τN) − x(t − τN0)) + f (x, x(t − τs), y),

y′ = −γNy + b2x(t − τN0) + b3y(t − τN0) + b2(x(t − τN)) − x(t − τN0))
+b3(y(t − τN) − y(t − τN0)) + ϵl21x(t − τN0)

+ϵl22y(t − τN0) + g(x(t − τN), y, y(t − τN)),

(3.1)

where
a11 = −kc0β1(Q∗) − kN(N∗) − kδ − kc0β

′
1(Q∗)Q∗, a12 = −k′N(N∗)Q∗,

b1 = 2e−rsτs (kc0β1(Q∗) + kc0β
′(Q∗)Q∗), b2 = eτNPηNP−γ0τNM k(N∗),

b3 = eτNPηNP−γ0τNM k′(N∗)Q∗, l11 = −kϵβ1(Q∗) − kϵβ′1(Q∗)Q∗,
l12 = 2e−rsτs (kϵβ1(Q∗) + kϵβ′(Q∗)Q∗), l21 = γ0τϵeτNPηNP−γ0τNM kN(N∗),
l22 = γ0τϵeτNPηNP−γ0τNM k′N(N∗)Q∗
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and
f (x, x(t − τs), y) = 2

√
ϵkc0e−rsτsβ′1(Q∗)x2(t − τs) +

√
ϵkc0e−rsτsβ′′1 (Q∗)Q∗x2(t − τs)

+2ϵ
√
ϵkϵe−rsτsβ′1(Q∗)x2(t − τs) − 1

2

√
ϵkc0β

′′
1 (Q∗)Q∗x2 − ϵ 1

6 kc0β
′′′
1 (Q∗)Q∗x3

−
√
ϵkc0β

′
1(Q∗)x2 − 1

2 ϵkc0β
′′
1 (Q∗)x3 − 1

2 ϵ
√
ϵkϵβ′′1 (Q∗)Q∗x2 − ϵ

√
ϵkϵβ′1(Q∗)x2

−
√
ϵk′N(N∗)xy − 1

2 ϵk
′′
N(N∗)xy2 − 1

2

√
ϵk′′N(N∗)Q∗y2 − 1

6 ϵk
′′′
N (N∗)Q∗y2

+ϵ
√
ϵkϵe−rsτsβ′′1 (Q∗)Q∗x2(t − τs) + ϵkc0e−rsτsβ′′1 (Q∗)x3(t − τs)

+ϵ 1
3 kc0e−rsτsβ′′′1 (Q∗)Q∗x3(t − τs),

g(x(t − τN), y, y(t − τN)) =
√
ϵeτNPηNP−γ0τNM k′N(N∗)x(t − τN)y(t − τN)

+ 1
2 ϵe

τNPηNP−γ0τNM k′′N(N∗)x(t − τN)y2(t − τN)
−ϵ
√
ϵeτNPηNP−γ0τNM k′N(N∗)x(t − τN)y(t − τN)

+ 1
2

√
ϵeτNPηNP−γ0τNM k′′N(N∗)Q∗y2(t − τN)

+ 1
6 ϵe

τNPηNP−γ0τNM k′′′N (N∗)Q∗y3(t − τN)

(3.2)

Choose phase space as C = C([−τN , 0],R2) , which is a Banach space composed as all continuous and differential function
by mapping from [−τN , 0]→ R2 . For every ϕ ∈ C , one can define the linear operator as

L(0)ϕ =
∫ 0

−τN

[dη(θ)]ϕ(θ), (3.3)

where η : [−τN , 0]→ R2 × R2 is a bounded variation function in [−τN , 0] and

dη(θ) =
[

(a11 − 2K)δ(θ) + (b1 + K)δ(θ + τs) + Kδ(θ + τN0) a12δ(θ)
b2δ(θ + τN0) −γNδ(θ) + b3δ(θ + τN0)

]
dθ (3.4)

Furthermore, we define

L(kϵ , τϵ) =
∫ 0

−τN

[dη1(θ, kϵ) + dη2(θ, τϵ)]ϕ(θ), (3.5)

with

dη1(θ, kϵ) =
[

l11δ(θ) + l12δ(θ + τs) 0
0 0

]
(3.6)

and

dη2(θ, τϵ) =
[

Kδ(θ + τN) − Kδ(θ + τN0) 0
b2δ(θ + τN) − (b2 + ϵl21)δ(θ + τN0) b3δ(θ + τN) − (b3 + ϵl22)δ(θ + τN0)

]
(3.7)

Suppose the linear operator at double Hopf bifurcation point (kc0, τN0) is

H(0)ϕ =


dϕ
dθ
, θ ∈ [−τN , 0),

L(0)ϕ, θ = 0.
(3.8)

and

H(kϵ , τϵ) =
{

0, θ ∈ [−τN , 0),
L(kϵ , τϵ)ϕ, θ = 0 (3.9)

The nonlinear operator R is defined as

R(ϕ) =
{

0, θ ∈ [−τN , 0),
F(ϕ), θ = 0, (3.10)

and F(ϕ) =
(

f (ϕ1(0), ϕ1(τs), ϕ2(0))
g(ϕ1(−τN), ϕ2(0), ϕ2(−τN))

)
.

System (3.1) can be rewritten as its operator form as (Hale, 2003)

u′(t) = H(0)ut + H(kϵ , τϵ)ut + Rut (3.11)

with u = (x, y)T , and ut = u(t + θ), for −τN ≤ θ < 0. For Ψ ∈ C∗ = C([0, τN],R2) define the adjoint operator H∗(0) of
operator H(0)£and adjoint operator H∗(kϵ , τϵ) of H(kϵ , τϵ) ,respectively as

H∗(0)ψ =

 −
dψ
ds
, 0 < s ≤ τN ,∫ 0

−τN
dηT (s)ψ(−s), s = 0,

(3.12)
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and

H∗(kϵ , τϵ)ψ =

 −
dψ
ds
, 0 < s ≤ τN ,∫ 0

−τN
[dηT

1 (s, kϵ) + dηT
2 (s, τϵ)]ψ(−s), s = 0,

(3.13)

For ϕ ∈ C, ψ ∈ C∗, define the belinear form (, ) : C∗ ×C → R as

< ψ, ϕ >= ψ̄T (0)ϕ(0) +
∫ 0

−τs

ψ̄T (ξ + τs)R1ϕ(ξ)dξ +
∫ 0

−τN

ψ̄T (ξ + τN)R2ϕ(ξ)dξ (3.14)

By the above discussion, there are two pairs of imaginary roots at the double Hopf bifurcation point (kϵ , τϵ) , and other
characteristic roots with negative real parts. We denote the collection set Λ = {iω1,−iω1, iω2,−iω2} and decompose the
phase space C to be the direct sum of its subspaces as C = PΛ ⊕ QΛ , with PΛ being the characteristic space of Λ and
QΛ being the corresponding complement subspace. System (3.1) is an ordinary differential system on the Banach space
C of functions from [−τN , 0] to R2, which is bounded and continuous on (−τN , 0) with a possible jump discontinuity at 0
(Buono et al., 2003). We choose

Φ(θ) = (q1(θ), q̄1(θ), q2(θ), q̄2(θ)),
Ψ(θ) = (q∗1(θ), q̄∗1(θ), q∗2(θ), q̄∗2(θ)), (3.15)

as the bases of PΛ and P∗
Λ

, where

q1(θ) =
(
γN + iω1 − b3e−iω1τN0

b2e−iω1τN0

)
eiω1θ,

q2(θ) =
(
γN + iω2 − b3e−iω2τN0

b2e−iω2τN0

)
eiω2θ,

(3.16)

for −τN ≤ θ < 0, are respectively the eigenvectors of operator H(0) with respect to the characteristic root iω1, iω2, and the
eigenvectors corresponding to adjoint operator A∗(0) with respect to −iω1 and −iω2 are respectively as

q∗1(s) = l1

(
−b2eiω1τN

a11 + iω1 + (b1 + K)eiω1τs + Keiω1τN

)
eiω1 s,

q∗2(s) = l2

(
−b2eiω2τN

a11 + iω2 + (b1 + K)eiω2τs + Keiω2τN

)
eiω2 s

(3.17)

for 0 ≤ s ≤ τN ,where

l1 =
eiω0τN0

s1τN0 + s2τs + s3
, l2 =

1
v1τN0 + v2τs + v3

with
s1 = −Kω2

1 + (−(2i)KγN + (2i)Kb3eiω1τN0 − ia12b2)ω1 + Kγ2
N

+a12b2Kb3eiω1τN0γN + Kb2
3e2iω1τN0 ,

s2 = (ib2Keiω1τs + ib2b1eiω1τs )ω1 + (−b2Keiω1τs − b2b1eiω1τs )γN

+b2Kb3eiω1(τN0+τs) + b2b1b3eiω1(τN0+τs),
s3 = −e−iω1τN0ω2

1 + ((−2i)e−iω1τN0γN + 2ib3)ω1
+e−iω1τN0γ2

N − 2γNb3 + b2
3eiω1τN0 + a12b2,

v1 = −Kω2
2 + (−(2i)KγN + (2i)Kb3eiω2τN0 − ia12b2)ω2 + Kγ2

N
+a12b2Kb3eiω2τN0γN + Kb2

3e2iω2τN0 ,
v2 = (ib2Keiω2τs + ib2b1eiω2τs )ω2 + (−b2Keiω2τs − b2b1eiω2τs )γN

+b2Kb3eiω2(τN0+τs) + b2b1b3eiω2(τN0+τs),
v3 = −e−iω2τN0ω2

2 + ((−2i)e−iω2τN0γN + 2ib3)ω2
+e−iω2τN0γ2

N − 2γNb3 + b2
3eiω2τN0 + a12b2,

It can be verified that
< q∗1, q1 >=< q∗2, q2 >= 1

is satisfied and further we can prove that

< q∗1, q̄1 >=< q∗1, q2 >=< q∗1, q̄2 >= 0,
< q∗2, q̄2 >=< q∗2, q1 >=< q∗2, q̄1 >= 0.

It is noticed that
Aq1(θ) = iω1q1(θ), Aq2(θ) = iω2q2(θ), −τN ≤ θ ≤ 0,
A∗q∗1(s) = −iω1q∗1(s), A∗q∗2(s) = −iω2q∗2(s), 0 ≤ s ≤ τN .

120



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 10, No. 4; 2018

Let z = (z1, z̄1, z2, z̄2)T , for every ut ∈ C, and vt ∈ QΛ ∩ C′([−τN , 0],R2), we have the expression ut = Φz + vt and the
linearized system corresponds to (3.11) is

u̇t = H(0)ut + H(kϵ , τϵ)ut, (3.18)

with the reduction form on its center manifold as

z′ = Bz+ < Ψ̄,H(kϵ , τϵ)ut >
= Bz + Ψ̄T (0)A(kϵ , τϵ)(Φz + vt),

(3.19)

where

B =


iω1 0 0 0
0 −iω1 0 0
0 0 iω2 0
0 0 0 −iω2


The matrix B generates the torus group T 2 = S 1 × S 1 whose action on C2 is given by

(θ1, θ2)(z1, z2) = (eiθ1 z1, eiθ2 z2)

Then the T 2-equivalent normal form, which is truncated to the quadratic order, becomes(
ż1
ż2

)
=

(
iω1 0
0 iω2

) (
z1
z2

)
+

(
ϵkϵc1

1z1 + ϵτϵc1
2z1

ϵkϵc2
1z1 + ϵτϵc2

2z1

)
(3.19)

with
c1

1 = ((−(2i)ω1 − 2γN)exp((−rs − iω1)τs − iω1τN0) + 2exp((−rs − iω1)τs − (2i)ω1τN0)b3
+(γN + iω1)exp(−iω1τN0) − exp(−(2i)ω1τN0)b3)l1ϵb2(β′1(Q∗)Q∗ + β1(Q∗)),
c1

2 = −ϵl1(γ0ANb3(Q∗b2kN(N∗) − b3kN(N∗))(b1 + K)exp(−iω1(2τN0 + τs))
+(kN ANγ0(γN + iω1)b3 + ω1(iγN − ω1)b2)(b1 + K)exp(−iω1(τN0 + τs))
+(−kN(N∗)AN(−ω2

1 + (iγN − ia11)ω1 − a11γN)γ0b3
+ω1(iω2

1 + ω1(γN − a11) + ia11γN)b2)exp(−iω1τN0) + (AN(kN(N∗)(iω1 − a11)b3
+(−ik′N(N∗)Q∗b2 + iKkN(N∗))ω1 + k′N(N∗)Q∗b2a11 + KγNkN(N∗))γ0exp(−(2i)ω1τN0)
+Kexp(−(3i)ω1τN0)(−γ0ANb3kN(N∗) + (k′N(N∗)γ0Q∗AN + iω1)b2))b3),
c2

1 = ((−(2i)ω1 − 2γN)exp((−rs − iω1)τs − iω1τN0) + 2exp((−rs − iω1)τs − (2i)ω1τN0)b3
+(γN + iω1)exp(−iω1τN0) − exp(−(2i)ω1τN0)b3)l1ϵb2(β′1(Q∗)Q∗ + β1),
c2

2 = −l2ϵ(kN(N∗)ANb3(b1 + K)γ0(γN + iω1)exp(−iω1τN0 − iω2τs)
+γ0ANb3(Q∗b2k′N(N∗) − b3kN(N∗))(b1 + K)exp(−(2i)ω1τN0 − iω2τs)
+Kγ0ANb3(Q∗b2k′N(N∗) − b3kN(N∗))exp(−iτN0(2ω1 + ω2))
+ω2(iγN − ω2)(b1 + K)b2exp(−iω2(τN0 + τs))
+kN(N∗)AN Kb3γ0(γN + iω1)exp(−iτN0(ω1 + ω2))
−ANb3(iω2 − a11)(Q∗b2k′N(N∗) − b3kN(N∗))γ0exp(−(2i)ω1τN0)
−kN(N∗)AN((iγN − ω1)ω2 − a11γN + iω1))b3γ0exp(−iω1τN0)
+ω2((iω2

2 + ω2(γN − a11) + ia11γN)exp(−iω2τN0) + iKexp(−(3i)ω2τN0)b3)b2),

In polar coordinate (ρ1, θ1, ρ2, θ2) , we express the associated amplitude equation generated from system (3.19) as

ρ′1 = ϵℜ(kϵc1
1 + τϵc

1
2)ρ1,

ρ′2 = ϵℜ(kϵc2
1 + τϵc

2
2)ρ2

(3.20)
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4. Center Manifold Reduction

Furthermore, consider the nonlinear system
u̇t = H(0)ut + Rut (4.1)

It is directly computed that the reduction form derived from Eq.(4.1) is
z′1 = iω1z + q̄∗T1 (0)F(Φz + vt)
= iω1z + q̄∗T1 (0) f̂ (z1, z̄1, z2, z̄2)

z′2 = iω2z + q̄∗T2 (0)F(Φz + vt)
= iω2z + q̄∗T2 (0) f̂ (z1, z̄1, z2, z̄2)

vt = Avt + (I − Π)X0(F(Φz + vt))

(4.2)

with I identity and Π is the projection mapping from C([−τ, 0],R2) to the subspace PΛ, and X0 denotes

X0 =

{
0, θ ∈ [−τN , 0),
I, θ = 0

where
f̂ (z1, z̄1, z2, z̄2, vt) = F(2ℜ(z1q1(θ)) + 2ℜ(z2q2(θ)) + vt(θ)) (4.3)

We write vt into its Taylor series

vt = w(z1, z̄1, z2, z̄2) =
∑

i+ j+k+l≥2

wi jklzi
1z̄ j

1zk
2z̄l

2 (4.4)

with coefficient vector wi jkl only depend on θ. We now expand f̂ into the Taylor series and

g1(z1, z̄1, z2, z̄2) = q̄∗T1 (0) f̂ (z1, z̄1, z2, z̄2, vt) =
∑3

i+ j+k+l≥2 g1
i jklz

i
1z̄ j

1zk
2z̄l

2,

g2(z1, z̄1, z2, z̄2) = q̄∗T2 (0) f̂ (z1, z̄1, z2, z̄2, vt) =
∑3

i+ j+k+l≥2 g2
i jklz

i
1z̄ j

1zk
2z̄l

2
(4.5)

From system (4.1), we obtain

v′t = Avt +


−2ℜ{pT

1 (0) f̂ (z1, z̄1, z2, z̄2)q1(θ)} −2ℜ{pT
2 (0) f̂ (z1, z̄1, z2, z̄2)q2(θ)},

−τN ≤ θ < 0,
−2ℜ{pT

1 (0) f̂ (z1, z̄1, z2, z̄2)q1(θ)} −2ℜ{pT
2 (0) f̂ (z1, z̄1, z2, z̄2)q2(θ)}

+ f̂ (z1, z̄1, z2, z̄2), θ = 0

(4.6)

The first equation in Eq.(4.6) can be rewritten as

w′(z1, z̄1, z2, z̄2) = Aw(z1, z̄1, z2, z̄2) + B(z1, z̄1, z2, z̄2),−τN ≤ θ < 0 (4.7)

where
B(z1, z̄1, z2, z̄2) = −2ℜ{pT

1 (0) f̂ (z1, z̄1, z2, z̄2)q1(θ)} − 2ℜ{pT
2 (0) f̂ (z1, z̄1, z2, z̄2)q2(θ)}

=
∑

i+ j+k+l≥2 Bi jklzi
1z̄ j

1zk
2z̄l

2,

with the coefficients Bi jkl = (B1
i jkl(θ), B

2
i jkl(θ))

T .

It can be derived from Eq.(4.6) that
(A − 2iω1)w2000 = −B2000(θ),

Aw1100 = −B1100(θ),
(A + 2iω1)w0200 = −B0200(θ),

(A − iω1 − iω2)w1010 = −B1010(θ),
(A − iω1 + iω2)w1001 = −B1001(θ),
(A + iω1 − iω2)w0110 = −B0110(θ),
(A + iω1 + iω2)w0101 = −B0101(θ),

(A − 2iω2)w0020 = −B0020(θ),
Aw0011 = −B0011(θ),

(A + 2iω2)w0002 = −B0002(θ),

(4.8)
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Taking account of formula of operator A, we have

dw2000

dθ
= 2iω1w2000(θ) − B2000(θ),

dw1100

dθ
= −B1100(θ),

dw0200

dθ
= −2iω1w0200(θ) − B0200(θ),

dw1010

dθ
= i(ω1 + ω2)w1010(θ) − B1010(θ),

dw1001

dθ
= i(ω1 − ω2)w1001(θ) − B1001(θ),

dw0110

dθ
= i(−ω1 + ω2)w0110(θ) − B0110(θ),

dw0101

dθ
= −i(ω1 + ω2)w0101(θ) − B0101(θ),

dw0020

dθ
= 2iω2w0020(θ) − B0020(θ),

dw0011

dθ
= −B0011(θ),

dw0002

dθ
= −2iω2w0002(θ) − B0002(θ),

(4.9)

Integrating Eq.(4.9) under the initial condition given be the second equation in Eq.(4.6), we can compute the coefficient
vectors wi jkl(θ) with i + j + k + l = 2.

Using the standard technique as invertible parameter-dependent complex coordinates transformation which is introduced
in (Buono et al., 2003), the normal form at (kc0, τN0) of Eq.(4.1) is described as

z′1 = iω1z1 + B11z2
1z̄1 + B12z1z2z̄2,

z′2 = iω2z2 + B21z1z̄1z2 + B22z2
2z̄2

(4.10)

In polar coordination (ρ1, θ1, ρ2, θ2), the amplitude equation generated from Eq.(4.10) is{
ρ′1 = ρ1(ℜ(B11)ρ2

1 +ℜ(B12)ρ2
2),

ρ′2 = ρ2(ℜ(B21)ρ2
1 +ℜ(B22)ρ2

2), (4.11)

Combining the results of Eqs(3.19) and Eqs(4.10), the formal normal form arising from system (4.11) is

z′1 = iω1z1 + ϵc1
1kϵz1 + ϵc2

1τϵz1 + B11z2
1z̄1 + B12z1z2z̄2,

z′2 = iω2z2 + ϵc1
2kϵz2 + ϵc2

2τϵz2 + B21z1z̄1z2 + B22z2
2z̄2,

(4.12)

Using polar coordinate transformation z1 = ρ1eiθ1 , z2 = ρ2eiθ2 , system (4.12) is transformed into
ρ′1 = ρ1(µ1 +ℜ(B11)ρ2

1 +ℜ(B12)ρ2
2),

ρ′2 = ρ2(µ2 +ℜ(B21)ρ2
1 +ℜ(B22)ρ2

2),
θ′1 = ω1 + v1 + ℑ(B11)ρ2

1 + ℑ(B12)ρ2
2,

θ′2 = ω2 + v2 + ℑ(B21)ρ2
1 + ℑ(B22)ρ2

2,

(4.13)

with µi = ϵ(ℜ(c1
i )kϵ +ℜ(c2

i )τϵ), vi = ϵ(ℑ(c1
i )kϵ +ℑ(c2

i )τϵ) for i = 1, 2. Using Maple software, we compute the coefficients
gi jlk with i + j + k + l = 2, 3 ,and further obtain the following formulas (Zhang, S. & Xu, J., 2011).

B11 = g1
2100 +

i
ω1

g1
1100g1

2000 +
i
ω2

(g1
1010g2

1100 − g1
1001ḡ2

1100) − i
2ω1+ω2

g1
0101ḡ2

0200
− i

2ω1−ω2
g1

0110g2
2000 −

i
ω1
|g1

1100|2 −
2i

3ω1
|g1

0200|2,
B12 = g1

1011 +
i
ω2

(g1
1010g2

0011 − g1
1001ḡ2

0011) + i
ω1

(2g1
2000g1

0011 − g1
1100ḡ1

0011 − g1
0011ḡ2

0110
−g1

0011g2
1010) − 2i

ω1+2ω2
g1

0002ḡ2
0101 −

2i
ω1−2ω2

g1
0020g2

1001 −
i

2ω1−ω2
|g1

0110|2 −
i

2ω1+ω2
|g1

0101|2,
B21 = g2

1110 +
i
ω1

(g1
1100g2

1010 − ḡ1
1100g2

0110) + i
ω2

(2g2
0020g2

1100 − g2
0011ḡ2

1100 − g1
1010g2

1100
−ḡ2

1001g2
1100) + 2i

2ω1−ω2
g1

0110g2
2000 −

2i
2ω1+ω2

(ḡ1
0101g2

0200 −
i

2ω2−ω1
|g2

1001|2 −
i

ω1+2ω2
|g2

0101|2,
B22 = g2

0021 +
i
ω1

(g1
0011g2

1010 − ḡ1
0011g2

0110) + i
ω2

g2
0011g2

0020 −
i

2ω2−ω1
g1

0020g2
1001

− i
2ω2+ω1

ḡ1
0002g2

0101 −
i
ω2
|g2

0011|2 −
2i

3ω2
|g2

0002|2

(4.14)

At double Hopf point DH with Q∗ = 0.3082205820115,N∗ = 388.4842602444987, ω1 = 0.254524564411299,ω2 =

0.633751246398309, we compute the coefficients g1,2
i jlk, (i + j + k + l = 2, 3). Therefore, by formula(4.14),choose ϵ = 0.1,
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then we have
B11 = −0.6051712720e − 1 + 0.7735627e − 4i + 0.5601811760e − 2kϵ
+(0.3431392376e − 1i)kϵ + (0.1393876593e − 2i)k2

ϵ

+0.1581514771e − 1k2
ϵ ,

B12 = −0.5174126005e − 1 + .2503938024i + 0.4929740694e − 1kϵ
+(0.3335168000e − 1i)kϵ + 0.1430425584e − 2k2

ϵ

+(0.1482060556e − 2i)k2
ϵ ,

B21 = 0.3923165406e − 1 + .1303176163i + 0.2227270962e − 1kϵ
−(0.1269551832e − 1i)kϵ − (0.4852214180e − 2i)k2

ϵ

+0.1030896439e − 2k2
ϵ ,

B22 = 0.4434841977e − 1 + 0.8857002742e − 1i + 0.1000013764e − 1kϵ
−(0.5651717652e − 2i)kϵ − (0.2466158270e − 3i)k2

ϵ

+0.2884712704e − 3k2
ϵ

(4.15)

We also have
µ1 = −0.1240211011e − 2kϵ + (0.1962466074e − 2i)kϵ

−(0.1702332949e − 2i)τϵ + 0.2827534980e − 2τϵ
−(0.7571216173e − 4i)τ2

ϵ − 0.354986150e − 5τ2
ϵ ,

µ2 = 0.8371586097e − 3kϵ + (0.1476100446e − 3i)kϵ
−(0.6445732784e − 2i)τϵ + 0.2543586790e − 2τϵ
−(0.6272308346e − 4i)τ2

ϵ − 0.6170908018e − 4τ2
ϵ

(4.16)

By time continuous transformation with direction preserved, system (4.13) is equivalent to

ρ′1 = ρ1(a +
ℜ(B11)
|B11|

ρ2
1 +
ℜ(B12)
|B11|

ρ2
2),

ρ′2 = ρ2(b +
ℜ(B21)
|B11|

ρ2
1 +
ℜ(B22)
|B11|

ρ2
2).

(4.17)

with a =
ℜ(µ1)
|B11|

, b =
ℜ(µ2)
|B11|

.

System (4.17) may have equilibrium solutions (ρ∗1, 0), (0, ρ∗2) and (ρ∗1, ρ
∗
2) and stability of equilibrium solution can be

derived via computation of its corresponding Jacobin determinant. Therefore, based on system(4.16), we deduce the
following results
(I)Neutral saddle bifurcation of equilibrium (ρ∗1, 0) happens if µ2 + (2B11 + B21)ρ∗21 = 0;
(II)Neutral saddle bifurcation of equilibrium solution (0, ρ∗2) happens if µ1 + (B12 + 2B22)ρ∗22 = 0;
(III) The equlibrium solution (ρ∗1, ρ

∗
2) loses its stability through line HL3 : B11ρ

∗2
1 + B22ρ

∗2
2 = 0 and correspondingly, the

associated torus of system (4.17) getting into torus instability state.
As shown in Figure2, system (4.17) has the equilibrium solution (0, ρ∗2) with parameter pairs(kc, τN) chosen in the regime
above boundary line L1 in green color, and the regime bounded by line in red color and line in black color exhibits torus
solution. We discuss system dynamics in detail with the partition of plane into different regimes. The stable periodic
solution observed in regime I,VI is shown in Figure3(a)-(f). The periodic solution exhibited in regime I further bifurcates
into quasi-periodical solution after crossing neutral saddle line HL1 shown in cyan color. The scenarios of the bifurcating
quasi-periodical solutions observed in regimes from (II) to V is plotted as shown in Figure4 . Due to neutral line HL2 in
purple color , system may have multi attractors coexistence in regime IV . We also obtain the observed coexisted attractors
in regime II and V alike, as shown in Figure5.

5. Discussion

A blood cell model which composed of two compartment cells known as hematopoietic stem cells and its relationship with
neutrophil was investigated. The dysfunction in regulatory control process of blood cell production induce the observed
hematological disease and cyclical neutropenia model including G-CSF adminstration was developed. As system state
dependent delay reflects different time stage during feedback regulation process, we introduced state feedback control
with time delay originally arising in system which is subtle disturbance around stationary equilibrium solution. We use
DDE-Biftool software to explore double Hopf bifurcation of system via tracking second Hopf bifurcaton lines as varying
parameters continuously and dynamics near double Hopf point was discussed. A classified method of dynamics near
double Hopf point was developed by using center manifold theory. The analytical norm form near double Hopf point is
computed based on fundamental theory of functional differential equation and the observed numerical simulation results
were in coincidence with dynamics of the classified method which further verified the correctness of theoretical analytical
results.
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Figure 2. The dynamical classify results near the double Hopf point DH in parameter space (k0, τN) plane
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Figure 3. Periodical solution of system (1.2).(a) Phase portraits of solution with parameter kc = 1.1, τN = 14.6; (b) Time
series solution with parameter kc = 1.1, τN = 14.6; (c) Phase portraits of solution with parameter kc = 0.9, τN = 15.1; (d)
Time series solution with parameter kc = 0.9, τN = 15.1
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Figure 4. The numerical simulation results of system (1.2) near the double Hopf point DH. (a)Torus at parameter pairs
(kc, τN) lying in regime II; (b) Torus at parameter pairs (kc, τN) lying in regime III;(c)Torus at parameter pairs (kc, τN)
lying in regime IV;(d)Torus at parameter pairs (kc, τN) lying in regime V
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Figure 5. The coexistence phenomena of torus solutions. (a)Chosen parameter pairs (kc, τN) lying in regime III; (b)
Chosen parameter pairs (kc, τN) lying regime V
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