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Abstract 

Using the first 4000000 primes to find Ln, the largest strong Goldbach number generated by the n-th prime Pn, we 

generalize a proposition in our previous work (Zhou 2017) and propose that Ln ≈ 2Pn and Ln/2Pn < 1 for sufficiently large 

Pn but the limit of Ln/2Pn as n → ∞ is 1, Ln ≈ Pn + n log n and Ln/(Pn + n log n) > 1 for sufficiently large Pn but the limit of 

Ln/(Pn + n log n) as n → ∞ is 1. There are five corollaries of the generalized proposition for getting Ln → ∞ as n → ∞, 

which is equivalent to Goldbach’s conjecture. If every step in distribution curve of Ln is called a Goldbach step, a study on 

the ratio of width to height for Goldbach steps supports the existence of above two limits but a study on distribution of 

Goldbach steps supports an estimation that Q(n) ≈ (1 + 1/log log n)n/log n and the limit of Q(n)/((1 + 1/log log n)n/log n) 

as n → ∞ is 1, where Q(n) is the number of Goldbach steps, from which we may expect there are infinitely many 

Goldbach steps to imply Goldbach’s conjecture. 

Keywords: prime, largest strong Goldbach number, numerical evidence, Goldbach step, Goldbach’s conjecture 

2010 Mathematics Subject Classification: 11A41, 11B99 

1. Introduction 

In our previous work (Zhou 2017), we moved beyond traditional definition of Goldbach number (Montgomery, & 

Vaughan, 1975; Li 1999; Lu 2010) by introducing three new definitions. First, Gn = p + q is defined as a Goldbach number 

generated by the n-th prime Pn for n ≥ 2 if p and q are two odd primes not greater than Pn ( although Gn is a number, there 

is a sequence (Gn), for example, (G5) generated by P5 = 11 is (6, 8, 10, 12, 14, 16, 18, 22) in which every term is a 

Goldbach number generated by P5 ). Second, Gn is defined as a strong Goldbach number generated by Pn and written as Sn 

if all even numbers from 6 to Gn are Goldbach numbers generated by Pn ( although Sn is a number, there is a sequence (Sn), 

for example, (S5) generated by P5 = 11 is (6, 8, 10, 12, 14, 16, 18) in which every term is a strong Goldbach number 

generated by P5 ). Third, Sn is defined as the largest strong Goldbach number generated by Pn and written as Ln if Sn + 2 is 

not a Goldbach number generated by Pn ( here Ln is always a number, for example, L5 = 18 ). Proposition 3.2 in our work 

(Zhou 2017) proposed that Ln − Pn ≈ n log n, or equivalently Ln ≈ Pn + n log n for all Pn. In this paper, we generalized the 

proposition based on the result of numerical calculation using the first 4000000 primes and provided a different approach 

for analyzing Goldbach’s conjecture. We chose 4000000 because it is large enough to show tendency of Ln, yet small 

enough for our algorithm to generate data reasonably quickly. We examined the ratio of width to height for Goldbach steps 

and found an alternative approach to lead to the two limits in the generalized proposition. By studying distribution of 

Goldbach steps, we obtained an estimation such that Q(n) ≈ (1 + 1/log log n)n/log n and the limit of Q(n)/((1 + 1/log log 

n)n/log n) as n → ∞ is 1, where Q(n) is the number of Goldbach steps.  

2. Distribution of the Largest Strong Goldbach Numbers Generated by Sufficiently Large Primes 

By definition of Ln, we have the following observations for sufficiently large primes. 

Observation 2.1. Distribution of the ratio Ln/2Pn for 10000 ≤ n ≤ 4000000. 

Figure 1 shows distribution of the ratio Ln/2Pn for 10000 ≤ n ≤ 4000000. From the distribution we see there is the same 

property such that Ln/2Pn ≈ 1 and Ln/2Pn < 1 for these primes but there is an obvious and stable increasing tendency, so 

one may estimate the limit of Ln/2Pn as n → ∞ is 1, which reflects the fact that 2Pn is the largest Goldbach number 

generated by Pn (Zhou 2017). 
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Figure 1. Distribution of the ratio Ln/2Pn for 10000 ≤ n ≤ 4000000 

 

Observation 2.2. Distribution of the ratio Ln/(Pn + n log n) for 10000 ≤ n ≤ 4000000. 

Figure 2 shows distribution of the ratio Ln/(Pn + n log n) for 10000 ≤ n ≤ 4000000. From the distribution we see there is the 

same property such that Ln/(Pn + n log n) ≈ 1 and Ln/(Pn + n log n) > 1 for these primes but there is an obvious and stable 

decreasing tendency, so one may estimate the limit of Ln/(Pn + n log n) as n → ∞ is 1.  

Based on the above observations, we have the following proposition to lead to Goldbach’s conjecture if the proposition 

is proven. 

Proposition 2.3. Ln ≈ 2Pn and Ln/2Pn < 1 for sufficiently large Pn but the limit of Ln/2Pn as n → ∞ is 1, Ln ≈ Pn + n log n 

and Ln/(Pn + n log n) > 1 for sufficiently large Pn but the limit of Ln/(Pn + n log n) as n → ∞ is 1. 

Remark 2.4. Proposition 2.3 is a generalization of our Proposition 3.2 (Zhou 2017). Any of the following five 

approaches would lead to Ln → ∞ as n → ∞, which is equivalent to Goldbach’s conjecture (Zhou 2017). 

Corollary 2.5. If Ln ≈ 2Pn as n → ∞, then Ln → ∞ as n → ∞. 

Proof. Since 2Pn → ∞ as n → ∞ and Ln ≈ 2Pn as n → ∞, replace 2Pn with Ln, so Ln → ∞ as n → ∞. Thus the corollary 

holds. 

Corollary 2.6. If the limit of Ln/2Pn as n → ∞ is 1, then Ln → ∞ as n → ∞.  

Proof. Since 2Pn → ∞ as n → ∞ and Ln /2Pn → 1 as n → ∞, replace 2Pn with Ln, so Ln → ∞ as n → ∞. Thus the 

corollary holds. 

Corollary 2.7. If Ln ≈ Pn + n log n as n → ∞, then Ln → ∞ as n → ∞. 

Proof. It has been proven in our work (Zhou 2017).  

Corollary 2.8. If Ln/(Pn + n log n) > 1 as n → ∞, then Ln → ∞ as n → ∞. 

Proof. Since Pn + n log n → ∞ as n → ∞ and Ln > Pn + n log n as n → ∞, we have Ln → ∞ as n → ∞. Thus the corollary 

holds.  

Corollary 2.9. If the limit of Ln/(Pn + n log n) as n → ∞ is 1, then Ln → ∞ as n → ∞. 

Proof. Since Pn + n log n → ∞ as n → ∞ and Ln/(Pn + n log n) → 1 as n → ∞, replace Pn + n log n with Ln, so Ln → ∞ as 

n → ∞. Thus the corollary holds. 



 

 

http://jmr.ccsenet.org                        Journal of Mathematics Research                       Vol. 10, No. 5; 2018 

3 

 

Figure 2. Distribution of the ratio Ln/(Pn + n log n) for 10000 ≤ n ≤ 4000000  

 

Our algorithm generated the following data for Figure 1 and Figure 2 at n = 10000, 100000, 1000000, 2000000, 

3000000, 4000000: Ln/2Pn = 0.99746011, 0.99958221, 0.99997443, 0.99996866, 0.99997855, 0.99998341, and Ln/(Pn + 

n log n) = 1.06144108, 1.06011031, 1.05697891, 1.05585627, 1.05526880, 1.05485514. It is obvious that Ln is closer to 

2Pn than Pn + n log n, but we will use both 2Pn and Pn + n log n to study the ratio of width to height for steps in the 

distribution curve of Ln. 

3. Distribution of the Ratio of Width to Height for Goldbach Steps 

It could be derived from the definition of strong Goldbach number that if Sn is a strong Goldbach number generated by 

Pn, then Sn is also a strong Goldbach number generated by Pn+k for k ≥ 1 (Zhou 2017). Thus we have Ln ≤ Ln+1 for any 

given Pn so that the distribution of the largest strong Goldbach numbers generated by primes is a step-shaped curve 

growing without bound as Figure 3 shows.  

Definition 3.1. Every step in the distribution curve of the largest strong Goldbach numbers Ln generated by primes Pn 

for n ≥ 2 is called a Goldbach step. 

Definition 3.2. For a given Goldbach step, W is called width of the Goldbach step if W = n2 – n1, where n1 is n-value at 

the beginning of the Goldbach step and n2 is n-value at the beginning of next Goldbach step. 

Definition 3.3. For a given Goldbach step, H is called height of the Goldbach step if H = Ln/log Ln , where Ln is 

generated by Pn with n = n1 being n-value at the beginning of the Goldbach step. 

According to Definition 3.2 and Definition 3.3, the ratio of width to height for a given Goldbach step is W/H = ((n2 − 

n1)log Ln)/Ln. Figure 4 shows the distribution of W/H = ((n2 − n1)log Ln)/Ln for 2 ≤ n ≤ 4000000, Figure 5 shows the 

distribution of ((n2 − n1)log 2Pn)/2Pn for 2 ≤ n ≤ 4000000 and Figure 6 shows the distribution of ((n2 − n1)log (Pn + n 

log n))/(Pn + n log n) for 2 ≤ n ≤ 4000000. Comparing Figure 5 and Figure 6 with Figure 4 respectively, we see that the 

figures are almost identical. By Figure 4, Figure 5 and Figure 6, it is obvious that W/H ≈ ((n2 − n1)log 2Pn)/2Pn and W/H 

≈ ((n2 − n1)log (Pn + n log n))/(Pn + n log n) but there is a tendency such that the limit of ((n2 − n1)log Ln)/Ln as n → ∞ is 

0. Therefore, one may expect that if the limit of ((n2 − n1) log Ln)/Ln as n → ∞ is 0 then n2 − n1 must be smaller than 

Ln/log Ln for any given Goldbach step so that there is always a new and higher Goldbach step to follow any given 

Goldbach step and Goldbach’s conjecture is true.  
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Figure 3. Step-shaped distribution of Ln for 2 ≤ n ≤ 200 

 

 
Figure 4. Distribution of ((n2 − n1)log Ln)/Ln for 2 ≤ n ≤ 4000000 
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In order to prove the limit of ((n2 − n1)log Ln)/Ln as n → ∞ is 0, we obtain a set {A, B, C}, where A = ((n2 − n1) log 

2Pn)/2Pn, B = ((n2 − n1)log Ln)/Ln and C = ((n2 − n1)log (Pn + n log n))/(Pn + n log n). If it is proven that A is lower 

bound of the set and the limit of ((n2 − n1)log 2Pn)/2Pn as n → ∞ is 0 but C is upper bound of the set and the limit of ((n2 

− n1)log (Pn + n log n))/(Pn + n log n) as n → ∞ is 0, then the limit of B = ((n2 − n1)log Ln)/Ln as n → ∞ is 0. 

 

  Figure 5. Distribution of ((n2 − n1)log 2Pn)/2Pn for 2 ≤ n ≤ 4000000 

 

 

Figure 6. Distribution of ((n2 − n1)log(Pn + n log n))/(Pn + n log n) for 2 ≤ n ≤ 4000000 
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Suppose it has been proven that the limit of B = ((n2 − n1)log Ln)/Ln as n → ∞ is 0. Since the limit of A/B as n → ∞ is 1 

but A/B = (Ln/2Pn)(log 2Pn)/log Ln, if the limit of (log 2Pn)/log Ln as n → ∞ is 1 then the limit of Ln/2Pn as n → ∞ is 1. 

Since the limit of C/B as n → ∞ is 1 but C/B = (Ln/(Pn + n log n))(log (Pn + n log n))/log Ln, if the limit of (log (Pn + n 

log n))/log Ln as n → ∞ is 1 then the limit of Ln/(Pn + n log n) as n → ∞ is 1. Thus above results are equivalent to the 

two limits in Proposition 2.3. 

 
Figure 7. Distribution of (log Ln)/Ln for n with n2 − n1 = 1 for 2 ≤ n ≤ 4000000 

 

Further, we study bottom curves in Figure 4, Figure 5 and Figure 6 because these curves look smooth and there is the 

same tendency such that the three curves will approach 0 as n goes to infinity. First, we should consider the bottom 

curve of A = ((n2 − n1)log 2Pn)/2Pn in Figure 5 and we are sure that the curve is formed by minimum values of A. Let n2 

− n1 = 1. Then we obtain Amin = (log 2Pm)/2Pm if m denotes the n-value at which (log 2Pn)/2Pn is a minimum value of A. 

It is obvious that 2Pm/log 2Pm is the number of primes among all integers from 1 to 2Pm, therefore, 1/Amin = 2Pm/log 2Pm 

is just the number of primes not greater than 2Pm. Similarly, we have 1/Cmin = (Pm + m log m)/log (Pm + m log m) if m 

denotes the n-value at which (log (Pn + n log n))/(Pn + n log n) is a minimum value of C in Figure 6 but we have 1/Bmin 

= Lm/log Lm if m denotes the n-value at which (log Ln)/Ln is a minimum value of B in Figure 4. Finally, Figure 7 shows 

the distribution of (log Ln)/Ln for n with n2 − n1 = 1 for 2 ≤ n ≤ 4000000, that is, the distribution of Bmin = (log Lm)/Lm for 

2 ≤ n ≤ 4000000. Comparing Figure 7 with Figure 4, we see the curve in Figure 7 is just the bottom curve in Figure 4.  

4. Distribution of Goldbach Steps 

Let Q(n) denote the number of Goldbach steps formed by the first n primes Pn ( the number is just the number of n1 

among the first n primes Pn ). Then we have the following observations. 

Observation 4.1. Distribution of Q(n) for 2 ≤ n ≤ 4000000. 

Figure 8 shows the distribution of Q(n) for 2 ≤ n ≤ 4000000, which is a curve with continuous growths. In the figure, 

another curve shows the distribution of (1 + 1/log log n)n/log n, in which n/log n denotes the number of primes among 

the first n positive integers. 

Observation 4.2. Distribution of the ratio Q(n)/((1 + 1/log log n)n/log n) for 2 ≤ n ≤ 4000000. 

Figure 9 shows the distribution of Q(n)/((1 + 1/log log n)n/log n) for 2 ≤ n ≤ 4000000. From the distribution we see 

Q(n)/((1 + 1/log log n)n/log n) ≈ 1 for these n-values and there is a decreasing tendency, so one may estimate the limit 

of Q(n)/((1 + 1/log log n)n/log n) as n → ∞ is 1. 

Based on the above two observations, we have the following proposition. 

Proposition 4.3. Q(n) ≈ (1 + 1/log log n)n/log n and the limit of Q(n)/((1 + 1/log log n)n/log n) as n → ∞ is 1.  
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Figure 8. Distributions of Q(n) and (1 + 1/log log n)n/log n for 2 ≤ n ≤ 4000000 

 

 
Figure 9. Distribution of the ratio Q(n)/((1 + 1/log log n)n/log n) for 2 ≤ n ≤ 4000000 

  



 

 

http://jmr.ccsenet.org                        Journal of Mathematics Research                       Vol. 10, No. 5; 2018 

8 

Corollary 4.4. If Q(n) ≈ (1 + 1/log log n)n/log n as n → ∞, then Ln → ∞ as n → ∞. 

Proof. Since (1 + 1/log log n)n/log n → ∞ as n → ∞ and Q(n) ≈ (1 + 1/log log n)n/log n as n → ∞, replace (1 + 1/log 

log n)n/log n with Q(n), so Q(n) → ∞ as n → ∞. The result means there are infinitely many Goldbach steps, which 

obviously implies Ln → ∞ as n → ∞. Thus the corollary holds. 

Corollary 4.5. If the limit of Q(n)/((1 + 1/log log n)n/log n) as n → ∞ is 1, then Ln → ∞ as n → ∞. 

Proof. Since (1 + 1/log log n)n/log n → ∞ as n → ∞ and Q(n)/((1 + 1/log log n)n/log n) → 1 as n → ∞, replace (1 + 

1/log log n)n/log n with Q(n), so Q(n) → ∞ as n → ∞. The result means there are infinitely many Goldbach steps, which 

obviously implies Ln → ∞ as n → ∞. Thus the corollary holds. 

Remark 4.6. If Proposition 4.3 is proven then there are infinitely many Goldbach steps to imply Ln → ∞ as n → ∞ by 

Corollary 4.4 or Corollary 4.5, therefore, Goldbach’s conjecture is true. 

5. Conclusion 

In this paper, we presented studies on distributions of Ln/2Pn and Ln/(Pn + n log n), distribution of the ratio of width to 

height for Goldbach steps and distribution of Goldbach steps using numerical evidence for the first 4000000 primes. We 

obtained Proposition 2.3 which is a generalization of previous Proposition 3.2 (Zhou 2017). If any of the five 

approaches derived from Proposition 2.3 is proven, then Goldbach’s conjecture is also proven true. By ratio of width to 

height for Goldbach steps, we assumed the limit of B = ((n2 − n1)log Ln)/Ln as n → ∞ is 0, which will be equivalent to 

the limit of Ln/2Pn as n → ∞ being 1 and the limit of Ln/(Pn + n log n) as n → ∞ being 1 in Proposition 2.3, if it is 

proven that the limit of A = ((n2 − n1)log 2Pn)/2Pn as n → ∞ is 0 and the limit of C = ((n2 − n1)log (Pn + n log n))/(Pn + n 

log n) as n → ∞ is 0 but A and C are lower and upper bounds of the set {A, B, C}. By distribution of Goldbach steps, we 

discovered a pattern that Q(n) ≈ (1 + 1/log log n)n/log n to support the existence of the limit of Q(n)/((1 + 1/log log 

n)n/log n) as n → ∞ being 1, which means there may be infinitely many Goldbach steps to imply Goldbach’s 

conjecture. 
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