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Abstract 

In this paper, we study the Pell polynomials according to modulo m where 𝑥2 = 2𝑥 + 1 and various properties of these 

sequences are obtained. Also, Pell polynomials to the ring of complex numbers was defined. We define the Pell 

Polynomial-type orbits 𝑃(𝛼,𝛽)
𝑅 (𝑥) = *𝑥𝑖+ where 𝑅 be a 2-generator ring and (𝛼, 𝛽) is a generating pair of the ring 𝑅. 

Furthermore, we obtain the periods of the Pell Polynomial-type orbits 𝑃(𝛼,𝛽)
𝑅 (𝑥) in finite 2-generator rings of order 𝑝2. 

2000 Mathematics Subjet Classification: 11B37, 11B83, 16P10 
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1. Introduction  

Integers sequences, such as Fibonacci, Lucas, Pell and Jacobsthal have been an intriguing topic for many years in Applied 

Mathematics. Many authors are dedicated to study this sequence, such as the work in (Deveci, 2015; Deveci & Saraçoğlu 

Eskiyapar, 2016) and many other (Knox, 1992; Kılıç & Taşçı 2005). Fibonacci and Pell numbers are the most known 

numbers. Fibonacci sequence is defined by the equation 𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2  where 𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2  with the initial 

values  𝑓0 = 0, 𝑓1 = 1, 𝑛 ≥ 2 and  𝑓𝑛 are the terms of the sequence 0,1,1,2,3,5,8,13… The Pell sequence is defined 

recursively by the equation 𝑃𝑛+2 = 2𝑃𝑛−1 + 𝑃𝑛  for 𝑛 ≥ 0  where 𝑃0 = 0  and  𝑃1 = 1 . The Pell sequence is 

0,1,2,5,12,29,70,169…. 

Most of the study of Fibonacci polynomials and Pell polynomials are applications in groups. D. D. Wall proposed the 

nation of Wall number of the Fibonacci sequence in 1960 and obtained many properties and theorems about these 

numbers (Wall 1960). Wilcox extend the problem to abelian groups (Wilcox 1986). 

Fibonacci polynomials is defined as, 

                   𝑓𝑛(𝑥) = 𝑥𝑓𝑛−1(𝑥) + 𝑓𝑛−2(𝑥) ;       𝑛 ≥ 2 with 𝑓0(𝑥) = 0, 𝑓1(𝑥) = 1            (1 1) 

Lucas polynomials is defined as, 

                    𝑙𝑛(𝑥) = 𝑥𝑙𝑛−1(𝑥) + 𝑙𝑛−2(𝑥);       𝑛 ≥ 2 with 𝑙0(𝑥) = 2, 𝑙1(𝑥) = 1            (1 2) 

Pell polynomials is defined as, 

                𝑃𝑛(𝑥) = 2𝑥𝑃𝑛−1(𝑥) + 𝑃𝑛−2(𝑥);       𝑛 ≥ 2 with 𝑃0(𝑥) = 0, 𝑃1(𝑥) = 1            (1 3) 

Note the Pell polynomials are generated by matrix 𝑃 = .
2𝑥 1
1 0

/, 

                                           (𝑃)𝑛 = (
𝑃𝑛+1(𝑥) 𝑃𝑛(𝑥)

𝑃𝑛(𝑥) 𝑃𝑛−1(𝑥)
)                                         (1.4) 

which can be proved by mathematical induction (Kılıç & Taşçı 2005). 

Pell-Lucas polynomials is defined as, 

             𝑛(𝑥) = 2𝑥 𝑛−1(𝑥) +  𝑛−2(𝑥);        𝑛 ≥ 2 with  0(𝑥) = 2,  1(𝑥) = 2𝑥             (1 5) 

D. J. DeCarli described the generalized Fibonacci sequences on an arbitrary ring in 1970 (DeCarli 1970). R. G. Buschman, 

A. F. Horadam and N. N. Vorobyov considered the set of integers for the special cases of these rings (Buschman, 1963; 
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Horadam 1961; Vorobyov 1963). Also, O. Wyler studied with such a sequence on commutative ring with identity (Wyler 

1965). Taşyurdu and Gültekin obtain the Fibonacci sequences of some rings of order 𝑝2 by using recurrence 𝐹𝑛+2 =
𝐴1𝐹𝑛+1 + 𝐴0𝐹𝑛 defined on the ring with identity, where 𝐹0 = 0, the zero of the ring, 𝐹1 = 1, the identity of the ring, 

𝑛 ≥ 0 and 𝐴0, 𝐴1 are generator elements of the rings with identity and fields of order 𝑝2. It was shown that these 

sequences are periodic and their periods are obtained (Taşyurdu & Gültekin 2013; 2016). B. Fine gave the classification 

of all finite rings of order 𝑝2 where 𝑝 a prime (Fine 1993). The period of generalized Fibonacci sequence in arbitrary 

rings has been obtained by Taşyurdu and Dilmen (Taşyurdu & Dilmen, 2017). Also, they showed that determinant of 

Tridiagonal matrix derivated the terms of this sequence. Taşyurdu and Deveci study the Fibonacci polynomials in the 

ring of complex numbers and modulo m (Taşyurdu & Deveci 2017). If a sequence consists only of a fixed subsequence 

after a certain point, this sequence is called a periodic sequence. The period of this sequence is the number of terms in the 

repeating subsequence. The sequence is called a simple periodic sequence with 𝑘 period if the first 𝑘 terms in the 

sequence form a repeating subsequence (Knox, 1992). 

For example, the sequence 𝛼, 𝛽, 𝜇, 𝜈, 𝛾, 𝛼, 𝛽, 𝜇, 𝜈, 𝛾, 𝛼, 𝛽, 𝜇, 𝜈, 𝛾 … is simply periodic sequence. This sequence repeats 

with the initial element  𝛼 and has period 5. The sequence 𝛼, 𝛽, 𝜇, 𝜈, 𝛾, 𝛽, 𝜇, 𝜈, 𝛾, 𝛽, 𝜇, 𝜈, 𝛾 … is periodic with period 4. 

The minimum period length of (𝐹𝑖 𝑚𝑜𝑑𝑛)𝑖=−∞
∞  sequence is denote by 𝑘(𝑛) and is called Wall number of 𝑛 (Wall 1960). 

Consequence 1.1  

                        𝐹𝑘(𝑛) ≡ 0     (𝑚𝑜𝑑 𝑛)                                    (1.6) 

                        𝐹𝑘(𝑛)−1 ≡ 𝐹𝑘(𝑛)+1 ≡ 𝐹𝑘(𝑛)+2 ≡ 1 (𝑚𝑜𝑑 𝑛)                          (1.7) 

(Renault, 1996). 

From sequence (1.3) it can be obtained: 

                      𝑃𝑘(𝑛) ≡ 0     (𝑚𝑜𝑑 𝑛)                                    (1.8) 

                      𝑃𝑘(𝑛)−1 ≡ 𝑃𝑘(𝑛)+1 ≡ 𝑃𝑘(𝑛)+2 ≡ 1(𝑚𝑜𝑑 𝑛)                          (1.9) 

Now we consider the following rings such that we will next address the periods of the Pell polynomials in these rings.  

Theorem 1.2. For any prime 𝑝, up to isomorphism, the finite 2-generator rings which is not field of order 𝑝2 are given 

by the following presentations (Fine 1993). 

𝐷 = 〈𝛼, 𝛽 | 𝑝𝛼 = 𝑝𝛽 = 0, 𝛼2 = 𝛼, 𝛽2 = 𝛽, 𝛼𝛽 = 𝛽𝛼 = 0 〉 ≅ ℤ𝑝 + ℤ𝑝 

𝐸 = 〈𝛼, 𝛽 | 𝑝𝛼 = 𝑝𝛽 = 0, 𝛼2 = 𝛼, 𝛽2 = 𝛽, 𝛼𝛽 = 𝛼, 𝛽𝛼 = 𝛽 〉 

𝐹 = 〈𝛼, 𝛽 | 𝑝𝛼 = 𝑝𝛽 = 0, 𝛼2 = 𝛼, 𝛽2 = 𝛽, 𝛼𝛽 = 𝛽, 𝛽𝛼 = 𝛼 〉 

𝐺 = 〈𝛼, 𝛽 | 𝑝𝛼 = 𝑝𝛽 = 0, 𝛼2 = 0, 𝛽2 = 𝛽, 𝛼𝛽 = 𝛼, 𝛽𝛼 = 𝛼 〉 

𝐻 = 〈𝛼, 𝛽 | 𝑝𝛼 = 𝑝𝛽 = 0, 𝛼2 = 0, 𝛽2 = 𝛽, 𝛼𝛽 = 𝛽𝛼 = 0 〉 ≅ ℤ𝑝 + 𝐶𝑝(0) 

𝐼 = 〈𝛼, 𝛽 | 𝑝𝛼 = 𝑝𝛽 = 0, 𝛼2 = 𝛽, 𝛼𝛽 = 0 〉 

𝐽 = 〈𝛼, 𝛽 |𝑝𝛼 = 𝑝𝛽 = 0, 𝛼2 = 𝛽2 = 0 〉 ≅ 𝐶𝑝 × 𝐶𝑝(0).                                                            ∎ 

2. Main Result 

2.1. The Pell Polynomials Modulo 𝑚 

If we reduce the sequence of the Pell Polynomials by a modulus 𝑚 such that 𝑥2 = 2𝑥 + 1, we have a repeating sequence. 

This sequence is denoted by 

*𝑃𝑛(𝑥)(𝑚𝑜𝑑 𝑚)+ = *𝑃0(𝑥)(𝑚𝑜𝑑 𝑚), 𝑃1(𝑥)(𝑚𝑜𝑑 𝑚), …𝑃𝑖(𝑥)(𝑚𝑜𝑑 𝑚),… +. 

It has the same recurrence relation as in (1.3). 

Theorem 2.1. The sequence *𝑃𝑛(𝑥)(𝑚𝑜𝑑 𝑚)+ is simply periodic. 

Proof. Let = *𝛼1𝑥 + 𝛽1, 𝛼2𝑥 + 𝛽2| 0 ≤  𝛼1, 𝛼2, 𝛽1, 𝛽2 ≤ 𝑚 − 1+ , then |𝑆| = 𝑚4 . The sequence *𝑃𝑛(𝑥)(𝑚𝑜𝑑 𝑚)+ 
repeats since there are only a finite number 𝑚4  of pairs of terms possible, and the recurrence of a pair results in 

recurrence of all following terms, which implies that the sequence *𝑃𝑛(𝑥)(𝑚𝑜𝑑 𝑚)+ is periodic. Since the sequence is 

periodic, there exist natural numbers 𝑖 and 𝑗, with 𝑖 > 𝑗 such that  

𝑃𝑖+1(𝑥)(𝑚𝑜𝑑 𝑚) = 𝑃𝑗+1(𝑥)(𝑚𝑜𝑑 𝑚)  ,  𝑃𝑖+2(𝑥)(𝑚𝑜𝑑 𝑚) = 𝑃𝑗+2(𝑥)(𝑚𝑜𝑑 𝑚) . From the definition of the sequence 

*𝑃𝑛(𝑥)+, we can easily derive that 𝑃𝑛−2(𝑥) = 𝑃𝑛(𝑥) − 2𝑥𝑃𝑛−1(𝑥). Therefore, we obtain 

𝑃𝑖(𝑥)(𝑚𝑜𝑑 𝑚) = 𝑃𝑗(𝑥)(𝑚𝑜𝑑 𝑚), 

and hence, 
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𝑃𝑖−1(𝑥)(𝑚𝑜𝑑 𝑚) = 𝑃𝑗−1(𝑥)(𝑚𝑜𝑑 𝑚), 

𝑃𝑖−2(𝑥)(𝑚𝑜𝑑 𝑚) = 𝑃𝑗−2(𝑥)(𝑚𝑜𝑑 𝑚), …, 

𝑃𝑖−𝑗+1(𝑥)(𝑚𝑜𝑑 𝑚) = 𝑃1(𝑥)(𝑚𝑜𝑑 𝑚), 

𝑃𝑖−𝑗(𝑥)(𝑚𝑜𝑑 𝑚) = 𝑃0(𝑥)(𝑚𝑜𝑑 𝑚). 

So we get that the sequence is simply periodic.                                                          ∎ 

We next denote the period of the sequence *𝑃𝑛(𝑥)(𝑚𝑜𝑑 𝑚)+ by ℎ𝑃(𝑥)(𝑚). 

Example 2.2. The sequence *𝑃𝑛(𝑥)(𝑚𝑜𝑑 3)+ is 

*0, 1, 2𝑥, 2𝑥 + 2, 2𝑥 + 1, 0, 2𝑥 + 1, 𝑥 + 1, 2𝑥, 2, 0, 2, 𝑥, 𝑥 + 1, 𝑥 + 2, 0, 𝑥 + 2,2𝑥 + 2, 𝑥, 1,0,1, … + 

and thus ℎ𝑃(𝑥)(3) = 20.                                                                                             ∎ 

For a given matrix 𝐴 = [𝑃𝑖𝑗] with 𝑃𝑖𝑗’s being polynomials, 𝐴(𝑚𝑜𝑑 𝑚) means that every entry of 𝐴 is reduced modulo 

𝑚, that is, 𝐴(𝑚𝑜𝑑 𝑚) = (𝑃𝑖𝑗(𝑚𝑜𝑑 𝑚)). Let 〈𝐴〉𝑚 = *(𝐴)𝑛(𝑚𝑜𝑑 𝑚)| 𝑛 ≥ 0+. If gcd(det 𝐴,𝑚) = 1, 〈𝐴〉𝑚 is a cyclic 

group. We denote the cardinal of the set 〈 2〉𝑚 by |〈 2〉𝑚|. Since 𝑑𝑒𝑡 2 = −1, it is clear that the set is a cyclic group for 

every positive integer 𝑚. 

It is easy to see from (1.4) that ℎ𝑃(𝑥)(𝑝) = |〈 2〉𝑝| for every prime 𝑝 if 𝑥2 = 2𝑥 + 1. 

Theorem 2.3. If 𝑚 = ∏ 𝑝𝑖
𝑒𝑖𝑡

𝑖=1 , (𝑡 ≥ 1) where 𝑝𝑖’s are distinct primes, then  

ℎ𝑃(𝑥)(𝑚) = lcm[ℎ𝑃(𝑥)(𝑝1
𝑒1), ℎ𝑃(𝑥)(𝑝2

𝑒2), … , ℎ𝑃(𝑥)(𝑝𝑡
𝑒𝑡) ]. 

Proof. Since ℎ𝑃(𝑥)(𝑝𝑖
𝑒𝑖)  is the length of the period of the sequence *𝑃𝑛(𝑥)(𝑚𝑜𝑑 𝑝𝑖

𝑒𝑖  )+ , the sequence 

*𝑃𝑛(𝑥)(𝑚𝑜𝑑 𝑝𝑖
𝑒𝑖  )+ repeats only after blocks of length  𝑘 ℎ𝑃(𝑥)(𝑝𝑖

𝑒𝑖), (𝑘 ∈ ℕ). Since also ℎ𝑃(𝑥)(𝑚) is the length of the 

period *𝑃𝑛(𝑥)(𝑚𝑜𝑑 𝑚 )+, the sequence *𝑃𝑛(𝑥)(𝑚𝑜𝑑 𝑝𝑖
𝑒𝑖  )+ repeats after ℎ𝑃(𝑥)(𝑚) terms for all values 𝑖. This implies 

that ℎ𝑃(𝑥)(𝑚) is of the form 𝑘 ℎ𝑃(𝑥)(𝑝𝑖
𝑒𝑖) for all values of 𝑖. We thus prove that ℎ𝑃(𝑥)(𝑚) equals the least common 

multiple of ℎ𝑃(𝑥)(𝑝𝑖
𝑒𝑖)𝑙𝑝

𝑗
(𝑢𝑖

𝑒𝑖)’s. ∎ 

Example 2.4. The sequences *𝑃𝑛(𝑥)(𝑚𝑜𝑑 2 )+ and *𝑃𝑛(𝑥)(𝑚𝑜𝑑 6 )+ are as follows, respectively:  

*0,1,0,1, … + 

and 

*0,1,2𝑥, 2𝑥 + 5,2𝑥 + 4,3,2𝑥 + 4,4𝑥 + 1,2𝑥, 5,0,5,4𝑥, 4𝑥 + 1,4𝑥 + 2,3,4𝑥 + 2,2𝑥 + 5,4𝑥, 1,0,1, … + 

Then, we obtain ℎ𝑃(𝑥)(2) = 2  and ℎ𝑃(𝑥)(6) = 20 . Also we know that ℎ𝑃(𝑥)(3) = 20 . Thus it is verified that 

ℎ𝑃(𝑥)(6) =lcm[ℎ𝑃(𝑥)(2), ℎ𝑃(𝑥)3]. 

Theorem 2.5. Let 𝑝 be a prime and let 𝑢 be the largest positive integer such that such that ℎ𝑃(𝑥)(𝑝) = ℎ𝑃(𝑥)(𝑝𝑢). Then 

we have ℎ𝑃(𝑥)(𝑝𝑣) = 𝑝𝑣−𝑢ℎ𝑃(𝑥)(𝑝) for every 𝑣 ≥ 𝑢. In particular, if ℎ𝑃(𝑥)(𝑝) ≠ ℎ𝑃(𝑥)(𝑝2), then we have ℎ𝑃(𝑥)(𝑝𝑣) =
𝑝𝑣−1ℎ𝑃(𝑥)(𝑝) for every 𝑣 ≥ 2. 

Proof. Let 𝑘  be a positive integer and 𝐼  be the 2 × 2  identity matrix. If ( 2)
ℎ𝑃(𝑥)(𝑝𝑘+1) ≡ 𝐼(𝑚𝑜𝑑 𝑝𝑘+1) , then 

( 2)
ℎ𝑃(𝑥)(𝑝𝑘+1) ≡ 𝐼(𝑚𝑜𝑑 𝑝𝑘) . This yields that ℎ𝑃(𝑥)(𝑝𝑘)  divides ℎ𝑃(𝑥)(𝑝𝑘+1) . Also, writing ( 2)

ℎ𝑃(𝑥)(𝑝𝑘) = 𝐼 +
(𝑞𝑖,𝑗

(𝑘) 𝑝𝑘) we obtain 

( 2)
ℎ𝑃(𝑥)(𝑝𝑘) 𝑝 = .𝐼 + (𝑞𝑖,𝑗

(𝑘) 𝑝𝑘)/
𝑝

=∑.
𝑝
𝑖
/

𝑝

𝑖=0

(𝑞𝑖,𝑗
(𝑘) 𝑝𝑘)

𝑖
≡ 𝐼(𝑚𝑜𝑑 𝑝𝑘+1) 

by the binomial expansion. This means that ℎ𝑃(𝑥)(𝑝𝑘+1) divides ℎ𝑃(𝑥)(𝑝𝑘) 𝑝. Therefore, ℎ𝑃(𝑥)(𝑝𝑘+1) = ℎ𝑃(𝑥)(𝑝𝑘) or 

ℎ𝑃(𝑥)(𝑝𝑘+1) = ℎ𝑃(𝑥)(𝑝𝑘) 𝑝, and the latter holds if, and only if, there is a 𝑞𝑖,𝑗
(𝑘)

 which is not divisible by 𝑝. Since 

ℎ𝑃(𝑥)(𝑝𝑢) ≠ ℎ𝑃(𝑥)(𝑝𝑢+1), there is an 𝑞𝑖,𝑗
(𝑢+1)

 which is not divisible by 𝑝, thus, ℎ𝑃(𝑥)(𝑝𝑢+1) ≠ ℎ𝑃(𝑥)(𝑝𝑢+2). To complete 

the proof we use an inductive method on 𝑢. ∎ 

Example 2.6. Since *𝑃𝑛(𝑥)(𝑚𝑜𝑑 4 )+ = *0,1,2𝑥, 1,0,1, … +, ℎ𝑃(𝑥)(4) = 4. Also we know that ℎ𝑃(𝑥)(2) = 2. Thus it is 

verified that ℎ𝑃(𝑥)(4) = 2 ℎ𝑃(𝑥)(2). 

2.2. The Pell Polynomials in The Set of Complexs Numbers ℂ 

Define the sequence of the Pell polynomials in the set of complex numbers ℂ as shown: 
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                    𝑃𝑛 = {
0,                                       if     𝑛 = 0,
1,                                       if     𝑛 = 1,
2(𝑖 + 1)𝑃𝑛−1 + 𝑃𝑛−2     if     𝑛 ≥ 2 

                                                    (2.1) 

Letting 

𝑀 = 0
2(𝑖 + 1) 1

1 0
1. 

For 𝑛 ≥ 1, by (1.4) we may write 

                                       𝑀𝑛 = [
𝑃𝑛+1 𝑃𝑛
𝑃𝑛 𝑃𝑛−1

]                                              (2.2) 

It is easy to see that we obtain the sequence in (2.1) if we choose  𝑥 = 2(𝑖 + 1) in (1.3). We can get a repating sequence, 

by recuding the seguence of the Pell Polynomials in the set of complexs numbers ℂ modulo 𝑚. It is denoted by 

*𝑃𝑛(𝑥)(𝑚𝑜𝑑 𝑚)+ = *𝑃0(𝑥)(𝑚𝑜𝑑 𝑚), 𝑃1(𝑥)(𝑚𝑜𝑑 𝑚), …𝑃𝑖(𝑥)(𝑚𝑜𝑑 𝑚), … + 

It has the same recurrence relation as in (1.4). Where 𝑃𝑖
𝑚(𝑥) = 𝑃𝑛(𝑥)(𝑚𝑜𝑑 𝑚). Let ℎℂ(𝑚) denote the period of the 

sequence of 𝑃𝑛
𝑚(𝑥) in the set of complex numbers ℂ modulo 𝑚 and |〈𝑀〉𝑚| denote the order of the cyclic group 

〈𝑀〉𝑚 which is generated by reducing the matrix 𝑚 modulo. Therefore, it is clear that the rules produced for the period 

ℎℂ(𝑚) and the cyclic group 〈𝑀〉𝑚 are of the same form of the results obtained in the above.  

2.3 The Pell Polynomials in Some Finite Rings 

Definition 2.3.1. We define the Pell Polynomial-type orbit 𝑃(𝛼,𝛽)
𝑅 (𝑥) = *𝑥𝑖+ of (𝛼, 𝛽) by 

                      𝑥0 = 𝛼,    𝑥1 = 𝛽,             𝑥𝑛+1 = 2𝛽𝑥𝑛 + 𝑥𝑛−1         𝑛 ≥ 1 

where 𝑅 be a 2-generator ring and (𝛼, 𝛽) be a generating pair of the ring 𝑅. 

Similarly, we define the Pell Polynomial-type orbit 𝑃(𝛽,𝛼)
𝑅 (𝑥) = *𝑥𝑖+ of (𝛽, 𝛼) by 

                       𝑥0 = 𝛽,    𝑥1 = 𝛼,             𝑥𝑛+1 = 2𝛼𝑥𝑛 + 𝑥𝑛−1         𝑛 ≥ 1. 

Proposition 2.3.2. A Pell Polynomial-type orbit of a finite 2-generator is periodic. 

Proof. Let 𝑅 be a finite 2-generator ring and 𝑛 be the order of 𝑅. Since there are 𝑛2 distinct 2-tuples of elements of 𝑅, 

at least one of the 2-tuples appears twice in a Pell Polynomial-type orbit. Therefore, the subsequence following this 

2-tuple repeats. Because of the repeating the sequence is periodic.   ∎ 

We next denote the period of the sequence 𝑃(𝛼,𝛽)
𝑅 (𝑥) by 𝑃𝑃(𝛼,𝛽)

𝑅 (𝑥).                                        

Definition 2.3.3. Let 𝑅 be a finite 2-generator ring. If there exist a Pell Polynomial-type orbit of the ring 𝑅 such that 

every element of the ring 𝑅 appears in the sequence, then the ring R is called Pell Polynomial-type sequenceable. 

Proposition 2.3.4. For any prime 𝑝 ≠ 2, 

𝐷 = 〈𝛼, 𝛽 | 𝑝𝛼 = 𝑝𝛽 = 0, 𝛼2 = 𝛼, 𝛽2 = 𝛽, 𝛼𝛽 = 𝛽𝛼 = 0 〉 ≅ ℤ𝑝 + ℤ𝑝 

with generators 𝛼 and 𝛽. The periods of the Pell Polynomial-type orbits 𝑃(𝛼,𝛽)
𝐷  and 𝑃(𝛽,𝛼)

𝐷  are 𝑘(𝑝). 

Proof. Let us consider the Pell Polynomial-type orbit 𝑃(𝛽,𝛼)
𝐷 . The sequence 𝑃(𝛽,𝛼)

𝐷  is as follows: 

𝑥0 = 𝛽, 𝑥1 = 𝛼, 𝑥2 = 2𝛼 + 𝛽, 𝑥3 = 5𝛼, 𝑥4 = 12𝛼 + 𝛽, 𝑥5 = 29𝛼, 

𝑥6 = 70𝛼 + 𝛽, 𝑥7 = 169𝛼, … , 𝑥2𝑛 = 𝑃2𝑛𝛼 + 𝛽,  𝑥2𝑛+1 = 𝑃2𝑛+1𝛼 

𝑥2𝑛+2 = 2𝛼𝑥2𝑛+1 + 𝑥2𝑛 = 2𝛼(𝑃2𝑛+1𝛼) + 𝛽 + 𝑃2𝑛𝛽 = 2𝑃2𝑛+1𝛼
2 + 𝛽 + 𝑃2𝑛𝛼   

          = 2𝑃2𝑛+1𝛼 + 𝛽 + 𝑃2𝑛𝛼 = (2𝑃2𝑛+1 + 𝑃2𝑛)𝛼 + 𝛽 = 𝑃2𝑛+2𝛼 + 𝛽 

𝑥2𝑛+3 = 2𝛼𝑥2𝑛+2 + 𝑥2𝑛+1 = 2𝛼(𝛽 + 𝑃2𝑛+2𝛼) + 𝑃2𝑛+1𝛼 

           = 2𝛼𝛽 + 𝑃2𝑛+2𝛼
2 + 𝑃2𝑛+1𝛼 = 𝑃2𝑛+2𝛼 + 𝑃2𝑛+1𝛼 = (𝑃2𝑛+2 + 𝑃2𝑛+1)𝛼 

           = 𝑃2𝑛+3𝛼. 

Using the above, the sequence becomes: 

𝛽 + 𝑃0𝛼, 𝑃1𝛼, 𝛽 + 𝑃2𝛼, 𝑃3𝛼, … , 𝛽 + 𝑃2𝑛𝛼, 𝑃2𝑛+1𝛼, 𝛽 + 𝑃2𝑛+2𝛼, 𝑃2𝑛+3𝛼, … , 

where 𝑃𝑛 denote the 𝑛 the term of the ordinary 2-step Pell sequence. Now let’s determine the period of this sequence up 

to prime number 𝑝. It can be seen that the coefficient of the term 𝛽 of each element 𝑥𝑛 of this sequence is term of 
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ordinary Pell sequences. Hence, the period of the sequence is determined by the coefficient of the term 𝛽 which 𝑃𝑛 is the 

𝑛 th term of the ordinary 2-step Pell sequence. Thus, we obtain 𝑃𝑃(𝛽,𝛼)
𝐷 (𝑥) = 𝑘(𝑝). 

There is a similar proof for the sequence 𝑃(𝛼,𝛽)
𝐷 (𝑥). ∎ 

Proposition 2.3.5. For any prime 𝑝 ≠ 2, 

𝐹 = 〈𝛼, 𝛽 | 𝑝𝛼 = 𝑝𝛽 = 0, 𝛼2 = 𝛼, 𝛽2 = 𝛽, 𝛼𝛽 = 𝛽, 𝛽𝛼 = 𝛼 〉 

with generators 𝛼 and 𝛽. The periods of the Pell Polynomial-type orbits 𝑃(𝛼,𝛽)
𝐹 (𝑥) and 𝑃(𝛽,𝛼)

𝐹 (𝑥) are 𝑘(𝑝). 

Proof. Let us consider the Pell Polynomial-type orbit 𝑃(𝛽,𝛼)
𝐹 (𝑥). The sequence 𝑃(𝛽,𝛼)

𝐹 (𝑥) is as follows: 

𝑥0 = 𝛽, 𝑥1 = 𝛼, 𝑥2 = 2𝛼 + 𝛽, 𝑥3 = 5𝛼 + 2𝛽, 𝑥4 = 12𝛼 + 5𝛽, 𝑥5 = 29𝛼 + 12𝛽, 𝑥6 = 70𝛼 + 29𝛽, 

𝑥7 = 169𝛼 + 70𝛽, 𝑥8 = 408𝛼 + 169𝛽, … , 𝑥𝑛 = 𝑃𝑛𝛼 + 𝑃𝑛−1𝛽, 𝑥𝑛+1 = 𝑃𝑛+1𝛼 + 𝑃𝑛𝛽, 

 𝑥𝑛+2 = 2𝛼𝑥𝑛+1 + 𝑥𝑛 = 2𝛼(𝑃𝑛+1𝛼 + 𝑃𝑛𝛽) + 𝑃𝑛𝛼 + 𝑃𝑛−1𝛽 

          = 𝑃𝑛2𝛼𝛽 + 𝑃𝑛+12𝛼
2 + 𝑃𝑛−1𝛽 + 𝑃𝑛𝛼 = 𝑃𝑛2𝛽 + 𝑃𝑛+12𝛼 + 𝑃𝑛−1𝛽 + 𝑃𝑛𝛼 

          = (2𝑃𝑛 + 𝑃𝑛−1)𝛽 + (2𝑃𝑛+1 + 𝑃𝑛)𝛼 = 𝑃𝑛+1𝛽 + 𝑃𝑛+2𝛼, … 

𝑥𝑛+3 = 2𝛼𝑥𝑛+2 + 𝑥𝑛+1 = 2𝛼(𝑃𝑛+1𝛽 + 𝑃𝑛+2𝛼) + 𝑃𝑛𝛽 + 𝑃𝑛+1𝛼 

          = 𝑃𝑛+12𝛼𝛽 + 𝑃𝑛+22𝛼
2 + 𝑃𝑛𝛽 + 𝑃𝑛+1𝛼 = 𝑃𝑛+12𝛽 + 𝑃𝑛+22𝛼 + 𝑃𝑛𝛽 + 𝑃𝑛+1𝛼 

          = (2𝑃𝑛+1 + 𝑃𝑛)𝛽 + (2𝑃𝑛+2 + 𝑃𝑛+1)𝛼 = 𝑃𝑛+2𝛽 + 𝑃𝑛+3𝛼 = 𝑃𝑛+3𝛼 + 𝑃𝑛+2𝛽, … 

Using the above, the sequence becomes: 

𝑃0𝛼 + 𝑃−1𝛽, 𝑃1𝛼 + 𝑃0𝛽, 𝑃2𝛼 + 𝑃1𝛽, 𝑃3𝛼 + 𝑃2𝛽, … , 𝑃𝑛𝛼 + 𝑃𝑛−1𝛽, 𝑃𝑛+1𝛼 + 𝑃𝑛𝛽, 𝑃𝑛+2𝛼 + 𝑃𝑛+1𝛽, … 

where 𝑃𝑛 denote the 𝑛 th term of the ordinary 2-step Pell sequence. That is, two consecutive terms of this sequences are 

𝑃𝑛−1𝛽 + 𝑃𝑛𝛼  and 𝑃𝑛𝛽 + 𝑃𝑛+1𝛼 . From Consequence 1.1., we have 𝑃𝑛−1𝛽 + 𝑃𝑛𝛼 ≡ 𝛽  and 𝑃𝑛𝛽 + 𝑃𝑛+1𝛼 ≡ 𝛼  where 

𝑃𝑛−1 ≡ 1 and 𝑃𝑛+1 ≡ 1. Thus, the sequence 𝑃(𝛽,𝛼)
𝐹 (𝑥) is periodic and 𝑃𝑃(𝛽,𝛼)

𝐹 (𝑥) = 𝑘(𝑝). 

There is a similar proof for the sequence 𝑃(𝛼,𝛽)
𝐹 (𝑥).  ∎ 

Proposition 2.3.6. For any prime 𝑝, let 

𝐺 = 〈𝛼, 𝛽 | 𝑝𝛼 = 𝑝𝛽 = 0, 𝛼2 = 0, 𝛽2 = 𝛽, 𝛼𝛽 = 𝛼, 𝛽𝛼 = 𝛼 〉 

with generators 𝛼 and 𝛽. The period of the Pell Polynomial-type orbit 𝑃(𝛼,𝛽)
𝐺 (𝑥) is 𝑘(𝑝) and 𝑃(𝛽,𝛼)

𝐺 (𝑥) is 2𝑝. 

Proof. It can clearly be seen that sequence created by Pell Polynomial-type orbit 𝑃(𝛼,𝛽)
𝐺 (𝑥) is similar to sequence created 

by Pell Polynomial-type orbit 𝑃(𝛼,𝛽)
𝐹 (𝑥) . Thus, sequence Pell Polynomial-type orbit 𝑃(𝛼,𝛽)

𝐺 (𝑥)  is periodic and 

𝑃𝑃(𝛼,𝛽)
𝐺 (𝑥) = 𝑘(𝑝). 

Let us consider the Pell Polynomial-type orbit 𝑃(𝛽,𝛼)
𝐺 (𝑥). The sequence 𝑃(𝛽,𝛼)

𝐺 (𝑥) is as follows: 

𝑥0 = 𝛽, 𝑥1 = 𝛼, 𝑥2 = 𝛽, 𝑥3 = 3𝛼, 𝑥4 = 𝛽, 𝑥5 = 5𝛼, 𝑥6 = 𝛽, 𝑥7 = 7𝛼, 𝑥8 = 𝛽, … , 𝑥2𝑛 = 𝛽, 

𝑥2𝑛+1 = (2𝑛 + 1)𝛼,  

𝑥2𝑛+2 = 2𝛼𝑥2𝑛+1 + 𝑥2𝑛 = 𝛼((2𝑛 + 1)𝛼) + 𝛽 = 2(2𝑛 + 1)𝛼2 + 𝛽 = 𝛽 

𝑥2𝑛+3 = 2𝛼𝑥2𝑛+2 + 𝑥2𝑛+1 = 2𝛼𝛽 + (2𝑛 + 1)𝛼 = 2𝛼 + (2𝑛 + 1)𝛼 = (2𝑛 + 3)𝛼, … 

Using the above, the sequence becomes: 

𝛽, 𝛼, 𝛽, 3𝛼, 𝛽, 5𝛼, 𝛽, 7𝛼, 𝛽, 9𝛼, … , 𝛽, (2𝑛 + 1)𝛼, 𝛽, (2𝑛 + 2)𝛼,… 

Notice that each element 𝑥𝑛 of this sequence has the form  

𝑥𝑛 = {
𝛽                   𝑛 = 2𝑚

(2𝑚 + 1)𝛼          𝑛 = 2𝑚 + 1
 

It can be seen that the period of the sequence is determined by prime number 𝑝. The residue class has 𝑝 elements 

according to modulo 𝑝 ≥ 2  and there are 𝛽  of term 𝑝  times. Thus, the sequence 𝑃(𝛽,𝛼)
𝐺 (𝑥)  is periodic and 

𝑃𝑃(𝛽,𝛼)
𝐺 (𝑥) = 2𝑝. ∎ 

Proposition 2.3.7. For any prime 𝑝 ≠ 2, 

𝐻 = 〈𝛼, 𝛽 | 𝑝𝛼 = 𝑝𝛽 = 0, 𝛼2 = 0, 𝛽2 = 𝛽, 𝛼𝛽 = 𝛽𝛼 = 0 〉 ≅ ℤ𝑝 + 𝐶𝑝(0) 
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with generators 𝛼 and 𝛽.The period of the Pell Polynomial-type orbit 𝑃(𝛼,𝛽)
𝐻 (𝑥) is 𝑘(𝑝) and 𝑃(𝛽,𝛼)

𝐻 (𝑥) = 2. 

Proof. It can clearly be seen that sequence created by Pell Polynomial-type orbit 𝑃(𝛼,𝛽)
𝐻 (𝑥) is similar to sequence created 

by Pell Polynomial-type orbit 𝑃(𝛼,𝛽)
𝐷 (𝑥) . Thus, sequence of Pell Polynomial-type orbit 𝑃(𝛼,𝛽)

𝐻 (𝑥)  is periodic and 

𝑃𝑃(𝛼,𝛽)
𝐻 (𝑥) = 𝑘(𝑝). 

Let us consider the Pell Polynomial-type orbit 𝑃(𝛽,𝛼)
𝐻 (𝑥). The sequence 𝑃(𝛽,𝛼)

𝐻 (𝑥) is as follows: 

𝑥0 = 𝛽, 𝑥1 = 𝛼, 𝑥2 = 𝛽, 𝑥3 = 𝛼, 𝑥4 = 𝛽, 𝑥5 = 𝛼, 𝑥6 = 𝛽, 𝑥7 = 𝛼, 𝑥8 = 𝛽, … , 𝑥2𝑛 = 𝛽, 𝑥2𝑛+1 = 𝛼, 

𝑥2𝑛+2 = 2𝛼𝑥2𝑛+1 + 𝑥2𝑛 = 2𝛼(𝛼) + 𝛽 = 𝛼2 + 𝛽 = 𝛽 

𝑥2𝑛+3 = 2𝛼𝑥2𝑛+2 + 𝑥2𝑛+1 = 2𝛼(𝛽) + 𝛼 = 𝛼 

Using the above, the sequence becomes: 

𝛽, 𝛼, 𝛽, 𝛼, 𝛽, 𝛼, 𝛽, 𝛼, 𝛽, 𝛼, … , 𝛼, 𝛽, 𝛼, … 

Notice that each element 𝑥𝑛 of this sequence has the form 

𝑥𝑛 = 2
𝛽           𝑛 = 2𝑚        
𝛼           𝑛 = 2𝑚 + 1

 

The sequence in this ring consist only of repetitions of a fixed subsequence and the number of terms in the repeating 

subsequence is 2. Thus, the sequence 𝑃(𝛽,𝛼)
𝐻 (𝑥) is periodic and 𝑃𝑃(𝛽,𝛼)

𝐻 (𝑥) = 2.    ∎ 

Proposition 2.3.8. For any prime 𝑝 ≠ 2,   

𝐼 = 〈𝛼, 𝛽 | 𝑝𝛼 = 𝑝𝛽 = 0, 𝛼2 = 𝛽, 𝛼𝛽 = 0 〉 

with generators 𝛼 and 𝛽. The period of the Pell Polynomial-type orbit 𝑃(𝛽,𝛼)
𝐼 (𝑥) is 2𝑝. 

Proof. Let us consider the Pell Polynomial-type orbit 𝑃(𝛽,𝛼)
𝐼 (𝑥). The sequence 𝑃(𝛽,𝛼)

𝐼 (𝑥) is as follows: 

𝑥0 = 𝛽, 𝑥1 = 𝛼, 𝑥2 = 3𝛽, 𝑥3 = 𝛼, 𝑥4 = 5𝛽, 𝑥5 = 𝛼, 𝑥6 = 7𝛽, 𝑥7 = 𝛼, 𝑥8 = 9𝛽, … , 𝑥2𝑛 = (2𝑛 + 1)𝛽, 𝑥2𝑛+1 = 𝛼, 

𝑥2𝑛+2 = 2𝛼𝑥2𝑛+1 + 𝑥2𝑛 = 2𝛼,𝛼- + (2𝑛 + 1)𝛽 = 2𝛽 + (2𝑛 + 1)𝛽 = (2𝑛 + 3)𝛽, 

𝑥2𝑛+3 = 2𝛼𝑥2𝑛+2 + 𝑥2𝑛+1 = 2𝛼(2𝑛 + 2)𝛽 + 𝛼 = 2𝛼𝛽(2𝑛 + 2) + 𝛼 = 𝛼 

Using the above, the sequence becomes: 

𝛽, 𝛼, 3𝛽, 𝛼, 5𝛽, 𝛼, 7𝛽, 𝛼, 9𝛽, 𝛼, … , (2𝑛 + 1)𝛽, 𝛼 … 

Notice that each element 𝑥𝑛 of this sequence has the form  

𝑥𝑛 = 2
(2𝑛 + 1)𝑚       𝑛 = 2𝑚               

𝛼                  𝑛 = 2𝑚 + 1
 

It can be seen that the period of the sequence is determined by prime number 𝑝. The residue class has 𝑝 elements 
according to modulo 𝑝 ≥ 2  and there are 𝛽  of term 𝑝  times. Thus, the sequence 𝑃(𝛽,𝛼)

𝐼 (𝑥)  is periodic and 

𝑃𝑃(𝛽,𝛼)
𝐼 (𝑥) = 2𝑝.   ∎ 
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