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Abstract

In this paper, a new modified proximal point algorithm involving fixed point iterates of a finite number of asymptotically
quasi-nonexpansive mappings in CAT (0) spaces is proposed and been proved for the existence of a sequence generated
by our iterative process converging to a minimizer of a convex function and a commen fixed point of a finite number of
asymptotically quasi-nonexpansive mappings.
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1. Introduction

In recently years, many convergence results by the proximal point algorithm (shortly PPA) which was initiated by Martinet
in 1970 for solving optimization problems have been extended from the classical linear spaces such as Euclidean spaces
R2, Hilbert spaces, and Banach spaces to the setting of some manifolds(for example, Riemannian manifolds, Hadamard
manifolds ).

A metric space (X, d) is called a CAT (0) space (Ambrosio et al., 2008), if it is geodesically connected and if every geodesic
triangle in X is at least as ’thin’ as its comparison triangle in the Euclidean plane. A complete CAT (0) space is also called
a Hadamard space. Especially, every real Hilbert space H is a complete CAT (0) space. A subset K of a CAT (0) space X
is convex, if for any x, y ∈ K, we have [x, y] in K, where [x, y] := {λx⊕ (1−λ)y : 0 ≤ λ ≤ 1} is the unique geodesic joining
x and y. Let C be a nonempty closed subset of CAT (0) space X and let T : C → C be a mapping. The set of fixed point
of T is denote by F(T ), that is, denote by F(T ) the set of fixed point of T , that is, F(T ) = {x ∈ C : T x = x}. Recall that
T is said to be asymptotically quasi-nonexpansive if there exists a sequence {kn} in [1,∞) with lim

n→∞
kn = 1 and p ∈ F(T )

such that
d(T nx, p) ≤ knd(x, p),∀x ∈ C, n ≥ 1.

It is well known that a geodesic space (X, d) is a CAT (0) space, if and only if the inequality

d2((1 − t)x ⊕ ty, z) ≤ (1 − t)d2(x, z) + td2(y, z) − t(1 − t)d2(x, y) (1.1)

is satisfied for all x, y, z ∈ X and t ∈ [0, 1]. In particular, if x, y, z are points in a CAT (0) space (X, d) and t ∈ [0, 1], then

d((1 − t)x ⊕ ty, z) ≤ (1 − t)d(x, z) + td(y, z). (1.2)

We call that a function f : C → [−∞,∞) defined on a convex subset C of a CAT (0) space is convex if, for any geodesic
[x, y] := {γx,y(λ) : 0 ≤ λ ≤ 1} = {λx ⊕ (1 − λ)y : 0 ≤ λ ≤ 1} joining x, y ∈ C, the function f ◦ γ is convex, i.e.
f (γx,y(λ)) := f (λx ⊕ (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y). For all λ ≥ 0, the Moreau − Yosida resolvent of f is defined in a
complete CAT (0) space X as follows:

Jλ(x) = argminy∈C[ f (y) +
1

2λ
d2(y, x)].

Let f : X → (−∞,∞) be a proper convex and lower semi-continuous function. It was shown in (Agarwal, 2007) that the
set F(Jλ) of the fixed point of the resolvent Jλ associated with f coincides with the set argminy∈C f (y) of minimizers of
f . Also, for any λ ≥ 0, the resolvent Jλ of f is nonexpansive (Jost, 1995). In 2013, Bac̆ák (Bac̆ák, 2013) introduced the
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PPA in a CAT (0) space (X, d) as follows: for any x1 ∈ X and

xn+1 = argminy∈C[ f (y) +
1

2λn
d2(y, xn)],

where λn > 0,∀n ∈ N. It was shown that if f has a minimizer and
∑∞

n=1 λn = ∞, then the sequence {xn} ∆ − converges to
its minimizer (Ariza-Ruiz, 2014).

Many mathematical researchers have continued their directions of the research work. In 2017, Nuttapol Pakkaranang.etc
(Nuttapol et al, 2017), they introduced the following algorithm:

x1 ∈ C chosen arbitrarily,
zn = argminy∈C[ f (y) ⊕ 1

2λn
d2(y, xn)],

wn = (1 − αn)zn ⊕ αnRnzn,

yn = (1 − βn)wn ⊕ βnS nwn,

xn+1 = (1 − γn)yn ⊕ γnT nyn, n ≥ 1,

where R, S ,T are three asymptotically quasi-nonexpansive mappings. They proved some weakly convergence theorems
of the sequence {xn} for the proposed algorithm to common fixed points of asymptotically quasi-nonexpansive mappings
and to minimizers of a convex function in CAT (0) spaces.

Stimulated and inspired by the work of the above mathematics researchers, in this paper, we come up with the following
algorithm: 

x1 ∈ C chosen arbitrarily,
zn = argminy∈C[ f (y) + 1

2λn
d2(y, xn)],

xn+1 = (1 − α1n)zn ⊕ α1nT n
1 zn,m = 1, n ≥ 1,

x1 ∈ C chosen arbitrarily,
zn = argminy∈C[ f (y) + 1

2λn
d2(y, xn)],

xn+1 = (1 − α1n)y1n ⊕ α1nT n
1 y1n,

y1n = (1 − α2n)y2n ⊕ α2nT n
2 y2n,

· · · · ··
y((m−2)n) = (1 − α(m−1)n)y(m−1)n ⊕ α(m−1)nT n

(m−1)y(m−1)n,

y((m−1)n) = (1 − αmn)zn ⊕ αmnT n
(m−1)zn,m ≥ 2, n ≥ 1,

(1)

where λn > 0,∀n ∈ N,Ti(i = 1, 2, ...,m) is a finite number of asymptotically quasi-nonexpansive mappings. Research its
convergence, the results that we obtained improve and extend the results of reference (Nuttapol et al., 2017).

2. Preliminries

In this section, we will metion some basic concepts, and useful lemmas, which will be used in the next section.

Definition2.1 (Chang et al., 2012) Let {xn} be a bounded sequence in a CAT (0) space (X, d). For any x ∈ X, we put
r(x, {xn}) = limn→∞ sup d(x, xn).

(1) The asymptotic radius of {xn} is given by r({xn}) = inf{r(x, {xn}) : x ∈ X};
(2) The asymptotic center A({xn}) of xn is the set A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.
It is well known that, in a complete CAT (0) space, A({xn}) consists of exactly one point (Kirk & Panyanak, 2008).

Definition2.2 (Chang, 2016) A sequence {xn} in a CAT (0) space X is said to be ∆ − convergent to a point x ∈ X if x is
the unique asymptotic center of {un} for every subsequence {un} of {xn}. In this case, we write ∆ − limn→∞ = x of {xn} and
denote

ϖ∆(xn) :=
∪

{un}⊂{xn}
A({un}) ⊂ Ω,

where the union is sum over all subsequences {un} of {xn}.
Definition 2.3 Let C be a nonempty closed convex subset of a CAT (0) space (X, d). A family of mappings {T1,T2, ..., Tm,Tm+1}
is said to satisfy the condition (ω∗) if there exists a non-decreasing function f : [0,∞)→ [0,∞) with f (0) = 0 and f (r) ≥ 0
for all r ∈ (0,∞) such that

d(x,T1x) ≥ f (d(x, F))
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or
d(x,T2x) ≥ f (d(x, F))

...

or
d(x,Tmx) ≥ f (d(x, F))

or
d(x,Tm+1x) ≥ f (d(x, F))

for all x ∈ X, where F =
∩m+1

i=1 F(Ti).

Definition 2.4 (Nuttapol et al., 2017) Let (X, d) be a metric space, and C is a nonempty subset of X. A mapping
T : C → C is said to be semi − compact if any sequence {xn} in C satisfying limn→∞ d(xn,T xn) = 0 has a convergent
subsequence, that is, it exists a subsequence {xnk } of {xn} such that xnk → p ∈ C.

Lemma2.5 (Chang, 2012) If {xn} is a bounded sequence in a complete CAT (0) space with A({xn}) = {x} is a subsequence
of {xn} with A({un}) = {u} and the sequence d(xn, u) converges, then x = u.

Lemma2.6 (Kirk & Panyanak, 2008) Every bounded sequence in a complete CAT (0) space X has a ∆ − convergent
subsequence.

Lemma2.7 (Ambrosio, 2008) Let (X, d) be a complete CAT (0) space and f : X → (−∞,∞] be a proper convex and
lower semi-continuous. Then, for all x, y ∈ X and λ ≥ 0, the following inequality holds:

1
2λ

d2(Jλx, y) − 1
2λ

d2(x, y) +
1

2λ
d2(x, Jλx) + f (Jλx) ≤ f (y), (2.3)

where Jλ is a Moreau − Yosida resolvent of f .

Lemma2.8 (Chang, 2012) Assume that C is a closed convex subset of a complete CAT (0) space X and T : C → C be an
asymptotically nonexpansive mapping. Let {xn} be a bounded sequence in C such that∆−lim xn = p and limn→0 d(xn,T xn).
Then T p = p.

Lemma2.9 (Xu, 2003) Let {αn} be a sequence of nonnegative real numbers satisfying the following conditions:

αn+1 ≤ (1 + bn)αn,

where bn ≥ 0 and Σ∞n=1bn < ∞ , then the limn→∞ αn exists.

Lemma2.10 (Mayer,1998) Let (X, d) be a complete CAT (0) space and f : (−∞,∞] → (−∞,∞] be a proper convex and
lower semi-continuous function. Then the following identity holds:

Jλx = Jµ(
λ − µ
λ

Jλx ⊕
µ

λ
x),∀x ∈ X, λ ≥ µ > 0, (2.6)

where Jλ is a Moreau − Yosida resolvent of f .

3. Results

In this section, we prove our main results.

Theorem 3.1 Suppose that the following conditions are satisfied:

(1) Let (X, d) be a complete CAT (0) space and C be a nonempty closed convex subset of X;

(2) Let f : X → (−∞,∞] be a proper convex and lower semi-continuous function;

(3) Ti : C → C, i = 1, 2, ...,m are a finite number of {kn}−asymptotically quasi-nonexpansive mappings with kn ∈
[1,∞), limn→∞ kn = 1, Σ∞i=1(kn − 1) < ∞ such that

Ω =

m∩
i=1

F(Ti) ∩ argminy∈C f (y) , Ø; (3.1)

(4) {αin},i=1,2,...,m be sequences in [0, 1] with 0 < a ≤ αin ≤ c < 1 for all n ∈ N and for some a, c are positive constants in
(0, 1);

(5) {λn} be a sequence with λn ≥ λ > 0 for all n ≥ 1 and for some λ.
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Then, the sequence {xn} defined by the algorithm (1) ∆−converges to a point x∗ ∈ Ω, which is a minimizer of f in C as
well as a commen fixed point of Ti, i = 1, 2, ..,m.

Proof: The proof will be completed in five steps.

Let p ∈ Ω. Then p = T1 p = T2 p = ... = Tm p and f (p) ≤ f (y),∀y ∈ C. Therefore, we have

f (p) +
1

2λn
d2(p, p) ≤ f (y) +

1
2λn

d2(y, p),∀y ∈ C. (3.2)

Hence, p = Jλp,∀n ≥ 1.

The first step, we prove that the limit limn→∞ d(xn, p) exists.

Since Jλn is nonexpansive and zn = Jλn xn, so we have

d(zn, p) = d(Jλn xn, Jλn p) ≤ d(xn, p). (3.3)

While m = 1, we obtain that 
x1 ∈ C chosen arbitrarily,
zn = argminy∈C[ f (y) + 1

2λn
d2(y, xn)],

xn+1 = (1 − α1n)zn ⊕ α1nT n
1 zn, n ≥ 1.

By (1.2), we get

d(xn+1, p) = d((1 − α1n)zn ⊕ α1nT n
1 zn, p)

≤ (1 − α1n)d(zn, p) + α1nd(T n
1 zn, p)

≤ [1 + (kn − 1)α1n]d(xn, p).

This implies that there exists a Q1n = (kn − 1)α1n and Q1n ≥ 0 and Σ∞n=1Q1n < ∞, such that

d(xn+1, p) ≤ (1 + Q1n)d(xn, p).

By lemma 2.9, we obtain that the limit limn→∞ d(xn, p) exists. So, {xn} is bounded. Thus, {zn} and {T n
1 zn} is bounded.

While m = 2, we have 
x1 ∈ C chosen arbitrarily,
zn = argminy∈C[ f (y) + 1

2λn
d2(y, xn)],

xn+1 = (1 − α1n)y1n ⊕ α1nT n
1 y1n

y1n = (1 − α2n)zn ⊕ α2nT n
2 zn, n ≥ 1.

By virtue of (1.2) and (3.3), we get

d(y1n, p) = d((1 − α2n)zn ⊕ α2nT n
2 zn, p)

≤ (1 − α2n)d(zn, p) + α2nd(T n
2 zn, p)

≤ (1 − α2n + α2nkn)d(xn, p)

and

d(xn+1, p) = d((1 − α1n)y1n ⊕ α1nT n
1 y1n, p)

≤ (1 − α1n)d(y1n, p) + α1nd(T n
1 y1n, p)

≤ (1 − α1n)d(y1n, p) + α1nknd(y1n, p)
≤ (1 − α1n + α1nkn)(1 − α2n + α2nkn)d(xn, p)
= [1 + (α1n + α2n + α1nα2n(kn − 1))(kn − 1)]d(xn, p).

So, there is a Q2n = (α1n + α2n + α1nα2n(kn − 1)), and Q2n ≥ 0, and Σ∞n=1Q2n < ∞ such that

d(xn+1, p) ≤ (1 + Q2n)d(xn, p).
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Therefore, by lemma 2.9, we obtain that the limit limn→∞ d(xn, p) exists. Thus, {xn} is bounded, and so {zn}, {y1n}, {T n
1 y1n}

and {T n
1 zn} also are bounded.

This analogies, it implies that there is a Qin ≥ 0, i = 1, 2, ...,m, and Σ∞n=1Qin < ∞ such that

d(xn+1, p) ≤ (1 + Qin)d(xn, p).

Similarly, by lemma 2.9 we have that the limit limn→∞ d(xn, p) exists.

Therefore, {xn} is bounded, and so are {zn}, {yin}i=1,2,...,m−1, {T n
i yin}i=1,2,..,m−1, and {T n

mzn} are bounded.

The second step, we prove that limn→∞ d(xn, zn) = 0. Let

lim
n→∞

d(xn, p) = c ≥ 0. (3.4)

By lemma 2.7, we get
1

2λn
d2(zn, p) − 1

2λn
d2(xn, p) +

1
2λn

d2(xn, zn) ≤ f (p) − f (zn).

That is,
1

2λn
{d2(zn, p) − d2(xn, p) + d2(xn, zn)} ≤ f (p) − f (zn).

Because of f (p) ≤ f (zn),∀n ≥ 1, we get

d2(xn, zn) ≤ d2(xn, p) − d2(zn, p). (3.5)

While m = 1, we have 
x1 ∈ C chosen arbitrarily,
zn = argminy∈C[ f (y) + 1

2λn
d2(y, xn)],

xn+1 = (1 − α1n)zn ⊕ α1nT n
1 zn, n ≥ 1.

By (1.2), we get

d(xn+1, p) = d((1 − α1n)zn ⊕ α1nT n
1 zn, p)

≤ (1 − α1n)d(zn, p) + α1nd(T n
1 zn, p)

≤ (1 − α1n + α1nkn)d(zn, p),

which can be rewritten as
d(zn, p) ≥ 1

1 − α1n + α1nkn
d(xn+1, p).

Therefore, this combines the above with (3.4) implies that

lim
n→∞

inf d(zn, p) ≥ lim
n→∞

inf{ 1
1 − α1n + α1nkn

d(xn+1, p)} = c.

On the other hand, by (3.3), we also get

lim
n→∞

sup d(zn, p) ≤ lim
n→∞

sup d(xn, p) = c.

This implies that
lim
n→∞

d(zn, p) = c. (3.6)

Also from (3.4), (3.5) and (3.6), we obtain that

lim
n→∞

d(xn, zn) = 0. (3.7)

While m = 2, we have 
x1 ∈ C chosen arbitrarily,
zn = argminy∈C[ f (y) + 1

2λn
d2(y, xn)],

xn+1 = (1 − α1n)y1n ⊕ α1nT n
1 y1n,

y1n = (1 − α2n)zn ⊕ α2nT n
2 zn, n ≥ 1.
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By (1.2), we get

d(xn+1, p) = d((1 − α1n)y1n ⊕ α1nT n
1 y1n, p)

≤ (1 − α1n)d(y1n, p) + α1nd(T n
1 y1n, p)

≤ (1 − α1n + α1nkn)d(y1n, p).

Simplifying we have

d(y1n, p) ≥ 1
1 − α1n + α1nkn

d(xn+1, p).

So, we can get

lim
n→∞

inf d(y1n, p) ≥ lim
n→∞

inf{ 1
1 − α1n + α1nkn

d(xn+1, p)} = c.

On the other hand, it shows that

lim
n→∞

sup d(y1n, p) ≤ lim
n→∞

sup{(1 − α2n + α2nkn)d(xn, p)} = c.

Therefore, it implies that
lim
n→∞

d(y1n, p) = c. (3.8)

By (1.2) and (3.8), we get

d(y1n, p) = d((1 − α2n)zn ⊕ α2nT n
2 zn, p)

≤ (1 − α2n)d(zn, p) + α2nd(T n
2 zn, p)

≤ (1 − α2n + α2nkn)d(zn, p).

Similarly, simplifying we have

d(zn, p) ≥ 1
1 − α2n + α2nkn

d(y1n, p).

So, we obtain that

lim
n→∞

inf d(zn, p) ≥ lim
n→∞

inf{ 1
1 − α2n + α2nkn

d(y1n, p)} = c.

By (3.3) we have
lim
n→∞

sup d(zn, p) ≤ lim
n→∞

sup d(xn, p) = c.

So we get limn→∞ d(zn, p) = c.

This togethers the above with (3.5) shows that limn→∞ d(xn, zn) = 0.

And it can be pushed that

lim
n→∞

d(zn, p) = c, lim
n→∞

d(yin, p) = c; i = 1, 2, ...,m − 1.

By (3.8) we also have limn→∞ d(xn, zn) = 0.

The third steps, we prove that

lim
n→∞

d(xn,T1xn) = lim
n→∞

d(xn,T2xn) = ... = lim
n→∞

d(xn,Tmxn) = 0.

While m = 1, we have 
x1 ∈ C chosen arbitrarily,
zn = argminy∈C[ f (y) + 1

2λn
d2(y, xn)],

xn+1 = (1 − α1n)zn ⊕ α1nT n
1 zn, n ≥ 1.

71



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 10, No. 2; 2018

By (1.1) we get

d2(xn+1, p) = d2((1 − α1n)zn ⊕ α1nT n
1 zn, p)

≤ (1 − α1n)d2(zn, p) + α1nd2(T n
1 zn, p) − α1n(1 − α1n)d2(zn,T n

1 zn)

≤ (1 − α1n + α1nk2
n)d2(zn, p) − α1n(1 − α1n)d2(zn,T n

1 zn).

Simplifying above the inequality, we have

d2(zn, T n
1 zn) ≤ 1

α1n(1 − α1n)
{(1 − α1n + α1nk2

n)d2(zn, p) − d2(xn+1, p)}

≤ 1
a(1 − c)

{(1 − α1n + α1nk2
n)d2(zn, p) − d2(xn+1, p)} → 0(n→ ∞).

Thus, we obtain that

d(xn,T n
1 xn) ≤ d(T n

1 xn,T n
1 zn) + d(T n

1 zn, zn) + d(xn, zn)
≤ knd(xn, zn) + d(T n

1 zn, zn) + d(xn, zn)
= (1 − kn)d(xn, zn) + d(T n

1 zn, zn)→ 0(n→ ∞).

It shows that

d(xn+1, xn) = d((1 − α1n)zn ⊕ α1nT n
1 zn, xn)

≤ (1 − α1n)d(zn, xn) + α1nd(T n
1 zn, xn)

≤ (1 − α1n)d(zn, xn) + α1n{d(T n
1 zn, zn) + d(zn, xn)} → 0(n→ ∞).

So, we get

d(xn,T1xn) ≤ d(xn, xn+1) + d(xn+1, T n+1
1 xn+1) + d(T n+1

1 ,T
n+1
1 xn) + d(T n+1

1 xn,T1xn)

≤ d(xn, xn+1) + d(xn, xn+1) + d(xn+1,T n+1
1 xn+1) + kn+1d(xn+1, xn) + k1d(T n

1 xn, xn)
≤ (1 − α1n)d(zn, xn) + α1n{d(T n

1 zn, zn) + d(zn, xn)} → 0(n→ ∞).

This implies that
lim
n→∞

d(xn,T1xn) = 0.

While m = 2, we have 
x1 ∈ C chosen arbitrarily,
zn = argminy∈C[ f (y) + 1

2λn
d2(y, xn)],

xn+1 = (1 − α1n)y1n ⊕ α1nT n
1 y1n,

y1n = (1 − α2n)zn ⊕ α2nT n
2 zn, n ≥ 1.

By (1.1) we get

d2(y1n, p) = d2((1 − α2n)zn ⊕ α2nT n
2 zn, p)

≤ (1 − α2n)d2(zn, p) + α2nd2(T n
2 zn, p) − α2n(1 − α2n)d2(zn,T n

2 zn).

Simplifying the above and we get

d2(zn,T n
2 zn) ≤ 1

α2n(1 − α2n)
{(1 − α2n + α2nk2

n)d2(zn, p) − d2(y1n, p)}

≤ 1
a(1 − c)

{(1 − α2n + α2nk2
n)d2(zn, p) − d2(y1n, p)} → 0(n→ ∞).
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Similarly we obtain that

d(xn, T n
2 xn) ≤ d(T n

2 xn,T n
2 zn) + d(T n

2 zn, zn) + d(zn, xn)
≤ knd(xn, zn) + d(T n

2 zn, zn) + d(zn, xn)→ 0(n→ ∞).

This together with (1.2), we have

d(y1n, xn) = d((1 − α2n)zn ⊕ α2nT n
2 zn, xn)

≤ (1 − α2n)d(zn, xn) + α2nd(T n
2 zn, xn)

≤ (1 − α2n)d(zn, xn) + α2n{d(T n
2 zn, zn) + d(zn, xn)}

= d(zn, xn) + α2nd(T n
2 zn, zn)→ 0(n→ ∞).

By (1.1) we get

d2(xn+1, p) = d2((1 − α1n)y1n ⊕ α1nT n
1 y1n, p)

≤ (1 − α1n)d2(y1n, p) + α1nd2(T n
1 y1n, p) − α1n(1 − α1n)d2(y1n, T n

1 y1n).

Rearranging the above inequality, it implies that

d2(y1n,T n
1 y1n) ≤ 1

α1n(1 − α1n)
{(1 − α1n + α1nk2

n)d2(y1n, p) − d2(xn+1, p)}

≤ 1
a(1 − c)

{(1 − α1n + α1nk2
n)d2(y1n, p) − d2(xn+1, p)} → 0(n→ ∞).

Thus, we obtain that

d(xn,T n
1 xn) ≤ d(T n

1 xn,T n
1 y1n) + d(T n

1 y1n, y1n) + d(y1n, xn)
≤ knd(xn, y1n) + d(T n

1 y1n, y1n) + d(y1n, xn)→ 0(n→ ∞).

By (1.2), this together with the above some inequalities, we get

d(xn+1, xn) = d((1 − α1n)y1n ⊕ α1nT n
1 y1n, xn)

≤ (1 − α1n)d(y1n, xn) + α1nd(T n
1 y1n, xn)

≤ (1 − α1n)d(y1n, xn) + α1n{d(T n
1 y1n, T n

1 xn) + d(T n
1 xn, xn)}

≤ (1 − α1n)d(y1n, xn) + α1n{knd(y1n, xn) + d(T n
1 xn, xn)}

= (1 − α1n + α1nkn)d(y1n, xn) + α1nd(T n
1 xn, xn)→ 0(n→ ∞).

Therefore, we have

d(xn,T1xn) ≤ d(xn, xn+1) + d(xn+1,T n+1
1 xn+1) + d(T n+1

1 xn+1,T n+1
1 xn) + d(T n+1

1 xn,T1xn)

≤ d(xn, xn+1) + d(xn+1,T n+1
1 xn+1) + d(T n+1

1 xn+1,T n+1
1 xn) + d(T n+1

1 xn,T1xn)

≤ d(xn, xn+1) + d(xn+1,T n+1
1 xn+1) + knd(xn+1, xn) + k1d(T n

1 xn, xn)→ 0(n→ ∞).

This implies that limn→∞ d(xn,T1xn) = 0.

Similarly, we obtain

d(xn,T2xn) ≤ d(xn, xn+1) + d(xn+1, T n+1
2 xn+1) + d(T n+1

2 xn+1,T n+1
2 xn) + d(T n+1

2 xn, T2xn)

≤ d(xn, xn+1) + d(xn+1, T n+1
2 xn+1) + knd(xn+1, xn) + d(T n+1

2 xn, xn)→ 0(n→ ∞).
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Therefore, we have limn→∞ d(xn,T2xn) = 0.

Thus, we get
lim
n→∞

d(xn,T1xn) = lim
n→∞

d(xn,T2xn) = 0.

This analogies, we obtain that 

limn→∞ d(zn,T n
mzn) = 0; m = 1, 2, ...; m ≥ 1,

limn→∞ d(yin, xn) = 0; i = 1, 2, ...,m − 1; m ≥ 2,
limn→∞ d(yin,T n

i yin) = 0; i = 1, 2, ...,m − 1; m ≥ 2,
limn→∞ d(xn,T n

i xn) = 0; i = 1, 2, ...m − 1; m ≥ 1,
limn→∞ d(xn+1, xn) = 0; ∀n ≥ 1.

It implies that
lim
n→∞

d(xn,T1xn) = lim
n→∞

d(xn,T2xn) = ... = lim
n→∞

d(xn,Tmxn) = 0. (3.9)

The fourth steps, we prove that
lim
n→∞

d(Jλxn, xn) = 0, λn ≥ λ > 0.

Because of λn ≥ λ > 0, by lemma 2.10 and (3.7), we get

d(Jλxn, xn) ≤ d(Jλxn, zn) + d(zn, xn)
= d(Jλxn, Jλn xn) + d(zn, xn)

≤ d(Jλxn, Jλ(
λn − λ
λn

Jλn xn ⊕
λ

λn
xn)) + d(zn, xn)

≤ d(xn,
λn − λ
λn

Jλn xn ⊕
λ

λn
xn) + d(zn, xn)

=
λn − λ
λn

Jλn d(xn, Jλn xn) + d(zn, xn)

=
λn − λ
λn

Jλn d(xn, zn) + d(zn, xn)→ 0(n→ ∞).

This shows that
lim
n→∞

d(Jλxn, xn) = 0. (3.10)

By the first step, It follows that the limit limn→∞ d(xn, p) exists. By (3.9) and (3.10) , we have

lim
n→∞

d(xn,T1xn) = ... = lim
n→∞

d(xn, Tmxn) = limn→∞d(Jλxn, xn) = 0. (3.11)

The fifth steps, we prove that
ϖ∆(xn) :=

∪
{un}⊂{xn}

A({un}) ⊂ Ω,

where A({un}) is the asymptotic center of {un} .

Let u ∈ ϖ∆(xn). Then, by lemma 2.6, there exists a subsequence {un} of {xn} such that A({un}) = {u}.
Therefore, there exists a subsequence {νn} of {un} such that ∆ − limn→∞ νn = ν for some ν ∈ C.

This together with (3.11) and it shows that

lim
n→∞

d(νn,Tiνn) = 0, i = 1, 2, ...,m; limn→∞d(Jλνn, νn) = 0.

By lemma 2.8, it shows that ν ∈ Ω. So, by lemma 2.5 we obtain that u = v. This implies that ϖ∆(xn) ⊂ Ω.

Finally, we will prove that the sequence {xn} ∆ − converges to a point x∗ ∈ Ω.

It will suffice to prove that ϖ∆(xn) consists of exactly one point in the end.

Let {un} be a subsequence of {xn} with A({un}) = {u} and let A({xn}) = {x}.
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Since u ∈ ϖ∆(xn) ⊂ Ω and {d(xn, µ)} converges, so, by virtue of lemma 2.5, we obtain that x = u. Thus, ϖ∆(xn) = {x∗}.
This completes the proof. 2

Corollary 3.2 Suppose that the following conditions are satisfied:

(1) Let (X, d) be a real Hilbert space and C be a nonempty closed convex subset of X;

(2) Let f : X → (−∞,∞] be a proper convex and lower semi-continuous function;

(3) Ti : C → C, i = 1, 2, ...,m are a finite number of {kn}−asymptotically quasi-nonexpansive mappings with kn ∈
[1,∞), limn→∞ kn = 1,Σ∞i=1(kn − 1) < ∞ such that

Ω =

m∩
i=1

F(Ti) ∩ argminy∈C f (y) , Ø;

(4) {αin},i=1,2,...,m be sequences in [0, 1] with 0 < a ≤ αin ≤ c < 1 for all n ∈ N and for some a, c are positive constants in
(0, 1);

(5) {λn} be a sequence with λn ≥ λ > 0 for all n ≥ 1 and for some λ. Let {xn} be the sequence generated by the following
manner: 

x1 ∈ C chosen arbitrarily,
zn = argminy∈C[ f (y) + 1

2λn
∥(y, xn)∥2],

xn+1 = (1 − α1n)zn ⊕ α1nT n
1 zn,m = 1, n ≥ 1,

x1 ∈ C chosen arbitrarily,
zn = argminy∈C[ f (y) + 1

2λn
∥(y, xn)∥2],

xn+1 = (1 − α1n)y1n ⊕ α1nT n
1 y1n,

y1n = (1 − α2n)y2n ⊕ α2nT n
2 y2n,

· · · · ··
y((m−2)n) = (1 − α(m−1)n)y(m−1)n ⊕ α(m−1)nT n

(m−1)y(m−1)n,

y((m−1)n) = (1 − αmn)zn ⊕ αmnT n
(m−1)zn,m ≥ 2,∀n ≥ 1,

for each n ∈ N, then the sequence {xn} weakly converges to a common element x∗ ∈ Ω.

Theorem 3.3 Under the hypothesis of Theorem 3.1, suppose that the family of the mappings {T1,T2, ..., Tm, Jλ} satisfies
the condition (ω∗). Then, the sequence {xn} defined by (1) strongly converges to a common element x∗ ∈ Ω.

Proof. From the first step of theorem 3.1 , we get that limn→∞ d(xn, x∗) exists for x∗ ∈ Ω. Also, it follows that
limn→∞ d(xn,Ω) exists. On the other hand, because a finite number of asymptotically quasi-nonexpansive mappings
{T1,T2, ..., Tm, Jλ} satisfied the conditions ω∗, we have

lim
n→∞

f (d(xn,Ω)) ≤ lim
n→∞

d(xn,T1xn) = 0

or
lim
n→∞

f (d(xn,Ω)) ≤ lim
n→∞

d(xn,T2xn) = 0

...

or
lim
n→∞

f (d(xn,Ω)) ≤ lim
n→∞

d(xn, Tmxn) = 0

or
lim
n→∞

f (d(xn,Ω)) ≤ lim
n→∞

d(xn, Jλxn) = 0.

Thus, we have limn→∞ f (d(xn,Ω)) = 0. By using the property of f , we have limn→∞ d(xn,Ω) = 0. Thus, following the
proof of Theorem 3.3 of the reference (Pakkaranangetal., 2017), which implies that {xn} is a Cauchy sequence in X and
so {xn} converges to a point x∗ ∈ X and hence d(x∗,Ω) = 0 . Since Ω is closed, we have x∗ ∈ Ω. This completes the
proof. 2

Theorem 3.4 Under the hypothesis of Theorem 3.1, suppose that T1 or T2 or · · · or Tm or Tλ is semi-compact. Then the
sequence {xn} defined by (3.1) strongly converges to a common element p ∈ Ω.
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Proof. Suppose that T1 is semi-compact. By the third step of Theorem 3.1, we have limn→∞ d(xn,T1xn) = 0. Thus, there
exists a subsequence {xnk } of {xn} such that xnk → p ∈ X. Since

lim
n→∞

d(xn,T2xn) = ... = lim
n→∞

d(xn,Tmxn) = limn→∞d(xn, Jλxn) = 0.

We have d(p, T2 p) = ... = d(p,Tm p) = 0 and d(p, Jλp) = 0, which shows that p ∈ Ω. For other mappings, we also prove
that the sequence {xn} strongly converges to a common element ofΩ. This completes the proof. 2
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