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Abstract

Geometrical criterion is a flexible method to be applied to a type of delay differential equations with delay dependent
coefficient. The criterion is used to solve roots attribution of the related characteristic equation in complex plane effectively
by introducing a new parameter skillfully. An extended geometrical criterion is developed to compute the stability of
DDEs with two time delays. It is found that stability switching phenomena arise while equilibrium solution loses its
stability and becomes unstable, then retrieve its stability again. Hopf bifurcation and the bifurcating periodic solution
is analyzed by applying central manifold reduction method. The novel dynamical behaviors such as periodical solution
bifurcating to chaos are discovered by using numerical simulation method.
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1. Introduction

As is well known, the issue of delay differential equations has aroused a big attention from a rather diverse group of sci-
entist since its application widely in many fields of science and engineering. The special feature of DDEs lies that system
contains function which dependent on its past time history thus the corresponding phase space is infinite dimensional
(Fowler, 1997). The stability analysis of system is ubiquitous since bifurcation behavior of equilibrium and periodic solu-
tion can change system dynamics dramatically as varying time delay (Gourley & Kuang, 2004; Wang & Hu, 1999; Cooke
et al., 1999). In general, we describe DDEs with the following formula

x′(t) = f (x(t), x(t − τ), σ, τ) (1.1)

where x(t) : R → Rn is the present state variable, while x(t − τ) : R → Rn denotes the state variable at the past time τ.
Parameter σ and τ are free parameters which affect system dynamics qualitatively. As a common example, population
oscillating model always contains time delay as a physical parameter.

In reality and natural modelling of population with ”stage structure” (Ma et al., 2005; Aiello & Freedman, 1990; Aiello
et al., 1992), the delay dependent coefficients appear in system expressed in an exponential formula with a decay rate
σ. People conceive that the whole life stage survival of population is often a function of time delay τ but in distinct
life stage population size is lessened by factor σ since death is unavoidable. A notable example was the work of Aiello
and Freedman on a single species model with two growth stages and delay dependent coefficients. On another respect,
population movement is the common habits that happened on some living beings, such as fishes or birds, for example,
population partly migrate from the birth place to another habitat for finding plentiful foods, and then return back after a
long period. We introduce state feedback control into system (1.1) which to be written as

x′(t) = f (x(t), x(t − τ), σ, τ) + K1(x(t − T1) − x(t)) + · · · + Kn(x(t − Tn) − x(t)) (1.2)

The feedback terms in Eq(1.2) express the migration movement of population in some designated life stages with Ki(i =
1, · · · , n) negative constants. The features of periodicity of migration for these living beings have knowledged people how
to further protect species life safety effectively to facilitate human beings with big economic efficiency.

Recently, people have developed the stability criterion of the related characteristic equation of system (1.1) without feed-
back control (Cooke & Drissche, 1996, Boese, 1998, Beretta & Kuang, 2002). The stability of system is changed as
varying parameter σ in its increased direction and the critical delay value can be solved effectively by geoemtrical method.
Cooke mentioned that roots of characteristic equation in complex plane with zero real part can be curved by varying delay
dependent coefficient freely to analyze system singularity. Beretta and Kuang have introduced a geometrical criterion by
choosing τ as a bifurcation parameter (Beretta & Kuang, 2002). To get an insight into high codimension bifurcation anal-
ysis, We develop geometrical criterion to two parameter plane in (σ, τ) parameter space (Ma et al., 2008). This criterion
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is applied to some population models with time delay and computer graphics are produced to analyze Hopf bifurcations
appearing in systems.

Considering periodical oscillating phenomena appearing in DDEs (Nisbet & Kurney, 1982; Kuang, 1993), authors in paper
(Wang & Hu, 1999; Xu & Chung, 2003; Xu & Chung, 2009) have developed different analytical method to investigate
stability of periodical solution efficiently. As is well known, to further investigate dynamical behavior for Hopf bifurcation,
the normal form technique of delay dynamical systems is applied to reduce the infinite-dimensional DDEs to finite-
dimensional ODEs (Hale & Lunel, 2003; Stech, 1985), and the fundamental theory of DDEs to see (Hale & Lunel, 2003)
for reference.

To discuss the stability of system (1.2), the geometrical criterion for single time delay τ is extended further by given time
delay Ti. Therefore, Hopf bifurcation may arise at the threshold value while equilibrium solution getting into instable.
The whole paper is organized as follows. In section 2, we present geometrical analysis of Hopf bifurcation to system (1.2)
as varying time delay. In section 3, we illustrate the geometrical method by applying the criterion to a logistic population
model with delay density dependent and periodic migration feedback control; In section 4, by theory of center manifold
reduction, the bifurcation direction of Hopf bifurcation and stability of bifurcating periodic solution is studied by normal
form method.

2. Geometrical Criterion

We analyze the stability of system (1.2) by computing roots of its characteristic equation in complex plane. Without loss
generity, it is supposed that Eq.(1.2) has trivial solution, and the linearized equation is listed

x′(t) = A(σ, τ)x(t) + B(σ, τ)x(t − τ) + K1(x(t − T1) − x(t))
+K2(x(t − T2) − x(t) + · · · + Kn(x(t − Tn) − x(t)) (2.1)

For simplicity, it is assumed that B(σ, τ) has the form

B(σ, τ) =


0 0 · · · 0
· · · · · · · · · · · ·

bi1(σ, τ) bi2(σ, τ) · · · bin(σ, τ)
· · · · · · · · · · · ·
0 0 · · · 0

 ,

and

Km =


0 0 · · · 0
· · · · · · · · · · · ·

km
i1(σ, τ) km

i2(σ, τ) · · · km
in(σ, τ)

· · · · · · · · · · · ·
0 0 · · · 0

 .
or

B(σ, τ) =



0 · · · b1 j(σ, τ) · · · 0
0 · · · b2 j(σ, τ) · · · 0
...

...
...

...
...

0 · · · bn−1, j(σ, τ) · · · 0
0 · · · bn j(σ, τ) · · · 0


,

and

Km =



0 · · · km
1 j(σ, τ) · · · 0

0 · · · km
2 j(σ, τ) · · · 0

...
...

...
...

...
0 · · · km

n−1, j(σ, τ) · · · 0
0 · · · km

n j(σ, τ) · · · 0


.

for m = 1, 2, · · · , n) The associated characteristic equation for Eq.(2.1) is written as

∆(λ, σ, τ) = P(λ, σ, τ) + Q(λ, σ, τ)e−λτ +
n∑

i=1

Hi(λ)(e−λTi − 1) (2.2)
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for i = 1, 2, · · · , n. and

P(λ, σ, τ) =
n∑

k=0

pk(σ, τ)λk, Q(λ, σ, τ) =
m∑

k=0

qk(σ, τ)λk (2.3)

and Hi(λ) =
∑m

k=0 Hi(σ, τ)λk is a polynomial of λ.

In formula (2.3), it is assumed n > m. Both P and Q are continuous and differentiable with respect to σ and τ, and
analytical to variable λ. Authors in paper [1,2,3,4] discuss the occurrence of simple ”Hopf bifurcation” of system (1.2)
with Ki = 0 for i = 1, 2, · · · n. It is supposed that the following condition are satisfied:
(i) For λ = 0, P(0, σ, τ) + Q(0, σ, τ) for any σ, τ, that is, λ = 0 is not a characteristic root of Eq.(2.3);
(ii)For λ = iω,P(iω,σ, τ) + Q(iω,σ, τ) , 0, for any σ, τ;
(iii) lim sup

{|Q(λ, σ, τ)/P(λ, σ, τ)| : λ→ ∞,ℜ(λ) > 0
}
< 1;

(iv) F(ω,σ, τ) = |P(iω,σ, τ)|2−|Q(iω,σ, τ)|2 is continuous and differentiable with respect to σ and τ and has at most finite
real roots.

Condition (i) implies that imaginary axis cannot intersect with λ = 0; Condition (ii) is to express the solvability condition
for imaginary roots λ = iω; Condition (iii) is necessary for the occurrence of Hopf bifurcation since no imaginary roots
cross the imaginary axis from infinity direction; and with given condition (iv), there is at most finite ”gates” for the
occurrence of Hopf bifurcation.

Authors in paper [2] and [3] have discussed the occurrence of Hopf bifurcation for linearized equation (2.1) geometrically
based on the above assumptions. In order to do this, suppose λ = iω with ω > 0 and substitute it into Eq.(2.2), then
seperate the real part from the imaginary part to get

PR(iω,σ, τ) + QR(iω,σ, τ) cos(ωτ) + QI(iω,σ, τ) sin(ωτ) = 0,
PI(iω,σ, τ) − QR(iω,σ, τ) sin(ωτ) + QI(iω,σ, τ) cos(ωτ) = 0, (2.4)

It is easily seen that ω is also a positive root of F(ω,σ, τ) = |P(iω,σ, τ)|2 − |Q(iω,σ, τ)|2 Assume I ⊂ R×R+0 is the region
where ω(τ) is positive root of F(ω,σ, τ), and for any (σ, τ) ∈ I with σ fixed parameter. Define C = ω(τ)τ, then we have

sin(C) =
−PR(iC/τ, σ, τ)QI(iC/τ, σ, τ) + PI(iC/τ, σ, τ)QR(iC/τ, σ, τ)

|Q(iC/τ, σ, τ)|2 ,

cos(C) = −PR(iC/τ, σ, τ)QR(iC/τ, σ, τ) + PI(iC/τ, σ, τ)QI(iC/τ, σ, τ)
|Q(iC/τ, σ, τ)|2 ,

(2.5)

Set
Cn = C0 + 2nπ, n ∈ N0, C0 ∈ (0, 2π). (2.6)

We define the maps τn : (0, 2π) → R+0 given by τn(C0) := τ(C), with (σ, τ(C) ∈ I , then refer to paper [2,3], we deduce
the following technical Lemma:

Lemma 1 For any n ∈ N0, if C∗0 ∈ (0, 2π) and τn(C∗0) satisfies Eqs (2.5), then

ω(σ, τn(C∗0)) =
C∗0 + 2nπ
τn(C∗0)

is the positive root of F(ω,σ, τ) = 0. Therefore, on complex plane, there is a pair of imaginary roots λ = ±iω cross the
imaginary axis from left to right as τ increases if δ(C∗0) > 0 , whereas cross the imaginary axis from right to left as τ
increases if δ(C∗0) < 0, where δ(C∗0) is given by

δ(C∗0) = sign
{

dℜ(λ)
dτ
|λ=iω

}
= sign(

1
ω′(C∗0)

(−ℜ(W)Y + ω(C∗0)ℜ(W)|P(iω,σ, τ)|2

−ℑ(W)X +ℜ(V)X − ℑ(V)Y + ω(C∗0)ℑ(V)|P(iω,σ, τ)|2)
−τ|P(iω,σ, τ)|2X),

(2.7)

with
W := (P′C0

− P′ττ
′
n(C0))PR − (Q′C0

− Q′ττ
′
n(C0))QR,

V := (P′C0
− P′ττ

′
n(C0))PI − (Q′C0

− Q′ττ
′
n(C0))QI ,

X := P′RτPR + P′IτPI − Q′RτQR − Q′IτQI ,

Y := P′RτPI + P′IτPR − Q′RτQI − Q′IτQR,
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Substitute λ = iω(ω > 0) into Eq.(2.2), then seperate the real part from the imaginary part to get

PR(iω,σ, τ) + QR(iω,σ, τ) cos(ωτ) + QI(iω,σ, τ) sin(ωτ)
+

∑n
l=1 HlR(iω) cos(ωTl) +

∑n
l=1 HlI(iω) sin(ωTl) = 0,

PI(iω,σ, τ) − QR(iω,σ, τ) sin(ωτ) + QI(iω,σ, τ) cos(ωτ)
−∑n

l=1 HlR(iω) sin(ωTl) +
∑n

l=1 HlI(iω) cos(ωTl) = 0,

(2.8)

Define C = ω(τ)τ, then we have

sin(C) = QI(iC/τ, σ, τ)(
−PR(iC/τ, σ, τ) +

∑n
l=1 HlR(iC/τ)(cos(TlC/τ) − 1)

|Q(iC/τ, σ, τ)|2

+

∑n
l=1 HlI(iC/τ) sin(TlC/τ)
|Q(iC/τ, σ, τ)|2 )

+QR(iC/τ, σ, τ)(
PI(iC/τ, σ, τ) −∑n

l=1 HlR(iC/τ) sin(TlC/τ)
|Q(iC/τ, σ, τ)|2

+

∑n
l=1 HlI(iC/τ)(cos(ωTl) − 1)

|Q(iC/τ, σ, τ)|2 ),

cos(C) = −QR(iC/τ, σ, τ)(
PR(iC/τ, σ, τ) +

∑n
l=1 HlR(iC/τ)(cos(T1C/τ) − 1)
|Q(iC/τ, σ, τ)|2

+

∑n
l=1 HlI(iC/τ) sin(T1C/τ)
|Q(iC/τ, σ, τ)|2 )

+QI(iC/τ, σ, τ)(
PI(iC/τ, σ, τ) −∑n

l=1 HlR(iC/τ) sin(ωTl)
|Q(iC/τ, σ, τ)|2

+

∑n
l=1 HlI(iC/τ)(cos(TlC/τ) − 1)

|Q(iC/τ, σ, τ)|2 ),

(2.9)

It is easily seen that ω is also a positive root of

F(ω,σ, τ) = ϕ2(ω,σ, τ) + ψ2(ω,σ, τ) − 1 (2.10)

with ϕ(ω,σ, τ) = sin(C), ψ(ω,σ, τ) = cos(C) as given in Eqs(2.9). Set Cn = C0 + 2nπ for any n ∈ N0, andC0 ∈ (0, 2π). We
define the maps τn : (0, 2π)→ R+0 given by τn(C0) := τ(C), with (σ, τ(C)) ∈ I .

By Lemma 1, we have

δ(C∗0) = sign
{

dℜ(λ)
dτ
|λ=iω

}
= signℜ

{
dλ
dτ
|λ=iω

}−1

= sign(
1

ω′(C∗0)
(−ℜ(W)Y − ℑ(W)X +ℜ(V)X − ℑ(V)Y

+ω(C∗0)ℜ(W)|P(iω,σ, τ) +
∑n

l=1 Hl(iωTl)(exp(iωTl) − 1)|2
+ω(C∗0)ℑ(V)|P(iω,σ, τ) +

∑n
l=1 Hl(iωTl)(exp(iωTl) − 1)|2)

−τ|P(iω,σ, τ) +
∑n

l=1 Hl(iωTl)(exp(iωTl) − 1)|2X),

(2.11)

with
W := (P′C0

+
∑n

l=1(HlC0 (exp(iTlC/τ) − 1) + Hle−iωTl (−Tl))
−P′ττ

′
n(C0))(PR +

∑n
l=1 Hl(cos(T1C/τ) − 1)) + (Q′C0

− Q′ττ
′
n(C0))QR,

V := (P′C0
+

∑n
l=1(HlC0 (exp(iTlC/τ) − 1) + Hle−iωT (−Tl))

−P′ττ
′
n(C0))(PI −

∑n
l=1 Hl sin(T1C/τ)) − (Q′C0

− Q′ττ
′
n(C0))QI ,

X := P′Rτ (PR +
∑n

l=1 Hl(cos(T1C/τ) − 1)) + P′Iτ (PI +
∑n

l=1 Hl sin(T1C/τ))
−Q′RτQR − Q′IτQI ,

Y := P′Rτ (PI +
∑n

l=1 Hl sin(T1C/τ)) + P′Iτ (PR +
∑n

l=1 Hl(cos(T1C/τ) − 1))
−Q′RτQI − Q′IτQR,

3. A Logistic Population Model with Feedback Control

As an attempt to explain the oscillating dynamical behavior observed both in ecology and biology, population model is set
forth mathematically to describe the dynamics of the population of biological species in nature or laboratories qualitatively
and quantitatively[1-4]. Among these models, the well known logistic population model[1] is introduced which obeys

dx
dt
= bx(t)

(
1 − x(t))

k

)
− dx(t) (3.1)
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where state variable x(t) to describe the density of population species, b is the birth rate and d is the death rate, the first
term in Eq.(3.1) contains density restriction due to resource capacity which to give a description of population activities
in real world.

Delays factor is ubiquitous in population activities since growing up from embryos to adult takes a long time period.
Henceforth, people have introduced the delays factor into population model to comprehensively understand the population
growth rules naturally (see[4-7] for reference). In their work, the rich dynamical behaviors of population model have been
reported to identify the observed oscillating phenomena which is in coincidence with the results of theoretical analysis as
varying time delay.

Based on equation (3.1), Logistic population model with density delay dependent[8] is put forward with the following
formula

dx
dt
= bx(t − r)e−pr

(
1 − x(t − r)

k

)
− dx(t) (3.2)

where r denotes the maturation time of the population species. be−pr is exponential nonlinear birth rate with a birth decay
coefficient p which always applied in so called ”stage-structured” population model[9,10]. It explains the whole life stage
of population survival dependent on time delay. As a comparison with system (3.1), decay coefficient p can dramatically
changes the asymptotic stable behavior of system and oscillating behaviors occurs as system become instable as varying
time delay simultaneously. However, it is conceived that population number varying in some designative life stage, for
example population moving and biological statistics with some uncertain factors, which may change population activities
complexly. Therefore, we put forward the following population model with state feedback control

dx
dt
= bx(t − r)e−pr

(
1 − x(t − r)

k

)
− dx(t) + f (x(t − T ) − x(t)) (3.3)

Time delays are ubiquitous factors which arose in population model naturally to affect system dynamics dramatically.

3.1 Linear System Analysis

It is easily calculated that system (3.2) or (3.3) has a unique positive equilibrium solution

x∗ =
k(be−pr − d)

be−pr (3.4)

with the given condition 0 < p <
1
r

ln
d
b

. If r = 0, the dynamics of Eq.(3.1) is simple and the unique positive equilibrium
solution is globally asymptotically stable without delay effect.

In the case r > 0, the birth rate of the population species in system (3.2) is exponential nonlinear of time delay r with
decay coefficient p. Eq.(3.2) is a single DDE with parameter delay dependent coefficient. Cooke have considered a
infectious disease model with parameter delay dependent coefficient to affect system’s stability quanitatively (Cooke et
al., 1992; Cooke & van der Driessche, 1996). Thereafter, a general geometrical criterion for stability analysis of some
delay differential equations with delay dependent coefficient is presented and developed (Beretta & Kuang, 2002).

By making transformation x̄ = x − x∗ and replacing x̄ by x for simplicity, the linearized equation of system (3.3) is listed
as

x′(t) = (2d − be−pr x(t − r)) − dx + f (x(t − T ) − x(t)) (3.5)

The corresponding characteristic equation of system (3.5) is

∆(λ) = λ − (2d − be−pr)e−λr + d − f (e−λT − 1) = 0 (3.6)

To analyze the stability and Hopf bifurcation of the equilibrium solution of Eq.(3.3), the properties of the characteristic
roots of Eq.(3.5) are discussed. Set λ = iω(ω > 0) and submit it into Eq.(3.5), then separate the real part from the
imaginary part to get

−(2d − be−pr)cos(wr) + d − f (cos(wT ) − 1) = 0
w + (2d − be−pr)sin(wr) + f sin(wT ) = 0 (3.6)

It is difficult to solve w,T directly from Eq.(3.6), however, the geometrical analysis give an insight how w and T dependent
indirectly, thus collect all the information of how Hopf bifurcation occurs. We denote Y = (2d−be−pr) and β = ωr, S = ωT
to get the following formula

−Y cos(β) + d − f (cos(S ) − 1) = 0
β + rY sin(β) + r f sin(S ) = 0 (3.7)
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It is computed from Eq.(3.7) that

cos(S ) = −Y cos(β) − d − f
f

, sin(S ) = − rY sin(β) + β
r f

, (3.8)

since cos(S )2 + sin(S )2 = 1, one gets

Y =
cos(β)dr + cos(β) f r − sin(β)β ±

√
tt

r
,

T =
r
β

(mπ + arctan
β + rY sin(β)

r(Y cos(β) − d − f )
),

(3.9)

with
tt = cos(β)2(d2r2 + 2d f r2 + f 2r2) − 2 cos(β) sin(β)β(d + f )r + sin(β)2β2

−d2r2 − 2d f r2 − β2.

for n = 0 and m = 1, 2, 3, · · · .
By Eq.(3.8) and the first equation in Eqs(3.9), we can plot curves in (S ,Y) plane which is denoted by S 0 to determine
the imaginary roots ω of the characteristic equation (3.5). Denote the line given by Y = 2d − be−pr as L which intersect
with S 0 at point (S ∗,Y∗), as shown in Figure 1(a). Other parameters are chosn as b = 0.2, d = 0.025, k = .1, f = −0.002.

Furthermore, it is calculated that the imaginary root ω as ω =
S ∗

T ∗
with T ∗ given by the second equation in Eqs(3.9). Set

Y1 =
cos(β)dr + cos(β) f r − sin(β)β +

√
tt

r
,

Y2 =
cos(β)dr + cos(β) f r − sin(β)β −

√
tt

r
,

(3.10)

differentiate Y1,2 and cos(S ) respectively with respect to the parameter β and making division of them, then solve zero
solution of following equation

dY1,2

d cos(S )
=

f
(
(d + f )r sin(β) + cos(β)β + sin(β) ∓ 1

2
√

tt

dtt
dβ

)
−rY sin(β) + cos(β)

(
(d + f )r sin(β) + r cos(β)β + r sin(β) ∓ 1

2
√

tt

dtt
dβ

) (3.11)

to get (S 1∗,Y1∗) and (S 2∗,Y2∗), which satisfy Eq.(3.11), where

dtt
dβ
= −2 cos(β) sin(β)(d2r2 + 2d f r2 + f 2r2) + 2(sin(β)2 − cos(β)2)β(d + f )r

−2 cos(β) sin(β)(d + f )r + 2 sin(β) cos(β)β2 + 2β sin(β)2 − 2β.

Obviously, the curve S 0 and the line L intersect tangentially at (S 1∗,2∗,Y1∗,2∗) by choosing p1,2 = −
1
r

ln(
2d − Y1∗,2∗

b
). We

derive the following result: For fixed p1 < p < p2, stability switching phenomena of the equilibrium solution x∗ of system
(3.3) happens at the intersection points of the curve S 0 and the line L as varying time delay r (or time delay T ) and it may

lead to Hopf bifurcation since the transversity condition
dℜλ

dr
|λ=iω , 0 ( or

dℜλ
dT
|λ=iω , 0) is satisfied .

Notice that β = ωr, thus we have
ω′(β∗)r + ω(β∗)r′(β∗) = 1 (3.12)

with ω(β∗) =
S ∗

T
.

Since Y = 2d − be−pr, therefore, we get
Y ′(β∗) = bpe−prr′(β∗) (3.13)

On another respect, we also have

Y ′(β∗) =
dY

d cos(S )
(− sin(S ∗))(

T
r
− Tβ∗

r2 r′(β∗) (3.14)

68



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 10, No. 3; 2018

By computation with the aid of formula (3.13) and (3.14) to get

r′(β∗) =

dY
d cos(S )

(− sin(S ∗)
T
r

bpe−pr − dY
d cos(S )

sin(S ∗)
Tβ∗

r2

(3.15)

Solve ω′(β∗) from Eq.(3.14) to obtain

ω′(β∗) =
β∗2(β∗T + S ∗2 sin(S ) dY

d cos(S ) )

β∗3Tbpe−pS ∗/β∗T − dY
d cos(S ) sin(S ∗)S ∗2

(3.16)

as Y = Y1,2, respectively.

Since

W := −iω′(β∗)(1 + f Te−iωT )(d + f − f cos(ωT ));
V := −iω′(β∗)(1 + f Te−iωT )(ω + f sin(ωT ));
X := bpe−pr(2d − be−pr) = pY(β∗)(2d − Y(β∗))

Therefore, by formula (2.11) we get

δ(β∗) = sign
{

dℜ(λ)
dr
|λ=iω

}
= signℜ

{
dλ
dr
|λ=iω

}−1

= sign(
1

ω′(β∗)
(−ℜ(W)X +ℜ(V)X + ω(β∗)ℑ(W)Y(β)2 + ω(β∗)ℑ(V)Y(β)2)

− S ∗
Tβ∗ Y(β∗)2X),

(3.17)

For fixed r, differentiate both sides of the characteristic equation to solve
dλ
dT

and we have

sign
{

dℜ(λ)
dT

|λ=iω

}
= signℜ

{
dλ
dT
|λ=iω

}−1

= signℜ(
1 − Ye−iωr(−r) + f Te−iωT

iω f e−iωT )

= sign(−(1 − Ycos(β))(Y sin(β) + β
r ) + r sin(β)(Y cos(β) − d − f ))

(3.18)

Furthermore, Hopf bifurcation lines which given by Eq.(3.9) are drawn on (p − r) plane or on (p − T ) parameter plane.
As shown in Figure 1(b), the shaded region denotes unstable regime of the positive equilibrium solution x∗. It can be
seen, Hopf bifurcation lines form the margin of the unstable region of the equlibrium solution, as shown in Figure 1(c).
Therefore, as increasing feedback delay T , the switching phenomena of the equlibrium solution x∗ of Eq.(1.3) happens
again and again, which bifurcates the oscillating periodic solution with small amplitudes near the margin since ”simple”
Hopf bifurcation happens. Here ”simple” means ” codimension one” which is non-degenrate Hopf bifurcation.
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Figure 1. The stability switching phenomena of the equilibrium solution x∗ of system (1.3) when other fixed parameters
chosen to be b = 0.2, d = 0.25e − 1, k = .1, f = −0.002. (a) The intersection points of the curve S n and the line L for
n = 0;(b) The Hopf lines in (p − r) plane with T = 15.61; (c) The unstable region formed by Hopf bifurcation lines given
by Eq.(2.7) with r = 14.63.

4. Center Manifold Reduction

By the above analysis, the ”simple” Hopf bifurcation of the equilibrium solution happens at critical delay value of T = T ∗.
In this section, Both of the bifurcating direction of periodical solution and its stability are discussed by using center
manifold method and norm form technique.

By the linearized method, system (3.3) can be written as the following version

ẋ = −(d + f )x(t) + (2d − be−pr)x(t − r) + f x(t − T ) − b
k

e−pr x2(t − r) (4.1)

Suppose τ = max{r,T }, the phase space of system (4.1) is Banach space C([−τ, 0],R) with norm definition ||ϕ|| =
supθ≤τ≤0 |ϕ(θ)|. Set the linear operator L(0) to be

L(0)ϕ = −(d + f )ϕ(0) + (2d − be−pr)ϕ(−r) + fϕ(−T ) (4.2)

By Rieze representation theorem, there is a bounded variation function η(θ) which satisfies

L(0)ϕ =
∫ 0

−τ
dη(θ)ϕ(θ) (4.3)

with
dη(θ) = [−(d + f )δ(θ) + (2d − be−pr)δ(θ + r) + f δ(θ + T )].

Correspondingly, the characteristic equation of the linearized version (4.1) is written as

∆(λ) =
∫ 0

−T
dη(θ)eλθ (4.4)
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which is verified to have a pair of imaginary roots ±iω0 at T = T ∗, and all other characteristic roots with negative real
parts.

By the fundamental theory of functional differential equations (Xu & Chung, 2009; Hale & Lunel, 1993), the linear op-
erator L(0) generates a strong continuous semigroup of bounded linear operator on Banach space C with the infinitesimal
generator

Aϕ =


dϕ
dθ

−τ ≤ θ < 0,

L(0)ϕ, θ = 0,
(4.5)

and its conjugate operator A∗ on the adjoint space C∗ = C([0, τ],R) is

A∗ψ =

 −
dψ
ds

0 < s ≤ τ,∫ 0
−τ dη(−s)ψ(s), s = 0

(4.6)

with ψ ∈ C∗ and set

Rϕ =
{

0, τ ≤ θ < 0,
F(ϕ(0), ϕ(−r)), θ = 0,

with

F(ϕ) = −be−pr

k
ϕ2(−r)

For any ϕ ∈ C, ψ ∈ C∗, we define the inner product < · > as

< ϕ, ψ >= ψ̄(0)ϕ(0) +
∫ 0

−r
ψ̄(ξ − r)(2d − be−pr)ϕ(ξ)dξ +

∫ 0

−T
ψ̄(ξ − T ) fϕ(ξ) (4.7)

Eq.(4.1) can be written as its operator form which is listed as

ẋt = L(0)xt + F(xt) (4.8)

with xt = x(t + θ), −τ ≤ θ ≤ 0.

Suppose the collection of characteristic roots with zero real part as Λ = {−iω0, iω0}, and the related eigenspace of Λ
is denoted as PΛ. The complementary subspace of PΛ is represented by QΛ, then the phase space C is decomposed as
C = PΛ ⊕ QΛ. Furthermore, we suppose the eigenvector of operator A associated with the characteristic root iω0 being
q(θ), and p(s) is the eigenvector of the adjoint operator A∗ associated with characteristic root −iω0, that is

Aq(θ) = iω0q(θ), A∗p(s) = −iω0 p(s) (4.9)

with −τ ≤ θ ≤ 0 and 0 ≤ s ≤ τ. Furthermore, suppose

< p, q >= 1 < p̄, q >= 0

It is easily to calculate that

q(θ) = eiω0θ, −τ ≤ θ ≤ 0,

p(s) =
1

1 + (2d − be−prreiω0r + f Teiω0T eiω0 s, 0 ≤ s ≤ τ. (4.10)

For every xt ∈ C, set xt = zq(θ) + z̄q̄(θ) + vt with vt ∈ QΛ, then we have

z =< p, xt > (4.11)

Differentiating both sides of Eq.(4.11) and with the aid of Eq.(4.9) to obtain

z′ =< q∗, x′t >= iω0z + p̄(0)F(zq + z̄q̄ + vt), (4.12)
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4.1 The Reduction of System

To decide the bifurcating direction and stability of periodic solution arose from Hopf point, it is necessary to compute vt

too. Expand vt = w(z, z̄) into its Taylor series

vt = w(z, z̄) =
1
2

w20z2 + w11zz̄ +
1
2

w02z̄2 + · · · (4.13)

with coefficients wi j dependent only on θ. Further set g(z, z̄) = p̄(0) f̂ (z, z̄), and rewritten Eq.(4.9) as

z′ = iω0z + g(z, z̄) (4.14)

Expand g(z, z̄) into its series as

g(z, z̄) =
1
2

g20z2 + g11zz̄ +
1
2

g02z̄2 + · · · (4.15)

By Eq(3.8) and (3.9), it is easily to compute

v′t =
{
Avt − 2ℜp̄(0) f̂ (z, z̄)q(θ), −τ ≤ θ < 0,
Avt + f̂ − 2ℜp̄(0) f̂ (z, z̄)q(θ), θ = 0

(4.16)

We further suppose that
v′t = Avt + H(z, z̄), −τ ≤ θ < 0 (4.17)

with
H(z, z̄) = −2ℜp̄(0) f̂ (z, z̄)q(θ) =

1
2

H20z2 + H11zz̄ +
1
2

H02z̄2 + · · · (4.18)

We compute the coefficients gi j in Eq.(4.15) to get

g20 = −2N̄
be−pr

k
e−2iωτ,

g11 = −2N̄
be−pr

k
,

g02 = −2N̄
be−pr

k
e2iωτ,

g21 = −2N̄
be−pr

k
(w20(−τ)eiωτ + 2w11(−τ)e−iωτ)

(4.19)

The coefficients Hi j are determined as
H20 = −g20q(θ) − ḡ02q̄(θ),
H11 = −g11q(θ) − ḡ11q̄(θ),
H02 = −g02q(θ) − ḡ20q̄(θ),

(4.20)

By a comparison of the coefficients between Eq(4.16) and Eq(4.17), for −τ ≤ θ < 0, we have

Aw20(θ) + 2iω0w20(θ) = H20(θ),
Aw11(θ) = H11(θ),
Aw02(θ) − 2iω0w02(θ) = H02(θ),

(4.21)

and for θ = 0, we have the following formula

(2d − be−pr)w20(−r) − dw20(0) + K(w20(−T ) − w20(0)) = 2iω0w20(0)

+g20 + ḡ20 +
be−pr

k
e−2iωτ,

(2d − be−pr)w11(−r) − dw11(0) + K(w11(−T ) − w20(0)) = g11 + ḡ11

+2
be−pr

k
,

(4.22)

Integrating Eqs(4.21) underlying the given initial boundary condition (4.22) to obtain

w20(θ) = exp2iω0θE1 −
i

3ω0
(3g20eiω0θ + ḡ02e−iω0θ),

w11(θ) =
ig11

ω0
eiω0θ − iḡ11

ω0
e−iω0θ + E2,

(4.23)
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where

E1 =
1

3ω0k( f e−2iω0T − 2iω0 + 2de−2iω0r − e−2iω0r−pr − f − d)
(3i f e−iω0T g20k

+i f eiω0T ḡ02k − 3ie−pr−iω0rg20k − ie−pr+iω0rḡ02k
+6ie−iω0rdg20k + 2ieiω0rdḡ02k − i f ḡ02k − 3i f g20k
+3be−pr−2iω0τω0 − idḡ02k − 3idg20k + 3g02ω0k + 2ḡ02kω0 + 9g20ω0k),

E2 =
1

ω0ke−pr − d
(i f e−iω0T g11k − i f eiω0T ḡ11k

−ie−pr−iω0rg11k + ie−pr+iω0rḡ11k + 2ie−iω0rdg11k − 2ieiω0rḡ11dk
+i f ḡ11k − i f g11k + iḡ11dk − idg11k − 2be−prω0
−ḡ11ω0k − g11ω0k.

(4.24)

Therefore by Eqs(4.20),Eqs(4.23) and Eqs(4.24),we compute the following quantity directly

C1(T ∗) =
i

2ω0

(
g20g11 − 2|g11|2 −

1
3
|g02|2

)
+

g21

2
,

µ = −ℜC1(T ∗)
ℜλ′(T ∗) ,

σ = ℜC1(T ∗)

(4.25)

where µ determines the bifurcating direction of Hopf bifurcation, and σ determines the stability of the bifurcating period-
ical solution. Through the general theorem of Hopf bifurcation, the following results are derived:
Theorem 4.1 If µ < 0 at T = T ∗, then the simple Hopf bifurcation of the eqilibrium solution x∗ of Eq(3.3) is subcritical;
whereas it is supercritical. Moreover, the bifurcating periodical solution is stable near the Hopf point if σ < 0 but unstable
if σ > 0. Furthermore, we transform the studied population system with state feedback control into its 3-order Normal
Form which is listed as[18]

z′ = iω0z +C1(T ∗)z|z|2 + O(|z|4) (4.26)

and its universal unfolding is
z′ = (α(T ) + iβ(T ))z +C1(T )z|z|2 + O(|z|4) (4.27)
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Figure 2. The bifurcating periodic solutions due to stability switching phenomena as Hopf bifurcation occurs. (a) Pe-
riodical solution near Hopf point is unique and globally asymptotically stable; (b) The continuously computation of the
bifurcating periodical solution while varying delay T .

By the above discussion, the periodical oscillating phenomena appears since the instability switching of equilibrium
solution x∗ of population system (3.3) as Hopf bifurcation occurs. If µ > 0, Hopf bifurcation is supercritical, the bi-
furcating periodical solution is asymptotically stable and it goes to extinction when varying parameter continuously to
arrive at instable margin, since subcritical Hopf bifurcation happens again which satisfies µ < 0. By choosing parameters
b = 0.7, d = 0.21, k = 0.1, r = 14.9688, f = −0.02 and p = 0.0021 fixed, we compute the bifurcating periodical solutions
continuously as varying time delay T as shown in Figure 2. The bifurcating periodical solution is locally asymptotically
stable since σ < 0. It is easily observed that population size is limited within the resource capacity since the boundness
character of Logistic population system. The bifurcating periodic solution is unique thus globally asymptotically stable.

73



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 10, No. 3; 2018

4.2 The Observed Quasi-periodical Solution

The instability of population system brings out the complex dynamical behaviors as varying parameter p and time delay.
For example, the quasi-periodic solution is observed in unstable region after Hopf bifurcation. The bifurcating scenario
from periodic solution to chaos via double period bifurcation is numerically simulated.

For example, choosing b = 0.2, d = 0.025, k = 0.1, r = 20.63, f = −0.002, for fixed p = 0.0006, period-1,period-
2, period-4 solution and chaos are detected with time delay T = 2, 6, 12, 12.8 respectively. The bifurcating periodical
solutions are shown in Figure3 (a)-(d). The bifurcating periodical solutions to chaos with T = 39.18 are numerical
simulated by choosing delay r = 19.03, 19.63, 20.03, 20.83 respectively as shown in Figure 4(a)-(d).

5. Discussion

The geometrical criterion of ”simple” Hopf bifurcation for multi-delay differential equations is extended as regarding time
delay as a physical parameter since introducing delay dependent coefficients. As a peculiar example, Hopf bifurcation
and stability switching of the unique positive equilibrium solution of a logistic population model with state feedback
were studied. It is assumed that population movements in a designated time stage have influence on whole system
dynamical behavior, such as periodic solution of system produced due to overwinter migration of fishes or birds. The
method of geometrical analysis was used to detect the stability switching and track Hopf bifurcation when varying time
delay. The oscillating periodic solution appear in the unstable regions was globally asymptotically stable. The routes to
quasi-periodical solution via period doubling bifurcation was also explored as varying time delay.
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Figure 3. The bifurcating periodic solutions via period-doubling bifurcation with b = 0.2, d = 0.025, k = 0.1, r =
20.63, f = −0.002 and p = 0.0006, (a)the observed period-1 solution at T = 2; (b) the observed period-2 solution at
T = 6 ; (c)the observed period-4 solution at T = 12; (d)the quasi-periodic solution at T = 12.8.
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Figure 4. The bifurcating periodic solutions via period-doubling bifurcation with b = 0.2, d = 0.025, k = 0.1,T =
39.18, f = −0.002 and p = 0.0006, (a)the observed period-1 solution at r = 19.03; (b) the observed period-2 solution at
r = 19.63 ; (c)the observed period-4 solution at r = 20.03; (d)the quasi-periodic solution at r = 20.83.
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