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Abstract

Periodic properties of solutions play an important role in characterizing the behavior of solutions of sufficiently complicat-
ed nonlinear differential equations. Sufficient conditions are established which ensure the existence of periodic (or almost
periodic) solutions of certain second nonlinear differential equations. Using the basic tool Lyapunov function, new result
on the subject which improve some well known results in the literature with the particular cases of (1) for the existence of
almost periodic or periodic solutions when the forcing term p is almost periodic or periodic in t uniformly in x and ẋ are
obtained. Our result further extends and improves on those that exist in the literature to the more general case considered.
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1. Introduction

We consider the second-order nonlinear ordinary differential equation,

ẍ + ϕ(x, ẋ)ẋ + ψ(x, ẋ) = p(t, x, ẋ) (1)

where ϕ, ψ ∈ C(R × R,R) and p([0,∞) × R × R,R), R is the real line −∞ < t < ∞. The functions ϕ, ψ and p depend
only on the argument displayed explicitly and the dots denote differentiation with respect to t. ϕ and ψ satisfy condition
of existence and uniqueness of solutions.

For many years now, several authors have dealt with ordinary differential equations and obtained useful results, see
(Aleksandrov, A.Y. & Platonov, A.V., 2008; Cartwright, M.L. & Littlewood, J.E., 1947; Ezeilo, J.O.C., 1965; Hale, J.K.,
1964; Loud, B.S., 1957; Lyapunov, A.M., 1966; Olutimo, A.L. & Akinwole, F.O., 2016; Omeike, M.O. & et al., 2014;
Reissig, R. & et al., 1974; Reuter, G.E.H., 1951) and the references cited therein. The results obtained by these authors
were based on Lyapunov’s theory, see (Lyapunov, A.M., 1966; Yoshizawa, T., 1966) which ensure some qualitative
behavior of solutions of the problem. However, the construction of these Lyapunov functionals remain a general problem.
For second order differential equations, some special cases of (1) do exist for which ϕ and ψ are replaced by some other
non-linear functions (at most) only x and ẋ. For example, (Cartwright, M.L. & Littlewood, J.E., 1947) studied the second
order equations of the form

ẍ + f (x)ẋ + g(x) = p(t)

and showed that if g is twice differentiable and satisfies g(0) = 0 and if further both f and g′ are strictly positive, then all
ultimately bounded solutions of the equations converges provided that |g′′(x)| is sufficiently small. (Loud, B.S., 1957) on
his part showed that for the special case

ẍ + cẋ + g(x) = p(t)

in which c is a constant, proved convergence result without restrictions whatever on g provided that c > 0 is sufficiently
large.

However, the search for periodic solutions describing the behavior of nonlinear systems is of interest because of the
mathematical description of real physical systems modeled into nonlinear differential equations. Among the qualitative
properties of solutions, periodicity is least discussed because of the difficulty in constructing a complete Lyapunov func-
tion. To this end, (Reuter, G.E.H., 1951) considered the differential equation of second order with a positive damping
factor kp(t),

ẍ + k f (x)ẋ + g(x) = kp(t).
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He proved that the differential equation has a unique almost periodic solution to which every other solution converges if
p(t) is almost periodic and g(x) does not depart too far from linearity. Also, in a sequence of results, (Hale, J.K., 1964;
Yoshizawa, T., 1964), gave simpler stability conditions to ensure the existence of almost periodic solutions of system of
functional differential equations with ordinary differential equation as special cases. Similar results were also obtained
by (Ezeilo, J.O.C., 1965; Tejumola, H.O., 1971). The method of those papers involves the use of Lyapunov’s functions
except in (Seifert, G., 1966) where Amerio’s Theorem was used to obtain the existence of almost periodic solutions with
certain stability conditions. Theoretically, the result obtained in (Tejumola, H.O., 1971) is a very interesting result. For
example, many second-order differential equations which have been mentioned above are special cases of equation (1)
and some known results were improved and extended by the result in (Tejumola, H.O., 1971). However, it is not easy to
apply the Theorems in (Tejumola, H.O., 1971) to obtain new or better results since some restrictions on x and y are not
necessary for the stability of many nonlinear systems.

Our motivation comes from the papers mentioned above. With respect to our observations in the literature, periodic
properties of solutions for (1) have not been discussed. Thus, it is worthwhile to study the subject for (1). The aim of
this paper is to establish sufficient conditions that ensure the existence of periodic properties of solutions of (1) under the
conditions that the forcing term p is almost periodic or periodic in t uniformly in x and ẋ using a complete Lyapunov
function in a simple approach. The result obtained here is not only new but will include the notion of the properties
studied in (Ezeilo, J.O.C., 1965; Tejumola, H.O., 1971), extend and improve those results obtained by (Hale, J.K., 1964;
Reuter, G.E.H., 1951; Yoshizawa, T., 1964) to the more general equation (1). It may be useful to researchers as it plays
an important role in characterizing the behavior of solutions of sufficiently complicated nonlinear differential equations.

1.1 Definition A continuous function f : R → x is called almost periodic if for each ε > 0 there exists ℓ(ε) > 0 such that
every interval of length ℓ(ε) contains a number τ with property that

| f (t + τ) − f (t)| < ε f or each t ∈ R.

1.2 Definition A continuous function f : R→ x is said to be periodic with period ω for all t ∈ R such that

f (t + ω) = f (t) f or all t ∈ R.

2. Main Result

Our main result is the following result.

Theorem 1 In addition to the basic assumptions imposed on the functions ψ, ϕ and p appearing in (1), we assume that
there exist positive constants a, b, υ and δo such that the followings hold:

1) ϕ(x, y) ≥ a, ψ(x,y)
y ≥ b, y , 0 and yψ(x, 0) ≤ 0;

2) ψ(x,y)
x ≥ δo, ψ(x,0)

x ≥ υ, x , 0;

3) p(t, x, y) ≡ r(t, x, y + q) satisfies

r(t, x2, y2 + q) − r(t, x1, y1 + q) ≤ σ(t){|x2(t) − x1(t)| + |y2(t) − y1(t)|},

for arbitrary t and x1, x2, y1, y2 ∈ R holds and σ(t) satisfy∫ ∞
−∞

σα(t)dt < ∞,

for some constant α in the range 1 ≤ α ≤ 2. Suppose further that there exists a solution x(t) of equation (1) satisfying

|x(t)|2 + |ẋ(t)|2 ≤ Do, f or t ∈ R. (2)

Then,

i) If q(t) and r(t, x, ẋ) are almost periodic in t, for |x(t)|2 + |ẋ(t)|2 ≤ Do, then x(t) is almost periodic in t.

ii) If q(t) and r(t, x, ẋ) are periodic in t, with period ω, for |x(t)|2 + |ẋ(t)|2 ≤ Do, then x(t) is periodic with period ω.

Assume now that r is the perturbation such that p the continuous function p(t, x, ẋ) is separable in the form

p(t, x, ẋ) = q(t) + r(t, x, ẋ),
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with q(t) + r(t, 0, 0) continuous in their respective arguments, where

|q(t)| =
∫ t

0
|q(s)ds| ≤ do, do > 0.

Thus, the equation (1) can be written in the equivalent system form as

ẋ = y + q,

ẏ = −ϕ(x, y)y − ψ(x, y) + p(t, x, y + q) − ϕ(x, y)q. (3)

Our main tool is the proof of the results is the continuous function V = V(x, y) defined for any x, y ∈ R by

2V(x, y) = (ax + y)2 + 2
∫ x

0
ψ(ξ, 0)dξ + y2. (4)

The following results are immediate from (4).

lemma Assume that all the conditions on functions ϕ, ψ in Theorem 1 are satisfied. Then, there exist positive constants d1
and d2 such that

d1(x2 + y2) ≤ V(x, y) ≤ d2(x2 + y2). (5)

Proof: Using (i) of Theorem 1, we have that

2V(x, y) ≥ (ax + y)2 + x2ψ(x, 0)
x
+ y2,

2V(x, y) ≥ υx2 + y2.

Also, from (4), we have

2V(x, y) ≤ a2x2 + 2axy + 2y2 + 2υx2

by (i) of Theorem 1 and Schwartz’s inequality, we have

2axy ≤ 2a(x2 + y2),

so that

2V(x, y) ≤ (a2 + 2a + 2υ)x2 + (2a + 2)y2.

If we choose, δ1 = min{υ, 1} and δ2 = max{a2 + 2a + 2υ; 2a + 2}, then, inequality (5) holds.

lemma Let the hypothesis (i) and (ii) of Theorem 1 hold. Then, there exist positive constants d3, d4 and d5 such that

V̇(t) ≤ −(d3 − d4σ(t))V(t) + d5V
1
2 (t).

Proof: On using (3), a direct computation of dV
dt gives after simplification

V̇(t) = − a[ϕ(x, y) − a]xy − axψ(x, y) −
[
2ϕ(x, y) − a

]
y2

− 2yψ(x, y) + yψ(x, 0)

+ [x
ψ(x, 0)

x
− ay]q(t)

+ [ax + 2y]r(t, x, y + q),

where by (i) of Theorem 1,

[ϕ(x, y) − a] ≥ 0.

axψ(x, y) ≥ ax2ψ(x, y)
x

≥ aδox2.
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2ψ(x, y)
y

y2 ≥ 2by2.

and

yψ(x, y) ≤ 0.

It follows that

V̇ ≤ − aδox2 − 2by2 + (υ|x| − a|y|)q(t)
+ (a|x| + 2|y|)r(t, x, y + q).

That is,

V̇ ≤ − δ1(x2 + y2) + δ2(x2 + y2)
1
2

+ δ3(x2 + y2)
1
2 |r(t, x, y + q)|.

Thus,

V̇ ≤ − δ1(x2 + y2) + δ2(x2 + y2)
1
2 + δ3(x2 + y2)

1
2 |r(t, x, y + q)|,

where δ1 = min{aδo, 2b}, δ2 = max
√

2do{υ, a} and δ3 = max
√

2{a, 2}.
It follows that

V̇ ≤ − δ1(x2 + y2) + δ4(x2 + y2)
1
2 [r(t, x, y + q) + 1],

where δ4 = max{δ2, δ3}.
So that since

|r(t, x, y, z + q)| ≤ δ4σ(t)[(x2 + y2)
1
2 + 1],

by (iii) of Theorem 1 and (5), we have

V̇ ≤ − δ1(x2 + y2) + δ4σ(t)(x2 + y2) + δ4(x2 + y2)
1
2

V̇ ≤ − (δ5 − δ6σ(t))V + δ7V
1
2 ,

where δ5 =
δ1
d2

, δ6 =
δ3
d1

and δ7 =
δ2
d1

.

It can be further verified that

V̇ ≤ − δ8(x2 + y2) + δ9(x2 + y2)
1
2 |φ|, (6)

where φ = r(t, x2, y2 + q) − r(t, x1, y1 + q).

Proof of Theorem 1

Consider the function

W(t) = V
(
(x(t − τ) − x(t)), (y(t − τ) − y(t))

)
where V is the function defined in (4) with x, y replaced by (x(t + τ) − x(t)) and (y(t + τ) − y(t)) respectively. Then, by (5)
we have positive constants d6 and d7 such that

d6S (t) ≤ W(t) ≤ d7S (t), (7)

where

S (t) = {|x(t + τ) − x(t)|2 + |y(t + τ) − y(t)|2}.

Differentiating W(t) along the system (3), we get as in (6),

Ẇ(t) ≤ −δ8
{|x(t + τ) − x(t)|2 + |y(t + τ) − y(t)|2}

+δ9
{|x(t + τ) − x(t)|2 + |y(t + τ) − y(t)|2} 1

2 |φ|, (8)
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where φ = r((t + τ), x(t), y(t) + q(t + τ) − r(t, x, y + q) with δ8 and δ9 being finite constants.

Inequality (8) can be arranged as

Ẇ(t) ≤ −δ8
{|x(t + τ) − x(t)|2 + |y(t + τ) − y(t)|2}

+δ′9
{|x(t + τ) − x(t)|2 + |y(t + τ) − y(t)|2} 1

2 |φ|
+δ10
{|x(t + τ) − x(t)|2 + |y(t + τ) − y(t)|2} 1

2

× |r(t + τ), x(t), y(t) + q(t + τ) − r(t, x(t), y + q)|. (9)

Since the perturbation r is uniformly almost periodic in t. Then, given arbitrary ε > 0, we can find τ > 0 such that
|q(t + τ) − q(t)| ≤ ℓε2,

|r(t + τ), x(t), y(t) + q(t + τ) − r(t, x(t), y + q)| ≤ ℓε2, (10)

where ℓ is a constant whose value will be determined later. Thus, (9) becomes

Ẇ(t) ≤ −δ8S (t) + δ′9S
1
2 |φ| + δ10S

1
2 (t)ℓε2. (11)

By (2) of Theorem 1, {|x(t + τ) − x(t)|2 + |y(t + τ) − y(t)|2} 1
2 ≤ Do.

Inequality (11) becomes,

Ẇ(t) + δ8S (t) ≤ δ′9S
1
2 |φ| + δ10Doℓε

2. (12)

Let α be any constant such that 1 ≤ α ≤ 2 and set ρ = 1 − 1
2α, so that 0 ≤ ρ ≤ 1

2 .

Then, (12) becomes

Ẇ + δ8S (t) ≤ δ′9S ρW∗ + δ10Doℓε
2 (13)

and W∗ = S ( 1
2−ρ)(|φ| − δ8

δ′9
S

1
2 (t)).

We consider two cases

1) |φ| ≤ δ8
δ′9

S
1
2 and

2) |φ| > δ8
δ′9

S
1
2

separately, we find that in either case, there exists some constants δ11 > 0 such that W∗ ≤ δ11|φ|2(1−ρ). Thus, the inequality
(13) becomes

dW
dt
+ δ8S ≤ δ12S ρσ2(1−ρ)S (1−ρ)W(t) + δ10Doℓε

2

where δ12 ≥ 2δ′9δ11. This follows that

dW
dt
+
(
(δ13 − δ14)σα(t)

)
W(t) ≤ δ10Doℓε

2 (14)

after using (7) on W, with δ13, δ14 as positive constants.

On integrating (14) from to to t (t ≥ to), we obtain

W(t) ≤ δ15W(to) exp
{ − δ13(t − to)

}
+ δ14

∫ t

to
σα(s)d(s)

}
+ δ16ℓε

2, (15)

where δ15 =
δ′9
δ8

and δ16 =
δ15δ10Do

δ13
.

If ∫ t

to
σα(s)d(s) < δ13δ

−1
14 (t − to),
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then, the exponential index remains negative for all (t − to) ≥ 0. As t = (t − to) → ∞ and that W(to) is finite in (15), we
have that

W(t) ≤ δ16ℓε
2 f or any t.

Since W(t) satisfies (7),

W(t) ≤ d−1
6 δ16ℓε

2.

By definition of W(t) in (7), we have that

|x(t + τ) − x(t)| + |y(t + τ) − y(t)| ≤
(2ℓδ16

d6

) 1
2

ε. (16)

choose ℓ = d6
2δ16

, inequality (16) implies

|x(t + τ) − x(t)| + |y(t + τ) − y(t)| ≤ ε, (17)

where τ is chosen to satisfy (10) is relatively dense and hence (17) implies that the solutions (x(t), y(t)) or equivalently
x(t), ẋ(t) of (1) are uniformly almost periodic in t.

To show that the solutions are also periodic, we assume that

q(t + ω) = q(t)
r(t + ω, x(t), y(t) + q(t)) = r(t, x(t), y(t)),

for (x2 + y2) ≤ D1, for some constants D1 > 0.

Since the perturbation r(t, x, y + q) has period ω in t, we replace τ in the definition of W(t) with ω. The terms in the left
hand side of (10) is identically zero, thus we may have inequality (17) as

|x(t + ω) − x(t)| + |y(t + ω) − y(t)| ≤ 0.

Thus,

|x(t + ω) − x(t)| + |y(t + ω) − y(t)| = 0.

which implies that

x(t + ω) = x(t) and y(t + ω) = y(t).

That is, x(t), y(t) or equivalently x(t), ẋ(t) of (1) are periodic in t with period ω.

Conclusion

Analysis of nonlinear systems literary shows that Lyapunov’s theory in periodic properties of solutions is rarely scarce.
The second Lyapunov’s method allows to predict and characterize the periodic behavior of solutions of sufficiently com-
plicated nonlinear physical system. The solutions of second order nonlinear differential equation (1) are periodic and
almost periodic uniformly in x and ẋ according to Lyapunov’s theory if the conditions of Theorem 1 hold as t → ∞.
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